Alexander, M., Dessai, S., 2019. What can climate services learn from the broader services literature? Clim. Change 157, 133-149. https://doi.org/10.1007/s10584- 019-02388-8. Asrar, G.R., Ryabinin, V., Detemmerman, V., 2012. Climate science and services: providing climate information for adaptation, sustainable development and risk management. Curr. Opin. Environ. Sustain. 4, 88-100. https://doi.org/10.1016/j. cosust.2012.01.003. BBC News, 2020: “Highest temperature on Earth” as Death Valley, US hits 54.4C. https:// www.bbc.co.uk/news/world-us-canada-53788018. Bowyer, P., Brasseur, G.P., Jacob, D., 2015. The role of climate servicesclimate services in adapting adaptation to climate variability and change. In: Leal Filho, W. (Ed.), Handbook of Climate Change Adaptation. Springer Berlin Heidelberg, pp. 533-550. Brasseur, G.P., Gallardo, L., 2016. Climate services: lessons learned and future prospects. Earth's Futur. 4, 79-89. https://doi.org/10.1002/2015EF000338. Bruno Soares, M., Alexander, M., Dessai, S., 2018. Sectoral use of climate information in Europe: A synoptic overview. Clim. Serv. 9, 5-20. https://doi.org/10.1016/j. cliser.2017.06.001. Buontempo, C., Hewitt, C.D., Doblas-Reyes, F.J., Dessai, S., 2014. Climate service development, delivery and use in Europe at monthly to inter-annual timescales. Clim. Risk Manag. 6, 1-5. https://doi.org/10.1016/j.crm.2014.10.002. Cash, D.W., Clark, W.C., Alcock, F., Dickson, N.M., Eckley, N., Guston, D.H., J¨ger, J.,a Mitchell, R.B., 2003. Knowledge systems for sustainable development. Proc. Natl. Acad. Sci. 100 https://doi.org/10.1073/pnas.1231332100, 8086 LP - 8091. Climate Ambition Summit, 2020: Climate Ambition Summit 2020. https://www. climateambitionsummit2020.org/. Cortekar, J., Themessl, M., Lamich, K., 2020. Systematic analysis of EU-based climate service providers. Clim. Serv. 17 https://doi.org/10.1016/j.cliser.2019.100125. European Space Agency, 2015: Scientific Readiness Levels (SRL) Handbook. https:// missionadvice.esa.int/wp-content/uploads/2020/05/Science_Readiness_Levels-SRL_ Handbook_v1.1_issued_external.pdf. Everingham, Y.L., Muchow, R.C., Stone, R.C., Inman-Bamber, N.G., Singels, A., Bezuidenhout, C.N., 2002. Enhanced risk management and decision-making capability across the sugarcane industry value chain based on seasonal climate forecasts. Agric. Syst. 74, 459-477. https://doi.org/10.1016/S0308-521X(02) 00050-1. Fabregas, R., Kremer, M., Schilbach, F., 2019. Realizing the potential of digital development: the case of agricultural advice. Science 366, eaay3038. https://doi. org/10.1126/science.aay3038. Fell, M.J., 2017. Energy services: a conceptual review. Energy Res. Soc. Sci. 27, 129-140. https://doi.org/10.1016/j.erss.2017.02.010. Fiedler, T., Pitman, A.J., Mackenzie, K., Wood, N., Jakob, C., Perkins-Kirkpatrick, S.E., 2021. Business risk and the emergence of climate analytics. Nat. Clim. Chang. 11, 87-94. https://doi.org/10.1038/s41558-020-00984-6. Georgeson, L., Maslin, M., Poessinouw, M., 2017. Global disparity in the supply of commercial weather and climate information services. Sci. Adv. 3, e1602632. https://doi.org/10.1126/sciadv.1602632. Goddard, L., 2016. From science to service. Science 353, 1366-1367. https://doi.org/ 10.1126/science.aag3087. Golding, N., Hewitt, C., Zhang, P., Liu, M., Zhang, J., Bett, P., 2019. Co-development of a seasonal rainfall forecast service: supporting flood risk management for the Yangtze River basin. Clim. Risk Manag. 23, 43-49. https://doi.org/10.1016/j. crm.2019.01.002. Goosen, H., et al., 2013. Climate Adaptation Services for the Netherlands: an operational approach to support spatial adaptation planning. Reg. Environ. Chang. 14 https:// doi.org/10.1007/s10113-013-0513-8. Hama, A.M., et al., 2017. Implementing GFCS: Swiss and German national showcases. WMO Bull. 66, 40-44. Hansen, J.W., 2005. Integrating seasonal climate prediction and agricultural models for insights into agricultural practice. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 360, 2037-2047. https://doi.org/10.1098/rstb.2005.1747. Harjanne, A., 2017. Servitizing climate science—Institutional analysis of climate services discourse and its implications. Glob. Environ. Chang. 46, 1-16. https://doi.org/ 10.1016/j.gloenvcha.2017.06.008. Hecht, A.D., 1984. Meeting the challenge of climate service in the 1980s. Bull. Am. Meteorol. Soc. 65, 365-366. https://doi.org/10.1175/1520-0477(1984)065<0365: MTCOCS>2.0.CO;2. Hewitt, C., Mason, S., Walland, D., 2012. The global framework for climate services. Nat. Clim. Chang. 2, 831-832. https://doi.org/10.1038/nclimate1745. Hewitt, C.D., Stone, R.C., Tait, A.B., 2017. Improving the use of climate information in decision-making. Nat. Clim. Chang. 7, 614-616. https://doi.org/10.1038/ nclimate3378. Hewitt, C.D., et al., 2020a. Making society climate resilient: international progress under the global framework for climate services. Bull. Am. Meteorol. Soc. 101, E237-E252. https://doi.org/10.1175/BAMS-D-18-0211.1. Hewitt, C.D., Golding, N., Zhang, P., Dunbar, T., Bett, P.E., Camp, J., Mitchell, T.D., Pope, E., 2020b. The process and benefits of developing prototype climate services—examples in China. J. Meteorol. Res. 34, 893-903. https://doi.org/ 10.1007/s13351-020-0042-6. Hewitt, et al., 2021. Recommendations for future research priorities for climate modeling org/10.1016/S0140-6736(20)32579-4. and climate services. Bull. Am. Meteorol. Soc. 102, E578-E588. https://doi.org/ 10.1175/BAMS-D-20-0103.1. Huntingford, C., Jeffers, E.S., Bonsall, M.B., Christensen, H.M., Lees, T., Yang, H., 2019. UNFCCC, 2015: Paris Agreement - English. United Nations, https://doi.org/https:// Machine learning and artificial intelligence to aid climate change research and preparedness. Environ. Res. Lett. 14, 124007. https://doi.org/10.1088/1748-9326/ ab4e55. van den Hurk, B., Hewitt, C., Jacob, D., Bessembinder, J., Doblas-Reyes, F., D¨scher, R., 2018. The match between climate services demands and Earth System Models supplies. Clim. Serv. 12, 59-63. https://doi.org/10.1016/j.cliser.2018.11.002. IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Lemos, M.C., Kirchhoff, C.J., Ramprasad, V., 2012. Narrowing the climate information usability gap. Nat. Clim. Chang. 2, 789-794. https://doi.org/10.1038/ nclimate1614. Lourenço, T.C., Swart, R., Goosen, H., Street, R., 2016. The rise of demand-driven climate 208-216. https://doi.org/10.1016/j.envsci.2019.11.010. services. Nat. Clim. Chang. 6, 13-14. https://doi.org/10.1038/nclimate2836. Opitz-Stapleton, S., Street, R., Ye, Q., Han, J., Hewitt, C.D., 2020. Translational science Torralba, V., Wild, S., 2020. How reliable are decadal climate predictions of near for climate services: mapping and understanding users' climate service needs in CSSP-China. J. Meteorol. Res. 35, 64-76. https://doi.org/10.1007/s13351-021- 0077-3. Oppenheimer, M., Campos, M., Warren, R., Birkmann, J., Luber, G., O'Neill, B., Takahashi, K., 2014: IPCC-WGII-AR5-19. Emergent Risks and Key Vulnerabilities. Clim. Chang. 2014 Impacts, Adapt. Vulnerability. Part A Glob. Sect. Asp. Contrib. Work. Gr. II to Fifth Assess. Rep. Intergov. Panel Clim. Chang. Osawa, Y., Miyazaki, K., 2006. An empirical analysis of the valley of death: large-scale R&D project performance in a Japanese diversified company. Asian J. Technol. Innov. 14, 93-116. https://doi.org/10.1080/19761597.2006.9668620. Porter, M.E., 1985. Competitive advantage, creating and sustaining superior performance. The Free Press, 600 pp. Shukla, J., Hagedorn, R., Miller, M., Palmer, T.N., Hoskins, B., Kinter, J., Marotzke, J., WCC-3_Statement_07-09-09 mods.pdf. Slingo, J., 2009. Strategies: revolution in climate prediction is both necessary and possible: a declaration at the World Modelling Summit for Climate Prediction. Bull. Am. Meteorol. Soc. 90, 175-178. https://doi.org/10.1175/2008BAMS2759.1. Skelton, M., Fischer, A.M., Liniger, M.A., Bresch, D.N., 2019. Who is ‘the useróf climate WMO, 2020: WMO Provisional Report on the State of the Global Climate 2020. services? Unpacking the use of national climate scenarios in Switzerland beyond sectors, numeracy and the research-practice binary. Clim. Serv. 15 https://doi.org/ 10.1016/j.cliser.2019.100113. Smith, D.M., et al., 2019. Robust skill of decadal climate predictions. npj Clim. Atmos. Sci. 2, 13. https://doi.org/10.1038/s41612-019-0071-y. Solaraju-Murali, B., Caron, L.P., Gonzalez-Reviriego, N., Doblas-Reyes, F.J., 2019. MultiWorld Bank Group, 2020. Strengthening Hydromet and Early Warning Services in year prediction of European summer drought conditions for the agricultural sector. Environ. Res. Lett. 14, 124014. https://doi.org/10.1088/1748-9326/ab5043. Stone, R.C., Meinke, H., 2005. Operational seasonal forecasting of crop performance. Philos. Trans. R. Soc. B Biol. Sci. 360, 2109-2124. https://doi.org/10.1098/ Street, R.B., 2016. Towards a leading role on climate services in Europe: A research and innovation roadmap. Clim. Serv. 1, 2-5. https://doi.org/10.1016/j. cliser.2015.12.001. The Lancet, 2020. Climate and COVID-19: converging crises. Lancet 397, 71. https://doi. Trenberth, K.E., Marquis, M., Zebiak, S., 2016. The vital need for a climate information system. Nat. Clim. Chang. 6, 1057-1059. https://doi.org/10.1038/nclimate3170. unfccc.int/sites/default/files/english_paris_agreement.pdf. Vaughan, C., Dessai, S., 2014. Climate services for society: origins, institutional arrangements, and design elements for an evaluation framework. WIREs Clim. o Chang. 5, 587-603. https://doi.org/10.1002/wcc.290. Vaughan, C., Dessai, S., Hewitt, C., 2018. Surveying climate services: What can we learn from a bird's-eye view? Weather. Clim. Soc. 10, 373-395. https://doi.org/10.1175/ WCAS-D-17-0030.1. Vaughan, C., Hansen, J., Roudier, P., Watkiss, P., Carr, E., 2019. Evaluating agricultural weather and climate services in Africa: evidence, methods, and a learning agenda. WIREs Clim. Chang. 10 https://doi.org/10.1002/wcc.586. Vedeld, T., Hofstad, H., Mathur, M., Büker, P., Stordal, F., 2020. Reaching out? Governing weather and climate services (WCS) for farmers. Environ. Sci. Policy 104, Verfaillie, D., Doblas-Reyes, F.J., Donat, M.G., P´rez-Zanń, N., Solaraju-Murali, B., e o surface air temperature? J. Clim. 1-57 https://doi.org/10.1175/JCLI-D-20-0138.1. Vincent, K., Daly, M., Scannell, C., Leathes, B., 2018. What can climate services learn from theory and practice of co-production? Clim. Serv. 12, 48-58. https://doi.org/ 10.1016/j.cliser.2018.11.001. Walton, D., Van Aalst, M. K., 2020: Climate-related extreme weather events and COVID- 19. A first look at the number of people affected by intersecting disasters. 21 pp. https://media.ifrc.org/ifrc/wp-content/uploads/sites/5/2020/09/Extreme weather-events-and-COVID-19-V4.pdf. Wang, Y., Song, L., Hewitt, C., Golding, N., Huang, Z., 2020. Improving China's resilience to climate-related risks: the china framework for climate services. Weather. Clim. Soc. 12, 729-744. https://doi.org/10.1175/WCAS-D-19-0121.1. WMO, 2009: WCC-3 Conference Statement. https://gfcs.wmo.int/sites/default/files/ WMO, 2012: Climate ExChange. Tudor Rose, 288 pp. WMO, 2018: Step-by-step Guidelines for Establishing a National Framework for Climate Services. WMO Publication no. 1206. WMO Press Release Arctic: heat, fire and melting ice 2020 https://public.wmo.int/en/ media/news/arctic-heat-fire-and-melting-ice. WMO, 2020b: Prolonged Siberian heat “almost impossible without climate change.” https://public.wmo.int/en/media/news/prolonged-siberian-heat-almost impossible-without-climate-change. Belarus. World Bank, Washington, DC, p. 110. World Weather Attribution, 2020: Siberian heatwave of 2020 almost impossible without climate change. https://www.worldweatherattribution.org/siberian-heatwave-of- 2020-almost-impossible-without-climate-change/.