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Abstract  

Mobile devices have spread at an unprecedented rate in the past decade and 95% of the global 

populations live in an area covered by a mobile-cellular network [1] .Mobile learning can be 

used to support students’ learning in higher education settings [2], particularly more in the 

current COVID-19 situation. Mobile Learning as a model of e-learning refers to the acquisition 

of knowledge & skills utilizing mobile technologies. The aim of this study is to identify the 

extrinsic influential factors for the adoption of mobile learning. This study propose the use of an 

extended technology acceptance model (TAM) theory that includes variable of personality traits  

such as perceived enjoyment and Computer self-efficiency. The participants of this study were 

351 students at University Technology Malaysia who had past experience on E-learning. The 

study found that perceived usefulness as an extrinsic factor has the highest influence on students’ 

intention to adopt mobile learning through an investigation of technology acceptance toward 

mobile learning and personality traits such as perceived enjoyment and self- efficacy impact on 

behavior intention to adopt mobile learning.  
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Introduction  

The integration of mobile technology into higher education has gained considerable attention [3]. 

Mobile devices, especially smart phones, are the most frequently used technological devices for 

daily routines. Reflecting this, they are being integrated into teaching [4]. [5] Define mobile 

learning as a dynamic learning environment using wireless mobile devices such as mobile 

phones, personal digital assistants (PDAs), iPads, and smart phones. Mobile learning allows 

students to access course materials as well as learning activities at any location and in real time 

[6] and to share ideas with others, and participate actively in a collaborative environment [7] thus 

overcoming the deficiencies of e-learning such as lack of human interaction and enthusiasm [8]. 



In order to engage the digital generation in the learning process, interactive learning such as 

mobile learning is recommended in the higher education classroom [9-10]. However, the success 

or failure of mobile learning implementation depends on learners’ readiness to embrace 

technology for their education [11]. To enrich the studies on mobile learning field, the objective 

of this study is to identify the highest influential extrinsic factor to influence the adoption of 

mobile learning. 

This study identifies factors that influence to adopt mobile learning based on technology 

acceptance model. An individual’s intention to adopt mobile learning may vary according to the 

perceived benefits and costs, but the factors that affect this adoption may also vary according to 

the usage behavior of technologies. TAM has been used and modified to explore the adoption a 

range of educational technologies [12].  TAM is one of the most widely used theories in studying 

the adoption of IT innovations and new information systems [13] thereby identifying extrinsic 

and intrinsic motivations on the individual's acceptance of different information technologies. 

Perceived enjoyment as an external variable can affect the adoption of a new technology like M-

learning. Moreover, we determine the impact of personality traits such as self-efficacy on the 

intention to adopt mobile learning. Specifically, the present study poses a research questions: 

What is the effect of personality trait on adoption of mobile learning? 

 

2. Literature review 

   2.1 TAM (technology acceptance model) 

Users’ acceptance and adoption of technology has captured the attention of various scholars and 

become a principle field of study over the past few decades [14]. The need to explain the usage 

behavior of technologies and their determinants has prompted the development of a number of 

theoretical frameworks [15]. These include the theory of reasoned action (TRA) [16], the theory 

of planned behavior (TPB) [17], the technology acceptance model (TAM) [18], and the diffusion 

of innovation model (DOI) [19], While personality is one of the antecedents of individual 

factors, the Theory of Planned Behavior (TPB) does not include the individual factors. Likewise, 

the UTAT model includes the individual dimension but it investigates the individual in term of 

experience, age, and gender. Personalities of students and lecturers are very different and there 



are many indicators for these behaviors. A critical matter, which can enable the process of 

adoption, is determining these indicators. Hence TAM is applied since it is one of the most 

widely used theories in studying the adoption of IT innovations and new information systems. 

Perceived Ease of Use (PEOU) and Perceived Usefulness (PU) of the innovation are two major 

goals of TAM. TAM with these variables can realize the possible adoption of the innovation. 

The degree to which a user thinks a new technology improves their performance called Perceived 

Usefulness. The degree to which a user thinks selecting a technology is simple and user-friendly 

is Perceived Ease of Use. True behavioral intention to use findings affects real usage. 

2.1.1 Behavioral intention 

Behavioral Intention evaluates the strength of a user’s commitment to perform a specific 

behavior and shows the intensity of an individual’s intention to adopt a specific behavior [18]. 

[20] Posited this factor is reflected as a signal of actual behavior and predicts actual usage [21]. 

This factor has been widely used as an antecedent of user acceptance in various technology 

acceptance theories [22]. Extant studies on mobile learning [23], virtual reality in learning [24] e-

learning [25], and social networking sites [21] have integrated this factor to evaluate adoption 

and implementation of technology. Thus, this factor is regarded as a prime determinant in this 

research. 

   2.1.2 Perceived usefulness 

Perceived usefulness could be addressed as the functional and extrinsic benefits that are realized 

by using technologies [18]. Extrinsic motivation refers to the performance of an activity because 

it is perceived to be instrumental in achieving valued outcomes that are distinct from the activity 

itself. Benefits could be related to the extent to which student perceive using mobile internet as 

being a more productive way of doing things, saving their time and effort in using services rather 

than employing traditional tools to access the same kind of services [26-27]. 

 

      2.1.3 Perceived ease of use  

 

The extent to which student perceive using a new system as being simple and not requiring too 

much effort usually shapes their willingness to adopt such a system [18]. 



Indeed, mobile internet could be considered as a new technology that will require that student 

have a certain level of experience and knowledge to use it both safely and efficiently. In the prior 

literature of mobile technology, there are a good number of studies that have approved the 

impact of the role of perceived ease of use on the student intention to adopt such technology 

[28]. 

 

2.2 Perceived enjoyment 

Perceived enjoyment is defined as the “degree to which the activity of using technology is 

perceived to be enjoyable in its own right apart from any performance consequences that may be 

anticipated” [29]. Prior studies have proposed that intrinsic motivators, such as perceived 

enjoyment [18]; can explain the Behavioral Intention to use information systems. The Perceived 

Usefulness has a significant effect on the intention for technology adoption and its influence was 

complemented by enjoyment. Therefore, Enjoyment as an external variable can affect the 

adoption of a new technology as in M-learning. 

 

 

2.3 Self-efficacy 

Self-efficacy is an individual’s belief in their ability to successfully perform the behaviors 

required to produce certain outcomes [30]. Self-efficacy as an index may measure an individual’s 

self-confidence in utilizing innovation [31], and it is an important factor that affects high 

technology adoption [32].  Self-efficacy in a learning environment may positively affect a 

learner’s motivation, concentration, and learning effectiveness. Students with a higher level of 

self-efficacy tend to have more confidence in learning situations [33]. Moreover, self-efficacy 

has been found to have a positive effect on the intention to use web-based learning, and 

instructors with a high level of self-efficacy related to technology tend to prefer teaching using 

technology [33]. 

 

3. Hypotheses Development 

 

 



This study focuses on the relationship between TAM and two external factors. Therefore, we 

posit the following hypotheses: 

 

Self-efficacy is the thoughts of a human being around their capacity for using and managing 

several actions that require designed types of performance. In this condition, the users that show 

higher intention to use mobile tools in educational processes are the users that have previously 

used mobile devices and have good experience about that [34].  

 

H1: self-efficacy has positive effect on Perceived Ease of Use. 

 

Extrinsic motivation is an example of Perceived Usefulness in TAM model [35] one of the 

effective factors of usage behavior and intention in TAM model is Perceived Usefulness. 

 

H2: Perceived Ease of Use of m-learning has a significant positive effect on Perceived 

Usefulness  

 

 

M-learning systems are useful because of context-aware support and that provides useful data to 

users all the time and from anywhere. Furthermore, these tools are able to develop and foster the 

relationship among students and lecturers. 

 

H3: Perceived Usefulness of M-learning has a positive impact on behavioral intention to use  

 

 

Perceived enjoyment based on the prior researches has a significant influence on Behavioral 

Intention to use computer systems [36-37].  It is predictable that Perceived Enjoyment can have a 

salient effect on Behavioral Intention. Personality traits might have a significant influence on 

perceived enjoyment and behavioral intentions. 

 

H4: Perceived enjoyment is positively related to Behavioral Intention. 

 

 

 



 

 

4.  Research methodology 

 

     4.1 Measurement 

The survey questionnaire was designed based on quantitative data analysis method. The 

questions were designed on a five-point Likert scale to evaluate the explanation coverage of each 

item. The scale included 1 to 5, where 1=strongly disagree, 2=disagree, 3=neutral, 4=agree and 

5=strongly agree. A major consideration in the current survey tool design was to maintain its 

brevity with a focus on obtaining a sufficient response rate. 

 

 4.2 Data collection and sample characteristics 

This study collected data from undergraduate and postgraduate students that used E-learning 

previously. Data were collected through structured questionnaires. The questionnaires were 

disseminated through personal delivery and collection. The target population of this study was 

accounting students of two faculties in University Technology Malaysia. According to Krejeie 

and Morgan [38] list method 351 questionnaires were disseminated to the respondents.  

We used a descriptive statistics for assessing the demographic data of the respondents. Table 1 

shows the general characteristics of the sample. 

 

 

Table 1: general characteristics of the sample 

Measure Items (coding) Ratio % 

 

Gender 

Male (1) 39% 

Female (2) 61% 

 

Age 

>25 

25-34 

<35 

28% 

57% 

15% 

 

Education level 

Undergraduate 49% 

Postgraduate 51% 



 

Faculty 

Faculty of Health Science 68% 

Faculty of Biomedical engineering  32% 

 

Type of  devices Smart phone 89% 

Tablet  11% 

 

   

 

 4.3 Data analysis 

The collected data were entered in SPSS V21 for data analysis. Different analyses were done in 

SPSS, such as descriptive analysis to demonstrate the respondents’ attributes and properties, and 

regression analysis to obtain the relationship between two variables. 

 

 

 

5. Results 

 

5.1 Reliability and validity  

 

The reliability coefficient demonstrated whether the test designer was correct in expecting a 

certain collection of items to yield interpretable statements about individual differences (Klopfer 

and Kelley 1942) The general agreed-upon lower limit for Cronbach’s α is 0.70 [39] Table 2 

shows the Correlations between total scores.  

 

Table 2: Correlations between total scores 

Scale Items Number of Items Corrected Item-Total Correlation 

Perceived Ease Of Use 4 0.636 



Perceived Usefulness 4 0.699 

Behavior Intention 4 0.522 

Perceived Enjoyment 3 0.521 

Computer Self-Efficacy 4 0.673 

 

For analyzing the basic structure for questions on the research survey and separately categorizing 

them into their respective scales, a principal component analysis with a varimax rotation method 

was performed. Table 3 shows Factor loading for the rotated adoption factors. 

 

Table 3: Factor loading for the rotated adoption factors 

Scale Items 1* 2* 3* 4* 5* 

PE1 0.854     

PE2 0.884     

PE3 0.862     

PEU1  0.902    

PEU2  0.90    

PEU3  0.856    

PEU4  0.625    

PU1   0.769   

PU2   0.765   

PU3   0.834   

PU4   0.796   

SE1    0.904  

SE2    0.929  

SE3    0.915  

SE4    0.903  

BI1     0.879 

B I2     0.891 



B I3     0.890 

B I4     0.889 

% 

Of Variance Explained 

57.048 16.114 12.016 8.666 6.156 

Cumulative Percentages 57.048 73.162 85.178 3.844 100.0 

 

 

 

5.2 Regression analysis 

 

Regression analysis was done to attain high-accuracy results. Linear regression was applied to 

calculate the values of the relationships between two variables. The linear regression matrix has 

built four parameters, R
2
 as the coefficient of the correlation or the relation shows the strength 

and direction of the relationship. The significant of the relationship was shown by the P values, 

which should be equal or less than 0.05 for a significant relationship. The slope and the direction 

of the relationship are shown by Beta (β). Based on 351 completed questionnaires collected, 

Table 4 shows Regression results of Hypotheses. 

 

 

Table 4: Regression results of Hypotheses 

Constructs β t P R
2 

Hypothesis 

testing results 

PEU→ PU 0.330 7.049 0.00 0.353 H2 is supported 

PU→BI 0.636 12.373 0.00 0.553 H3 is supported 

CS→PEU 0.414 12.373 0.00 0.365 H1 is supported 

PE→ BI 0.402 6.739 0.00 0.340 H4 is supported 

 

The positive value of β (0.330) indicates the direction of the relationship. From the table above, 

we determine that Perceived Ease of Use impacts Perceived Usefulness in mobile learning 



adoption. The coefficient of the regression determines if the relationship is accepted or rejected. 

In this part the value of R
2
 is high and the higher value of R

2
 shows that the relationship is 

strong. R
2
 scored greater number, which is 0.553 while the significance indicator (P) is equal to 

0.000 and Beta (β) recorded positive value with 0.636. It suggests that Behavior Intention is 

positively related to Perceived Usefulness. We found the Perceived Usefulness is the most 

influential factor, towards Behavior Intention to use mobile learning. The hypothesis 2 (H2) was 

accepted because the relation between the variables are strongly sufficient. According to this 

finding, their capacity and the amount of ease of using the mobile learning have a strong and 

positive relationship. In this case hypothesis 3 (H3) was accepted because P=0.000 and R
2
 

=0.365 and β has a positive value (0.404) showing that the relationship is positive as it describes 

the direction. As can be seen from the table Computer Self-Efficacy and Perceived Ease of Use 

are positively related. The Perceived Enjoyment has a significant effect on Behavior Intention to 

use. P is less than 0.05 and the value of β (0.402) shows a strong relationship between Perceived 

Enjoyment and Behavior Intention, so the hypothesis (H4) is accepted. Consequently, it can be 

resulted that Perceived Enjoyment is related to Behavior Intention in M-learning adoption. 

 

 

 

 

 



 

Figure 1: proposed model 

 

 

   5.2.1 The most influential Factor leads to Adoption of M-learning 

The result of the regression presented the most influential factor that leads to adoption mobile 

learning. Perceived Usefulness is the most significant factor that influences adoption of mobile 

learning. In the table 4, R
2
 which measures the level of relationship between variables, scored the 

greater number which is 0.553 while the indicator of the significant (P) is equal to 0.000 and this 

is considered significant at alpha level 0.05. Beta (β) is another parameter shows the direction of 

the relationship, it recorded positive value in 0.636. This depicts Perceived Usefulness is 

positively related to Behavior Intention. R
2
 which is the most important parameter scored the 

highest number with 0.553 compared to the all regression analysis. From this it can be drawn that 

the Perceived Usefulness is the most influential factor that leads to adoption of M-learning. 

 



6. Discussion 

 

According to the result of analysis, this research identified a significant relationship between 

Perceived Ease of Use and Perceived Usefulness. Previous researchers found out the significant 

influence of Perceived Ease of Use on students’ intention and Perceived Usefulness 

simultaneously based on [40]. Perceived Ease of Use on students’ intention is indirectly related 

through Perceived Usefulness [41]. Pursuant to previous researches and the current study, 

findings can prove a significant relationship between Perceived Ease of Use and Perceived 

Usefulness on intention of students. 

According to hypothesis 2, Perceived Usefulness has the most significant effect on Intention of 

students. It is an extrinsic motivation, which plays an important role in acceptance of a new 

technology [18] M-learning introduces many advantages such as collaborating and sharing 

knowledge. Also M-learning found useful in learning mode for individuals due to its learning 

flexibility. This findings support that perceptions of the usefulness of M-learning; M-learning 

usefulness and students' intention to adopt new technology are related. This hypothesis in this 

research was the most effective, which means that students perception about usefulness of M-

learning is high and the reason for this perception can be related to students’ background about 

usefulness of a new technology like M-learning because the respondents of this study used E-

learning already. 

Computer Self-Efficacy refers to the judgment of individuals about their capabilities to use 

computers in diverse situations [42].  According to the result of analysis, this research finds a 

relationship between ability of students and Perceived Ease of Use. In addition, Computer Self-

Efficacy revealed a strong positive influence on Perceived Ease of Use about internet-based 

learning systems [43]. On the other hand, most of the respondents have capability of using 

information technology so they will not be afraid easily and they persist their efforts. As a result, 

it is possible for these individuals to overcome whatever obstacles they confront [42]. 

According to the result of analysis, Perceived Enjoyment found to be a significant determinant of 

the intention for using M-learning. In addition, Perceived Enjoyment is an extrinsic motivation 

like Perceived Usefulness that can have influence on intention of students. Prior studies found a 

significant relationship between Perceived Enjoyment and Behavioral Intention to use M-

learning and this outcome support them [44-45] .Based on the results, the individual's intention 



for using M-learning in education could increase through promoting their Perceived Enjoyment 

of M-learning and through improving hedonic elements of the system, the Perceived Enjoyment 

of a system can be easily elevated and influence the intention of students to adopt M-learning. 

 

Contribution 

 

This research probed into the dynamics of technology acceptance in the domain of mobile 

learning, with specific emphasis on the moderating effects of personality traits. Differing from 

what was hypothesized in this study; personality traits have impact on BI. This study found that 

Perceived Enjoyment and self- efficacy are extrinsic motivation which can have impact on 

behavior intention of students. Also perceived usefulness as an extrinsic factor has the highest 

influence on students’ intention to adopt mobile. This result provides valuable insight for 

educators to formulate and design interesting interface and enjoyable contents of mobile learning 

system. The design of mobile learning should encompass features which can deliver greater 

satisfaction.  

 

 

Limitations and recommendations 

 

Certain limitations were revealed in the current research. First, the actual use of mobile learning 

was not incorporated in the proposed conceptual framework. Second, the causality among the 

constructs may not be readily inferred owing to the study’s cross-sectional nature. Third, the 

investigation was based on the respondents’ self-reported intention to use mobile learning, lastly, 

since the sampling locations were confined to two faculties of university only, the findings could 

not be generalised across all students of university. 

Apart from considering BI, future scholars are encouraged to integrate actual use of technology 

in the proposed model and adopt a longitudinal study to validate the cause-effect relationships. 

Furthermore, instead of relying on self-reported intention to use, actual usage of mobile learning 

is recommended to be tracked and recorded to deliver insightful information on students’ mobile 

learning progress. Further studies are encouraged to broaden the sample size and involve an 

extensive range of public and private tertiary education institutions. 
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