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A B S T R A C T

In recent years, the combination of unmanned aerial vehicles (UAVs) and wireless sensor networks (WSNs) has
gained popularity in livestock management (LM) due to energy constraints and network instability. Limited
energy storage of sensor nodes (SNs) and the possibility of packet loss contribute to fast energy consumption
and unstable networks, respectively. UAVs serve as relay nodes and data sinks, addressing these issues by
temporarily storing data to reduce SN workload and establishing mobile nodes for network stability. We
propose two innovations based on previous work: 1) We introduce a multi-layer wireless network architecture,
categorizing UAVs into two layers based on their functions including data collection and data processing.
This enhances task parallelization, bridging performance gaps among multiple UAVs; 2) We overcome the
mobility limitation of SNs, considering their real-time movement in the network. Through deep reinforcement
learning, UAVs learn to cooperatively locate moving SNs. This accounts for the inevitable mobility of livestock
in the industry. Additionally, we simulate the environment and compare our approach to traditional methods,
evaluating metrics such as collected data per timestep (DCPS), energy consumed per timestep (ECPS), and
network stability (NS). Experimental results demonstrate that our method outperforms traditional approaches,
achieving a data collecting gain of 4.84% and 8.20% compared to the methods without considering SN mobility
or the multi-layer characteristics of WSNs, respectively. Under energy consumption limits, our method yields
energy savings of 3.00% and 1.35% respectively. Furthermore, we extensively study and validate our method
against other path planning algorithms, including genetic particle swarm optimization (GPSO), modified central
force optimization (MCFO), and rapidly-exploring random trees (RRT). Our approach surpasses these methods
in terms of data collecting efficiency and network stability.
1. Introduction

Livestock management (LM) has become crucial and promising
in the industry due to population growth and changing topography
worldwide [1]. The prevalence of the Internet of Things (IoT) in LM
has gained traction, as it efficiently connects devices and monitors,
reducing farmers’ workload. IoT enables automatic sensing of live-
stock health and reporting anomalies on cloud servers [2,3]. These
portable IoT devices, such as wearables or embedded sensors, collect
health-related data like body temperature, humidity, and heart rate,
determining necessary actions. These devices are distributed as sensor
nodes (SNs) in a wireless sensor network (WSN) across the farm.
However, SNs have limitations. Firstly, their small size and lightweight
design for portability result in low energy storage capacity [4]. Conse-
quently, frequent replacement of SNs is necessary. Secondly, the cost
of data collection from SNs is relatively high, highlighting the need for
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an automated pipeline for data collection and analysis [5]. Thus, the
rapid development of unmanned aerial vehicles (UAVs) has inspired the
use of mobile IoT devices to assist SN management and enable smart
decision-making.

UAVs have diverse applications across industries. For example, in
data communication, UAVs act as communication nodes to connect
separate WSN [6]. Equipped with cameras, UAVs capture images from
various angles to reconstruct 3D scenes [7]. In the field of LM, UAVs
serve multiple purposes. They can: (1) act as data sinks and transmit
collected data to cloud servers [8], (2) preprocess and aggregate data
from different SNs [9,10], and (3) provide real-time farm monitoring
by periodically capturing frames of the livestock [11].

In this paper, we propose a multi-layer real-time architecture com-
prising SNs and UAVs, each with distinct roles. We assume that multiple
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Table 1
Overview of related work in LM.

Author Task Methodology

Bouchekara
et al. [14]

Livestock
monitoring

A classification task is proposed
on the images taken by UAVs to
distinguish livestock.

Li et al. [15] Livestock
monitoring

Establish a point cloud system
using 3d reconstruction to
estimate the size and weight of
livestock.

Awan et al.
[16]

Communica-
tion &
Routing

A nature-inspired cluster-based
routing considering the activity of
herd is proposed to minimize the
energy consumption in WSNs.

Alanezi et al.
[10]

Communica-
tion &
Routing

Based on the existing
cluster-based routing method, a
fault detection and recovery
mechanism is proposed to reduce
the risk of connection failure in
WSNs.

Behjati et al.
[17]

UAV path
planning

A genetic PSO algorithm is
proposed to iteratively find the
shortest path across all SNs
(Hamiltonian path).

Pan et al.
[18]

UAV path
planning

A deep learning based genetic
algorithm is proposed to find the
optimal path for multiple UAVs.

Salehi et al.
[12]

UAV
cooperation

A decision-making mechanism
depending on different situations
is proposed to find out the
minimum number of UAVs
required satisfying the specified
parameters

Dineva and
Atanasova
[8]

Interaction &
Visualization

A pipeline processing and
analyzing data to interactively
provide information to users is
proposed

UAVs may vary in parameters and performance. Hence, we implement
hierarchical management of UAVs based on their data storage capacity
and processing capability. This approach involves developing different
types of UAVs for data collection and aggregation, as well as data
preprocessing and relaying. We believe that this hierarchical man-
agement strategy will effectively leverage the strengths of individual
UAVs and parallelize various stages in the pipeline. While previous
work focuses on structural deployment and partitioning of SNs, such as
cluster-based approaches [9,10], we emphasize that functional division
of UAVs would be more efficient than deploying them uniformly.
Our experimental results demonstrate that our method outperforms
traditional approaches in terms of data collection effectiveness and
energy efficiency.

Moreover, existing research often assumes static SNs [9,12] or im-
poses strong restrictions on their movement [13], which is impractical
in LM. In reality, livestock follow a random walk model as they roam
across pastures, influenced by water resources and grassland density. In
our work, we account for livestock movement by updating their coor-
dinates in real-time. We propose a cluster-based partition using stream
K-means. At each timestep, we evenly distribute the entire pasture
area among UAVs based on the current SN locations, considering the
stability of this partition over time. In other words, SNs can dynamically
switch between UAVs as they move. To enable efficient path planning
in this dynamic scenario, we employ deep reinforcement learning for
UAVs. Our approach liberates SNs from fixed partitions in the cluster-
based method, allowing them to collect data efficiently under any walk
model.
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The main contribution of this paper are summarized as:

• To enhance efficiency, we introduce a multi-layer architecture
utilizing ad-hoc UAVs tailored to their specific functions. Un-
like conventional UAVs that sequentially perform distinct tasks,
our architecture enables parallelization of data collection and
processing, resulting in improved efficiency. Moreover, this prac-
tical approach acknowledges the performance disparities often
observed among multiple UAVs in the industry, in contrast to the
assumption of ideal uniformity.

• We address real-time mobility of SNs, surpassing previous lim-
itations and restrictions on node movement. At each timestep,
we update the area partition using stream K-means, guarantee-
ing optimal node allocation efficiency. By maintaining stable
area partitions, UAVs can avoid overlapping or overloading their
coverage, even when nodes move arbitrarily.

• Through simulation, we evaluate and quantitatively compare our
method with traditional approaches. The evaluation encompasses
data collection effectiveness, energy efficiency, and network sta-
bility. Our experimental results demonstrate significant improve-
ments provided by our method. Specifically, compared to meth-
ods that do not consider SN mobility and the multi-layer UAV
architecture, our method achieves a data collection gain of 4.84%
and 8.20%, as well as an energy saving gain of 3.00% and 1.35%
respectively. Furthermore, our visualization of network stability
reveals increased operational longevity without failures as the
number of learning episodes increases, highlighting the enhanced
robustness of our method in comparison to others.

• To validate our method, we compare it with three popular path
planning strategies: genetic particle swarm optimization (GPSO)
[17], modified central force optimization (MCFO) [19], and
rapidly-exploring random trees (RRT) [20]. With a consistent
setting, we observe significant improvements in data collection
gain and network stability compared to these methods. Specif-
ically, our method achieves a data collection gain of 12.53%,
9.44%, and 16.84%, as well as a network stability gain of 1.63%,
0.37%, and 6.31% respectively, surpassing the aforementioned
methods. Furthermore, our method demonstrates lower energy
consumption, ranking second only to GPSO.

Section 2 provides a detailed analysis of the related work. In Section 3,
we present our proposed multi-layer architecture, which encompasses
the overall definition and energy model. Section 4 provides our contri-
bution to the improvement of the system including cluster configura-
tion and evaluation metrics. The experimental settings and validation
of our approach are discussed in Section 5, where we compare it to
previous methods. Finally, in Section 6, we conclude our proposed
methods and highlight their contributions.

2. Related work

2.1. UAVs for livestock management

Currently, livestock management (LM) can be categorized into two
types: traditional LM (TLM) and precision LM (PLM)1 [21]. TLM in-
volves manual supervision of farms or labor-intensive farm manage-
ment practices [22], which is characterized by high costs and demands
a high level of management expertise and technical knowledge from
farmers.

PLM achieves high productivity through automated management
and advanced technology. Electronic tools, particularly communicative
sensors, are extensively used in PLM for data collection and trans-
mission [21]. Research efforts in PLM are increasingly focused on

1 In the following section, we will refer to LM as PLM for brevity.
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leveraging diverse electronic and communication devices. Early PLM
employed sensors, GPS, and other tools to collect health data from
livestock [23]. Technologies like RFID were utilized for livestock iden-
tification [24]. However, these methods were insufficient in efficiently
collecting data for preprocessing and timely upload. The advent of IoT
revealed the effectiveness of WSNs in organizing data and establish-
ing automated pipelines that encompass data collection, aggregation,
analysis, and visualization [25].

UAVs have gained popularity in LM as relay nodes, capable of es-
tablishing connections across multiple networks and storing/processing
data [26]. The research encompasses various areas such as battery life,
collision avoidance, navigation and control systems, and communica-
tion technology.

The battery life of a UAV plays a crucial role in determining its
operational capabilities [27]. In LM, the energy consumption of UAVs is
influenced by factors such as UAV movement, information transmission
frequency, and the number of SNs in WSNs [28]. While optimizing
energy allocation through efficient network design and path planning
can be helpful, certain fundamental energy consumption, including
circuit dissipation and information transmission, cannot be completely
eliminated. Recent research has focused not only on maximizing UAV
battery performance [29], but also on exploring energy consumption
optimization for UAVs in WSNs [30].

In LM, the collision avoidance capability of UAVs is typically con-
sidered to be robust due to the absence of high-altitude structures
or obstacles on farms. UAVs are often operated at a fixed elevation,
allowing for maximized communication range [31]. However, it is
important to acknowledge that collision avoidance remains a critical
factor, and efforts have been made to enhance UAV robustness in
LM [32]. Early UAV navigation primarily relied on GPS technology, yet
its limitations, such as indoor inoperability, have been recognized [33].
Alternative navigation techniques, including inertial navigation or ter-
rain aided navigation, have their own drawbacks, such as reduced
accuracy or susceptibility to extreme weather conditions [34]. In LM
scenarios, it is commonly believed that UAV navigation and control
are confined within a limited range of latitude, longitude, and altitude,
allowing for the utilization of GPS and other methods for more precise
localization [35].

Recent research efforts have focused on developing automatic con-
trol algorithms and path planning techniques to enhance the overall
efficiency of the network system [36]. The communication of UAVs
in LM is flexible yet susceptible to failures due to their swift move-
ment [37]. This characteristic becomes more prominent in multi-
UAV and large-scale networks. To enhance network robustness, re-
cent research has focused on minimizing packet loss and improving
fault tolerance through information encoding and decoding techniques
[10,38]. Table 1 provides an overview of the recent work.

2.2. Reinforcement learning

Reinforcement learning (RL) involves an agent learning to decide
actions within an environment based on received rewards. Representa-
tive RL algorithms encompass Q-value network optimization [39–41]
and policy gradient optimization [42,43], each based on parameterized
functions. Q-value network optimization estimates the total expected
reward given the current state and action, selecting the action with the
highest expected reward during inference. Policy gradient optimization
directly approximates the probability function of the agent’s actions
given a state. Despite the promise of RL, a major challenge is delayed
feedback [44,45], where rewards are received only at the end of an
episode, leading to high time and training costs. Temporal difference
learning [46] addresses this by approximating the ground truth reward,
enabling updates at each step.

In LM, system optimization aims to discover the most efficient
interaction mode among various IoT devices by optimizing path finding

and communication strategies in an assumed environment, echoing the 𝑥
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core motivation of RL. Early attempts in this field come from [47],
which proposes a sense-and-send protocol using reinforcement learning
to address the decentralized UAV pathfinding problem by optimizing
sensing and transmission efficiency together. [48] advances this by
introducing an interference-aware path planning scheme for cellular
UAV networks, balancing efficiency and effectiveness. [49] presents
a generalizable online reinforcement learning framework tailored for
large-scale, complex environments by converting UAV’s raw sensory
measurements into control signals. [13] brings reinforcement learning
in UAVs to the next level by solving path planning for 3d deployment
and dynamic movement of multiple UAVs. Recently, [50] introduces
a distributed Q-learning algorithm for multi-agent scenarios, surpass-
ing benchmarks in energy efficiency and stability. Concurrently, [51]
presents the UAV-MEC network, aiming to establish proxy connection
between mobile devices and distant base stations.

However, a common assumption in prior work is that UAVs are
equally divided and deployed, performing assigned tasks in a sequential
manner. This work proposes a novel hierarchy by assigning distinct
tasks to different UAV layers, parallelizing the system, and significantly
improving energy efficiency and network stability.

3. System model

3.1. System assumptions

Consider in a fixed size farm, we establish a WSN with  nodes
randomly distributed in the farm and every node is denoted as 𝑠𝑖 ∈
{𝑠1, 𝑠2,… , 𝑠 }. To evaluate the sustainability of the system, we define
that each node has identical and limited buffers to store sensed data
from livestock. The buffer capacity is denoted as , and at timestep 𝑡,
the stored data in the buffer of 𝑠𝑖 is denoted as 𝑏𝑖. Therefore the system
should satisfy the inequality below

∀ 𝑖 ∈ [1, ], 𝑏𝑖(𝑡) ≤ . (1)

In terms of the system evaluation, we say the system is sustainable if
for a pre-defined threshold  ,

∀ 𝑡 ≤  ∀ 𝑖 ∈ [1, ], 𝑏𝑖(𝑡) ≤ . (2)

This will be used to determine if the episode should be terminated
or not in DQN. In other words, an episode will be over if any of the
nodes exceeds the storage of buffers. Whenever this happens, we say
the buffer of the node expires and some information will be lost. The
details will be discussed in Section 4.1. Besides, we define the location
of the node 𝑠𝑖 at timestep 𝑡 as 𝑥𝑖(𝑡) ∈ R2. As we consider the mobility
of nodes for each timestep, we perform a random walk model on each
node. For simplicity, we define a parameter 𝑃𝑟 ∈ [0, 1], where for each
timestep, the node 𝑠𝑖 has a probability of 𝑃𝑟 to move towards a random
irection with a pre-defined velocity 𝑣𝑖(𝑡). Note that in this case 𝑣𝑖(𝑡) is
randomly generated 2d vector with a constant magnitude. Therefore
e have

𝑖(𝑡 + 1) =

{

𝑥𝑖(𝑡) + 𝑣𝑖(𝑡), 𝜎 ≤ 𝑃𝑟,

𝑥𝑖(𝑡), 𝜎 > 𝑃 𝑟.
(3)

here 𝜎 is a uniformly generated random number ranged in [0, 1].
This random walk model will ensure that when 𝑡 → ∞, the location

f the node 𝑥𝑖(𝑡) is independent of the initial location 𝑥𝑖(0), which
eans UAVs should find their best way to distribute and approach these
odes despite their locations in our method.

Now we consider adding UAVs into our environment. Specifically,
e consider  UAVs are deployed to collect data from nodes and
ame the set of UAVs Type I. Each UAV of Type I is denoted as
𝑖 ∈ {𝑢1, 𝑢2,… , 𝑢}. We will give the initial deployment of UAVs as the
luster centers by performing K-means regarding the initial location of
odes. If we denote the location of UAV 𝑢𝑖 at timestep 𝑡 as 𝑥𝑢𝑖 (𝑡), then
e have
𝑢

𝑖 (0) = 𝑐𝑖(0), (4)
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Fig. 1. Multi-layer architecture of WSNs.
where 𝑐𝑖 is the center of the cluster 𝐶𝑖. In this context, each cluster 𝐶𝑖 is
denoted as a set of SNs partitioned by clustering algorithms, and every
cluster will be assigned to a single UAV of Type I. The configuration
and update of the cluster will be introduced in Section 4.4.

We consider another type of UAVs. We denote the UAVs we have
added to collect data from nodes as Type I, similarly, the other type of
UAVs defined is called Type II. We denote each UAV of Type II as 𝑢𝑖 ∈
{𝑢+1, 𝑢+2,… , 𝑢+}, where  ≪ , and typically  = 1. The UAVs
in Type I will visit the nodes in their vicinity, and attempt to relay the
raw data to UAVs in Type II. That is, UAVs in Type II will mainly focus
on preprocessing raw data from livestock, then transferring processed
data to the cloud server.

Here we further clarify the difference between Type I and Type II.
Generally, UAVs in WSNs will play multiple roles including relay nodes,
computational nodes, and sometimes storage sink. We notice that this
requires relatively high comprehensive performance of UAVs, and it is
difficult for a single UAV to complete multiple tasks sequentially in a
short time. Therefore, we propose to divide UAVs into two categories,
one with high storage space and the other with strong data processing
capability, namely Type I and Type II. This approach allows for the
parallelization of both data collecting and data processing and takes
advantage of the performance benefits of different UAVs, which is more
practical in the industry. More details of this multi-layer architecture
will be discussed in Section 3.2.

Without losing generalization, we consider a simple signal channel
model to estimate the optimal altitude of UAVs for the maximum
coverage radius of UAVs in the farm. Following Al-Hourani et al. [52],
we consider two typical propagation groups 𝜉 ∈ {LoS, NLoS}. We
denote 𝜃 as the elevation angle between the UAV and the ground
node, therefore we have the probability of line-of-sight (LoS) and
non-line-of-sight (NLoS) respectively

𝑃𝐿𝑜𝑆 (𝜃) = (1 + 𝑎 exp(−𝑏 [𝜃 − 𝑎]))−1, (5)

𝑃𝑁𝐿𝑜𝑆 (𝜃) = 1 − 𝑃𝐿𝑜𝑆 (𝜃), (6)

where 𝑎 and 𝑏 are two constants affected by the environment such as
the mean height of the buildings around. To maximize the coverage
radius , similar to Al-Hourani et al. [52], we pre-define the maximum
allowed path loss 𝑃𝐿𝑚𝑎𝑥 and set

𝑃𝐿 = 𝑃 × 𝑃𝐿 + 𝑃 × 𝑃𝐿 , (7)
𝑚𝑎𝑥 𝐿𝑜𝑆 𝐿𝑜𝑆 𝑁𝐿𝑜𝑆 𝑁𝐿𝑜𝑆
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where 𝑃𝐿𝐿𝑜𝑆 and 𝑃𝐿𝑁𝐿𝑜𝑆 are the path loss of LoS and NLoS re-
spectively. That is, we determine the allowed path loss as the spatial
expectation value of two propagation groups. Combining the free space
path loss with the additive loss incurred by man-made structures, we
have

𝑃𝐿𝐿𝑜𝑆 = 𝐹𝑆𝑃𝐿 + 𝜂𝐿𝑜𝑆 , (8)

𝑃𝐿𝑁𝐿𝑜𝑆 = 𝐹𝑆𝑃𝐿 + 𝜂𝑁𝐿𝑜𝑆 . (9)

Finally, substitute these path loss in terms of the coverage radius and
the altitude, we can formulate an optimization problem

max 

𝑠.𝑡. 𝑃𝐿𝑚𝑎𝑥 = 𝐴(1 + 𝑎 exp(−𝑏
[

arctan( ℎ ) − 𝑎
]

))−1

+10 log(ℎ2 +2) + 𝐵,

(10)

where 𝐴 and 𝐵 are in terms of 𝜂 and environment factors, ℎ and 
are the altitude and radius, respectively. By implicit differentiation, the
value of ℎ satisfying 𝜕

𝜕ℎ ≈ 0 is considered an acceptable solution and
used in the experiment.

3.2. Multi-layer architecture

In this section, we propose a multi-layer architecture as depicted in
Fig. 1 based on the assumption in Section 3.1. We parallelize the two
tasks by assigning data collecting and data processing to different types
of UAVs and take advantage of the different performance benefits of the
UAVs.

In order to effectively distinguish and utilize the characteristics
of different categories of UAVs, we quantitatively evaluate their data
capacity, transmission capability, and processing capability. We denote
the maximum load of certain UAV 𝑢𝑖 as 𝑙𝑖, then the data collecting
capability (DCC) regarding 𝑙𝑖 is determined as

𝐷𝐶𝐶𝑖 =
𝑙𝑖

max 𝑙
. (11)

Now we consider a simple signal transmission model defined in Friis
[53]. The relationship of the transmission power between the sender
and the receiver could be defined as

𝑃 =
𝑃𝑡𝐴𝑟𝐴𝑡 , (12)
𝑟 𝑑2𝜆
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where 𝑃𝑟 is the received signal power, 𝑃𝑡 is the transmission power
rom the sender. 𝐴𝑟 and 𝐴𝑡 are the effective area of the antenna from
he receiver and sender respectively. 𝑑 is the distance between and 𝜆
s the wave length. Therefore, given a fixed distance 𝑑0, we want to
valuate the signal strength emitted by the UAVs. For simplicity, we
nly consider the transmission power per unit area on the receiver.
herefore we have

0 =
𝑃𝑡𝐴𝑡

𝑑20𝜆
. (13)

n this scenario, we term 𝑃0 as the data transmission capability (DTC)
or a certain 𝑢, and thereby 𝑑0 refers to the distance between 𝑢 and the
orresponding receiver.

In addition, we directly refer to the data processing capability as
loating-point operations per second (FLOPS), denoted as DPC. We take
hese three metrics into consideration in the selection of UAVs. Given
pre-defined threshold 𝜌, we say these UAVs belong to Type I if they

atisfy
𝛽𝐷𝐶𝐶 + (1 − 𝛽)𝐷𝑇𝐶

𝜑𝐷𝑃𝐶
≥ 𝜌. (14)

here 𝛽 and 𝜑 are pre-defined parameters between 0 and 1 to balance
he weight of capabilities. Otherwise, we say they belong to Type II
nd they should be responsible for pre-processing raw data, converting,
nd transferring to the cloud. Thus the WSN is organized into a three-
ayer architecture as depicted in Fig. 1. All the SNs embedded on
ivestock are grouped into the bottom layer. To cooperatively manage
nd collect data from these individuals, UAVs in Type I are responsible
or approaching assigned SNs and collecting data from them. The main
hallenge for Type I is to dynamically find the shortest path to visit the
odes in the sub-area without failure. The other type, Type II allows for
ore computation and processing capability according to the definition

bove, and is told to pre-process the aggregated data received from
ype I and transfer to the cloud. The top layer could be the cloud server,
ase station, or any other data warehouse to store the data from the
ottom for further analysis.

.3. Energy consumption model

To better evaluate the system from the perspective of energy ef-
iciency, we define a simple energy consumption model based on
he assumption in Bouguera et al. [28]. We will explore different
hases during the waking-up of sensors and determine the total energy
onsumption regarding sensors.

Without losing generalization, the total energy consumption 𝐸𝑡𝑜𝑡
until timestep 𝑡 is defined as

𝐸𝑡𝑜𝑡(𝑡) = 𝐸𝑠𝑙𝑝(𝑡) + 𝐸𝑤𝑘(𝑡), (15)

where 𝐸𝑠𝑙𝑝(𝑡) and 𝐸𝑤𝑘 are the energy consumption during sleeping and
waking-up mode of nodes. In this scenario, for simplicity, we assume
the system is continuous and ignore the charging and sleeping phases.
Therefore we have

𝐸𝑡𝑜𝑡(𝑡) ≈ 𝐸𝑤𝑘(𝑡), (16)

Now we consider four phases sequentially taking place in the system
including (1) start-up phase, (2) sensing phase, (3) processing phase,
and (4) transmission phase. We assume a constant energy dissipation
of waking-up states 𝐸𝑐 per timestep, therefore during the start-up phase
from time 𝑡 to 𝑡 + 𝛥𝑡, we have

𝐸𝑠𝑝 = 𝐸𝑐𝛥𝑡. (17)

When performing the sensing operation within the nodes, we consider
the extra energy consumption 𝐸𝑎𝑑𝑐 for analog-to-digital converting
(ADC) and data storage. Therefore the energy consumption in this stage
𝐸𝑠 is
𝐸𝑠 = (𝐸𝑐 + 𝐸𝑎𝑑𝑐 )𝛥𝑡. (18) d
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Data processing by nodes is unlikely mentioned in UAVs, it is an ultra-
low cost but not negligible process. For simplicity, we only consider the
constant energy dissipation similar to waking-up states, i.e., 𝐸𝑝 = 𝐸𝑐𝛥𝑡.

The final phase is to transfer collected data to UAVs nearby for
urther processing. Here we consider the extra energy cost for package
ending and receiving and term it as 𝐸𝑠𝑟, the energy consumption in
his stage is

𝑡𝑟 = (𝐸𝑐 + 𝐸𝑠𝑟)𝛥𝑡. (19)

herefore, the total energy cost during the whole process can be
epresented as

𝑡𝑜𝑡 = 𝐸𝑠𝑝 + 𝐸𝑠 + 𝐸𝑝 + 𝐸𝑡𝑟. (20)

. Problem formulation and proposed solution

.1. Deep Q network

In this section, we will give the essentials of reinforcement learning
ncluding states, actions, and rewards. Because of the sparsity of nodes
n contrast to the farm, we will also give some ideas on how to
esign the reward function in terms of the result and process, namely
eward shaping. In fact, the design of the reward function, even the
hange of the hyperparameters, has a crucial influence on the degree
f convergence and performance of the model.

Generally, we have two methods to maximize our rewards in deep
einforcement learning. We can directly model the long-term reward
unction 𝑄 by taking the input as the defined states and output as the
-value of each action [39]. We say the reward function modeled as
deep neural network is called deep Q network. Another method is

o model the policy of the agents, specifically approximate the state
alue function 𝑉𝜋 (𝑠𝑡) = E [𝑄𝜋 (𝑠𝑡,)] using the neural network. The
olicy gradient method will be used to update the parameters in the
etwork [54]. Nowadays in LM, deep reinforcement learning is mainly
sed in the path planning of UAVs on how to design the shortest path
o visit the nodes in WSNs [13,55]. The reward is mainly out of two
otivations: data collecting rate and energy consumption rate. Both
d [56] and 3d [13] action space are studied in these work depending
n altitude setting. For 3d action space, UAVs should have a dynamic
overage radius affected by the altitude. And for 2d action space, UAVs
re typically located at an optimal altitude with maximum coverage
rior to the learning.

We consider each UAV in Type I as a separate agent to learn its own
etwork parameters. These networks share the environment and get
heir own rewards and new states after each timestep. For simplicity,
e do not add learnable parameters into Type II. This is because (1)
enerally UAVs of Type I are controlled by neural nets and have a more
eterministic behavior to be easily approached; (2) due to the small
umber of UAVs of Type I, the efficiency gain by deployment of DQN
n Type II is not evident, but consumes extra energy. Specifically, a
ynamic shortest path finding algorithm is used in Type II and we do
ot discuss the details here since GPSO, MCFO and other algorithms
re applicable.
States. We define a state 𝑗 (𝑡) for UAV 𝑢𝑗 at step 𝑡 as

𝑗 (𝑡) = {(𝑥𝑢𝑗 (𝑡), 𝑏𝑖(𝑡), 𝑥𝑖(𝑡)) ∣ 1 ≤ 𝑖 ≤  }, (21)

here 𝑥𝑖 and 𝑏𝑖 are the location and buffer load of the sensor 𝑠𝑖, 𝑥𝑢𝑗
s the current location of the corresponding UAV. That is, we consider
eturning two types of information by the environment including the
urrent location and data storage of the nodes along with the status of
he agent itself. The data storage of each node will inform the agents
hich node is more imperative and needed to be visited urgently.
he location of the current nodes will be the tips to help agents find
heir own shortest path through the network. The agent’s location is
rucial for calculating its distance to each node and determining the

irection for the next step. Here it is worth mentioning that because
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Fig. 2. The cluster update from time 𝑡 to 𝑡 + 1.
of the dynamic assignment due to the mobility of nodes, every node
is possibly to be assigned to any agent so that we have to make sure
every agent has access to the information of all the nodes.

Action Space. Now we discuss the action space . For simplicity,
we consider a 2d space with a fixed altitude optimized for the maximum
coverage radius.

 = {(−1, 0), (1, 0), (0, 1), (0,−1), (0, 0)}, (22)

where (−1, 0), (1, 0), (0, 1), (0,−1), (0, 0) refer to left, right, forward,
backward and idle, respectively. In each timestep, the agent 𝑢𝑗 will
perform one of the actions according to the policy 𝑎𝑗 (𝑡) ∼ 𝜋( ⋅ ∣ 𝑗 (𝑡))
and get the reward returned by the environment depending on the
current state.

Reward Function. Since the setting of reward function plays a
crucial role in reinforcement learning, here we discuss how to design
the reward function, namely reward shaping. A simple thought is that
we give agents a reward if they successfully communicate with nodes
and collect data from them. However, in a large scale farm, nodes are
usually sparse in contrast to the whole area, which means this is a
sparse reward environment and we have to design some extra rewards
to guide agents to complete the task. Therefore we define 𝑟𝑗 (𝑡) as the
reward function of 𝑢𝑗 and let

𝑟𝑗 (𝑡) =

⎧

⎪

⎨

⎪

⎩

−∞, 𝑥𝑢𝑗 (𝑡) ⊀ 

𝜆 𝑏𝑖(𝑡), ∀ 𝑠𝑖 ∈ 𝐶𝑗 , ‖𝑥
𝑢
𝑗 (𝑡) − 𝑥𝑖(𝑡)‖ ≤ 

−0.1, ∀ 𝑠𝑖 ∈ 𝐶𝑗 , 𝑏𝑖(𝑡) ≥ 𝜂

(23)

where  is the boundary of the farm, 𝜆 is a reward scalar to ensure the
reward range between 0 and 1,  is the maximum coverage radius of
the UAV, 𝜂 is a pre-defined threshold to give the agents a penalty when
it is imperative and typically 𝜂 = 0.75. In other words, when the load
of any nodes exceeds the threshold, we must push the agent to resolve
the emergency. Besides, we will strongly restrict the agents to be within
the farm by giving an infinite large penalty in case of connection lost
and out of control. Whenever the agents approach the nodes under the
coverage radius, we will give the reward by the collected data. This
prompts agents to look for nodes with a large amount of data that has
not yet been collected.

4.2. Problem statement

In this section, we establish the final optimization problem, i.e., Q-
value function. Upon formulating an instant reward function 𝑟𝑖 that
reflects our objectives in Section 4.1, our ultimate aim is to maximize
long-term reward function

max 𝑄𝜋

𝑠.𝑡. 𝑄𝜋 = E [𝛴𝑛
𝑖=𝑡𝛾

𝑖−𝑡𝑟𝑖|𝑡 = 𝑠𝑡,𝑡 = 𝑎𝑡],
(24)

where 𝛾 is the discount factor and the policy 𝜋 refers to the probability
density function taking action 𝑎 given the state 𝑠. Practically, given the
environment, every agent will feedback on the action 𝑎 to the environ-
ment and keeps informed of the corresponding state 𝑠 and reward 𝑟
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from the environment. Upon deriving 𝑄𝜋 in the current episode, the
system maximizes 𝑄𝜋 by determining gradients with respect to the
parameters of the deep Q network and updating these parameters using
stochastic gradient descent.

In summary, optimizing 𝑄𝜋 indicates that we encourage the model
to learn a path finding strategy that (1) covers the signals of assigned
nodes to maximize the data collecting effectiveness and (2) is short as
much as possible to save system energy. We introduce the metrics to
quantitatively evaluate the above attributes in Section 4.3. Since the
optimization problem is dependent on the mechanism in UAVs, we
also propose an efficient node assignment strategy and the multi-layer
architecture to achieve a higher optimal 𝑄𝜋 in Section 4.

4.3. Evaluation metrics

We measure the system in terms of data collecting effectiveness,
energy saving efficiency, and network stability. We define the collected
data per timestep (CDPS) as the following

𝐶𝐷𝑃𝑆 =
𝛴𝑖𝑏𝑖


, (25)

where  is the total timestep in the current episode. CDPS could
effectively evaluate how much data the system could collect from the
nodes in the unit time. Due to the limitation of the rate at which
the nodes collect data, CDPS has a fixed peak 𝐶𝐷𝑃𝑆𝑚𝑎𝑥 at which we
consider the system to have reached stability.

We use the assumed energy consumption model to calculate the
energy consumed by SNs in the system at each timestep. We define
the energy consumed per timestep (ECPS) as

𝐸𝐶𝑃𝑆 =
𝐸𝑡𝑜𝑡


, (26)

where 𝐸𝑡𝑜𝑡 is the total energy consumption until  timesteps. Similarly,
we make  as large as possible to get the value of ECPS when the
system is relatively stable. When compared, the system with lower
ECPS consumes less energy per unit of time and is preferred.

We measure the stability of a network by how long it lasts without
failure. We term network stability (NS) the ratio of the current time
that the network can sustain to the maximum time that the network
can theoretically sustain. The maximum time that the network can
theoretically maintain is determined by the limited energy storage of
the SNs and calculated by the current energy consumption strategy.

4.4. Cluster configuration

Traditional LM assumes that SNs are static, thereby a well-designed
initial deployment of clusters is sufficient. However, in dynamic sce-
narios, the changing locations of SNs can lead to UAV coverage over-
lapping with other clusters, resulting in inefficient transmission. To
address this, we propose a new scheme for dynamic node allocation
based on the dynamic locations of clusters. Our goal is to ensure that
at each step, UAV coverage remains within the range of its assigned
cluster, achieving minimum overlap among multiple UAVs.
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Algorithm 1 A real-time cluster update algorithm considering the mobility of SNs
Require: Initial clusters 𝐶𝑖(0), 𝑖 = 1, 2, ...,, forget rate 𝛼, maximum timestep 
Ensure: The clusters 𝐶𝑖(𝑡) at arbitrary timestep 𝑡 ≤  , 𝑖 = 1, 2, ...,
1: 𝑡 = 0
2: # iterate every step
3: while 𝑡 ≤  do
4: SNs generate new data from livestock
5: # check the condition of termination
6: if buffer of any SNs is exceeded then
7: # episode terminated
8: break
9: end if

10: # update the location of SNs
11: SNs perform random walk for one timestep
12: for all 𝑖 = 1, 2, ..., do
3: reallocate SNs to cluster centers to get 𝑂𝐶𝑖(𝑡) and 𝑁𝐶𝑖(𝑡)
4: 𝑅𝐶𝑖(𝑡 + 1) = 𝐶𝑖(𝑡) ⧵ 𝑂𝐶𝑖(𝑡)
5: determine the cluster centers 𝑟𝑐𝑖(𝑡 + 1) and 𝑛𝑐𝑖(𝑡) respectively.

16: 𝑐𝑖(𝑡 + 1) = (𝛼 ⋅ 𝑟𝑐𝑖(𝑡 + 1) |
|

𝑅𝐶𝑖(𝑡 + 1)|
|

+ 𝑛𝑐𝑖(𝑡) ||𝑁𝐶𝑖(𝑡)||)∕(𝛼 ||𝑅𝐶𝑖(𝑡 + 1)|
|

+ |

|

𝑁𝐶𝑖(𝑡)||)
17: 𝐶𝑖(𝑡 + 1) = 𝑅𝐶𝑖(𝑡 + 1) ∪𝑁𝐶𝑖(𝑡)
18: end for
19: # update the location of UAVs
20: UAVs perform action given current states
21: # if any SNs are in the coverage
22: UAVs collect data from SNs if available
23: # update parameters of Q-network
24: UAVs update policy based on current rewards
25: 𝑡 = 𝑡 + 1
26: end while
Table 2
Notations and simulation parameters. Note that some system parameters are variables and their values change during the run, indicated as not
applicable (–).
Parameter Description Value

LEN The border length of the farm 200 m
UAVs_K The number of Type I 3
UAVs_M The number of Type II 1
UAV_V The velocity of the UAVs 5 m/s
TypeI_R The coverage radius of Type I 20 m
TypeI_A The altitude of Type I 35 m
TypeII_R The coverage radius of Type II 50 m
TypeII_A The altitude of Type II 46 m
SNs_N The number of sensor nodes 200
SNs_B The buffer capacity of SNs 1000 bytes
SNs_CUR_B The current buffer of SNs –
SNs_CR The collection rate of SNs 2.3 bytes/step
SNs_G The data generation rate of SNs 1.0 bytes/step
SNs_VAR The data generation variance of SNs 0.25 bytes2/step
SNs_V The velocity of SNs 2.5 m/s
DCC The data collecting capability –
DTC The data transmission capability –
DPC The data processing capability –
𝛼 The forget rate of the old cluster center 1
Pr The probability for the SNs to move 0.8
PLmax The maximum path loss allowed 45 dB
PLLoS The probability of line-of-sight –
PLNLoS The probability of non-line-of-sight –
𝛽 The weight to balance DCC and DTC 0.7
𝜑 The weight to balance DPC 1
𝜌 The threshold to determine UAVs to be Type I or Type II 0.6
Ec The constant energy consumption for waking-up 10 uJ/step
Eadc The energy consumption for data processing 3 nJ/bit
Esr The energy consumption for data transferring 1 uJ/bit
LR The learning rate 0.01
𝜖 The randomness of the greedy policy 0.9
𝛾 The reward discount factor 0.9
BS Batch size 32
𝜆 The reward scalar 0.3
460 
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In this section, we introduce a real-time method for tracking the
location of nodes and updating the records of the assignment. In
Section 3.1 we give the initial assignment of nodes by K-means. Now
we consider a set of clusters at time 𝑡, 𝐶𝑖(𝑡) ∈ {𝐶1(𝑡), 𝐶2(𝑡),… , 𝐶(𝑡)}
satisfying ∀ 𝑖 ≠ 𝑗, 𝐶𝑖(𝑡) ∩ 𝐶𝑗 (𝑡) = ∅.

When we come to 𝑡 + 1, we track the mobility of nodes from time
𝑡 to 𝑡 + 1. Here the cluster distribution will constantly change over
time. Therefore we discuss two cases: new nodes coming and old nodes
leaving. Specifically, in each timestep, we update the assignment of
all the nodes in WSNs depending on the proximity. Regarding certain
cluster 𝐶𝑖, we say a new node is coming when a node assigned to 𝐶𝑖 at
time 𝑡 + 1 is originally assigned to 𝐶𝑗 at time 𝑡 where 𝑖 ≠ 𝑗. Similarly,
we say an old node is leaving if a node assigned to 𝐶𝑗 at time 𝑡 + 1 is
originally assigned to 𝐶𝑖 at time 𝑡 where 𝑖 ≠ 𝑗. Hence we further denote
the set of new nodes coming regarding cluster 𝐶𝑖 at time 𝑡 as 𝑁𝐶𝑖(𝑡),
and the set of old nodes leaving regarding cluster 𝐶𝑖 at time 𝑡 as 𝑂𝐶𝑖(𝑡).
Therefore we have

𝐶𝑖(𝑡 + 1) = 𝐶𝑖(𝑡) ∪𝑁𝐶𝑖(𝑡) ⧵ 𝑂𝐶𝑖(𝑡). (27)

Now we consider the update rule of clusters in terms of the location
change of nodes in every timestep. In this sense, we will determine the
new cluster center affected by the old nodes remaining in the cluster
and new nodes coming from other clusters. Therefore we denote the
remainder of 𝐶𝑖 at time 𝑡+1 as 𝑅𝐶𝑖(𝑡+1) which is the set of remaining
nodes from 𝐶𝑖(𝑡) and have

𝑅𝐶𝑖(𝑡 + 1) = 𝐶𝑖(𝑡) ⧵ 𝑂𝐶𝑖(𝑡). (28)

In other words, we consider the process as a stream with new data
points introduced in every timestep. We need to update the original
distribution towards the new data points. Here we denote the cluster
center of 𝑅𝐶𝑖(𝑡 + 1) and 𝑁𝐶𝑖(𝑡) as 𝑟𝑐𝑖(𝑡 + 1) and 𝑛𝑐𝑖(𝑡) respectively.
Inspired by stream K-means, we can determine the new cluster center
𝑐𝑖(𝑡 + 1) as

𝑐𝑖(𝑡 + 1) =
𝛼 ⋅ 𝑟𝑐𝑖(𝑡 + 1) |

|

𝑅𝐶𝑖(𝑡 + 1)|
|

+ 𝑛𝑐𝑖(𝑡) ||𝑁𝐶𝑖(𝑡)||
𝛼 |
|

𝑅𝐶𝑖(𝑡 + 1)|
|

+ |

|

𝑁𝐶𝑖(𝑡)||
, (29)

where |⋅| refers to cardinality of a set and 𝛼 refers to the forget rate
of the remainder. That is, we determine the weighted average of the
remainder and the new nodes affected by 𝛼. When the fluctuation of
odes is small, that is, the magnitude of velocity is small, we set a large
. Instead, we need a small 𝛼 to quickly adapt to node location changes.
ig. 2 visualizes the overall update process. Algorithm 1 provides
he step-by-step real time cluster update mechanism considering the
obility of the sensor nodes.

. Experiment

In this section, we will give the details of the implementation and
iscuss the results by evaluation and comparison.

.1. Simulation settings

Table 2 presents the key notations and parameters used in the
xperiment. Notably, the UAV’s altitude and coverage radius are de-
ermined based on the specified maximum acceptable path loss. This
ecision involves a trade-off between path loss and coverage radius
ince excessive path loss requires stronger transmission signals, leading
o increased energy consumption, while lower path loss limits the max-
mum coverage radius. Additionally, in the training process of DQN, we
ntroduce a certain level of randomness by allowing a probability for
andom sampling from the action space. This randomness enhances the
obustness of the neural network.

For data generation, To cope with dynamic and unbalanced data
torage in SNs and mimic real-world conditions, we model the data gen-
ration rate of each SN at every step as a Gaussian variable. The data

eneration rate is set to 1 byte/step, with an additional variance of 0.25 e
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ytes2/step. This approach results in varying data generation amount
or each SN, fluctuating between 0.5 and 1.5 bytes/step. Moreover,
hile Type I enters the sensing range of SNs, the data in their buffer is

ransmitted at a static rate of 2.3 bytes/step. It is worth mentioning
hat this transmission does not hinder SNs’ data collection, as both
rocesses may run concurrently, resulting in an effective data reduction
ate of less than 2.3 bytes/step. We do not consider partial transmission,
.e., each transmission continues until the buffer is empty.

In our simulation environment, we utilize Python to construct the
nvironment and PyTorch to implement the DQN. For Type II, the path
lanning is performed using GPSO. In the wireless network architec-
ure, we deploy a total of 200 sensor nodes and 4 UAVs. Among the
AVs, three are responsible for data collection from the nodes, while

he remaining UAV is tasked with processing the aggregated data. This
onfiguration enables a pipeline-like transmission of data within the
ulti-layer wireless network architecture, allowing for seamless data

low from bottom to top.

.2. Result & Comparison

In this section, we present the evaluation results using CDPS, ECPS,
nd NS metrics. Additionally, we compare our method with two tra-
itional approaches that neglect the mobility of livestock in their
andom walk model or assume a homogeneous layer of UAVs without
onsidering their distinct roles.

Fig. 3 illustrates the progression of CDPS as DQNs undergo learning.
nitially, the CDPS value is nearly 0, signifying that UAVs exhibit
andom movement due to the absence of reward guidance. As the
earning process continues, UAVs gradually acquire the ability to locate
nd collect data from SNs. After approximately 100 episodes, the CDPS
pproaches its peak, indicating that the system enters a stable phase.

Fig. 4 exhibits a comparable trend, albeit with a distinction in the
nitial value of ECPS. Unlike CDPS, the ECPS value is not 0 initially,
s the system incurs energy consumption from circuit dissipation even
hen UAVs are in an idle state. With an increasing number of episodes,
CPS gradually reaches its peak value, signifying system stabiliza-
ion. It is important to note that system stability is a prerequisite for
ustainability.

Fig. 5 presents the evolution of NS during the initial 10 episodes
ollowing system stabilization. The graph illustrates that NS continues
o increase as episodes progress. However, after a brief period, it tends
o converge to a value close to 1, indicating system sustainability. In
ractice, as episodes persist, DQNs approach convergence, implying
hat UAVs consistently discover the shortest path through all nodes,
ven when the SNs undergo arbitrary movement.

Next, we compare our approach with two traditional methods. The
irst method neglects the mobility of SNs, resulting in a single parti-
ioning of the area without considering real-time location changes. The
econd method treats all UAVs uniformly, assigning them sequential
asks of data collection and processing without differentiation.

Fig. 6 illustrates the mean NS of all UAVs in the first 10 episodes
fter system stabilization. Notably, NS shows an increasing trend across
ll three methods, reaching a plateau shortly after. Besides, our method
emonstrates a faster convergence rate compared to the other two
ethods, and the peak NS value is close to 1, indicating enhanced

obustness. In contrast, the method disregarding SN mobility may lead
o ineffective UAV movement due to SN location changes, thereby com-
romising network stability. Similarly, the method with uniform task
ssignment fails to account for UAV differences, potentially resulting
n task failures and data processing delays due to task serialization.

In Fig. 7, the mean values of all UAVs in the steady state provide fur-
her evidence supporting our earlier observations. Our method exhibits
ignificant advantages over the two traditional methods in terms of data
ollecting effectiveness and energy-saving efficiency. Specifically, our
ethod achieves a CDPS gain of 4.84% and 8.20%, as well as an ECPS

eduction of 3.00% and 1.35%, when compared to the aforementioned
raditional methods, respectively. These results highlight the superior
erformance of our method in optimizing both data collection and

nergy consumption.
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Fig. 3. CDPS trend over the episode by each UAV. Because each UAV owns different number of SNs, there may be a different peak value of CDPS.
Fig. 4. ECPS trend over the episode by each UAV. Similar to CDPS, each UAV may own a different peak value of ECPS.
Fig. 5. NS trend over the episode by each UAV. For simplicity, we only consider NS
for 10 episodes right after CDPS reaches peak value, that is, when the system reaches
relatively stable.

Table 3
Experiment results on different methods. The bolded result represents the best result
for the column.

Method CDPS (bytes/step) ECPS (J/step) NS (%)

DQN + mobility + multi-layer 18.32 14.89 97.38
DQN + mobility 17.49 15.68 96.19
DQN + multi-layer 17.01 15.12 94.41
genetic PSO 16.28 14.48 95.82
MCFO 16.74 15.99 97.02
RRT 15.68 16.28 91.60

5.3. Extensive study

Through our ablation study, we have demonstrated the advantages
of our method in terms of collecting efficiency, energy saving efficiency,
462 
Fig. 6. NS comparison between our method and traditional method which does not
consider the mobility of SNs or use unified layers without dividing UAVs.

and network stability, leveraging dynamic assignment and a multi-
layer architecture. In this section, we will provide a comprehensive
validation of our method by comparing it with different path planning
algorithms, encompassing GPSO [17], MCFO [19], and RRT [20].

We maintain the settings described in Section 5.1 and keep the
parameters of UAVs consistent across different methods, including
altitude and velocity. However, it should be noted that while other
methods have a continuous action space, our method has a discrete
action space with only five actions. This decision is made to avoid the
need for complex networks and lengthy convergence times associated
with expanding the output layer of DQN. The consideration of expand-
ing the action space (e.g., 3d space) while preserving the dynamic
configuration are areas that will be addressed in future work.

In order to ensure a fair comparison among the different methods,
we establish a consistent criterion for convergence by unifying the
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Fig. 7. CDPS and ECPS comparison between our method and traditional method which
does not consider the mobility of SNs or use unified layers without dividing UAVs.

Fig. 8. The results upon employing varying failure rate with our methods and
baselines. The failure rate 𝑓 𝑢

𝑖 is varied uniformly from 0.02 to 0.2 and 𝑓 𝑠
𝑖 = 2𝑓 𝑢

𝑖 .
Note that we evaluate NS on 100th episodes where all listed methods are ensured to
converge.

number of iterations2 required for all methods to reach a certain level
of convergence. As in the previous experiment, we mitigate the impact
of result fluctuations by averaging the results obtained from the first
10 iterations after convergence.

Table 3 demonstrates the performance of our method compared to
GPSO, MCFO, and RRT. Our method achieves the highest CDPS among
the methods, with gains of 12.53%, 9.44%, and 16.84% over GPSO,
MCFO, and RRT, respectively. This indicates that DQN outperforms
the other methods in finding the shortest path across the farm. The
improvement in CDPS is also reflected in NS, which shows gains of
1.63%, 0.37%, and 6.31% respectively, indicating a more efficient path
that reduces the risk of missing nodes. However, our method exhibits
slightly higher energy consumption compared to genetic PSO. This can
be attributed to the computational intensity of DQN during backward
propagation, especially when attempting to expand the action or state
space. It implies that when considering energy consumption, the use
of DQN for path planning in a 3D space may result in higher energy
expenditure.

2 Unless explicitly specified, we use the terms 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 and 𝑒𝑝𝑖𝑠𝑜𝑑𝑒
interchangeably.
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5.4. Fault tolerance

In a large-scale agricultural setting, ensuring the uninterrupted
operation of each individual component within the system can be a
formidable challenge, given the potential for unforeseen issues leading
to operational failures. Consequently, this section focuses on evaluating
the system’s fault tolerance, specifically examining the repercussions of
component failures on the overall system. To facilitate this analysis,
we introduce a failure rate 𝑓 𝑠

𝑖 for each sensor in the system during
every episode. This rate signifies the probability of a sensor completely
losing functionality for the duration of the episode, which encompasses
essential tasks like data collection and communication. Consequently,
when a sensor experiences failure, the WSN loses a node, necessitating a
recalculation of UAV actions during subsequent updates. Furthermore,
UAVs themselves might encounter temporary incapacitation due to
factors like energy depletion or mechanical malfunctions. To address
this concern, we introduce failure rate 𝑓 𝑢

𝑖 for UAVs, specifically Type
I, representing the probability of a UAV’s temporary inoperability
within the current episode. In such scenarios, we expect the system to
promptly reassign the nodes previously managed by the malfunctioning
UAV to the remaining operational UAVs. Our evaluation of the system’s
robustness continues, utilizing the NS metric, and we subsequently
compare our system against baseline models.

Empirically, we set 𝑓 𝑠
𝑖 = 2𝑓 𝑢

𝑖 and vary 𝑓 𝑢
𝑖 from 0.02 to 0.2. Fig. 8 il-

lustrates the robustness of our method compared to the baselines under
varying failure rates, as measured by the NS metric. We observe that
(1) Irrespective of the fluctuating failure rates, our method consistently
outperforms the NS values of the baselines; (2) As the failure rates
increase, the superiority of our approach becomes more pronounced.
Specifically, while the NS values of the baselines exhibit a more rapid
decline, our system’s NS remains stable at above 90%. This indicates
that our system retains more than 90% of the data even under high
failure rates.

5.5. Further discussion

Ease of Deployment. In real-world applications, apart from pri-
oritizing system efficiency and robustness, cost and deployment com-
plexity are also significant considerations. In our proposed system,
alongside standard and indispensable expenses (e.g., the acquisition
and installation of sensors and UAVs), the primary divergence in our
deployment strategy is the categorization of UAVs into Type I and
Type II based on their performance attributes to facilitate parallelized
management. The evaluation of UAVs is a one-time expenditure and
is relatively modest, rendering it nearly negligible. Another prospec-
tive cost pertains to the training of models for UAV path planning.
However, our experiments indicate minimal training time due to our
utilization of parallel training involving multiple agents, with each
run being completed in a matter of minutes. Furthermore, in terms of
computational resources, even in a scenario involving 200 sensors, a
typical consumer-grade GPU is sufficient to accommodate the system’s
requirements.

Practical Issues. Upon the initial deployment of drones, certain
observations have highlighted potential impacts on livestock, such as
increased heart rates and subtle alterations in behavior. To mitigate
these effects, elevating altitude of UAVs serves to prevent operational
noise from disturbing the natural activities of the livestock. Our exper-
imental determination identifies an optimal altitude of 35 m, assuming
this position maintains a safe distance to avoid livestock disturbance.
Besides, a transitional phase precedes the initiation of drone operations,
allowing livestock to gradually get used to the presence of drones. Over
time, this approach aids in the normalization of their behavior. We also
clarify that in real scenarios, a single drone typically manages several
tens or even hundreds of livestock. Thus, maintaining an adequate
distance from individual animals is ensured as a standard practice.
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6. Conclusion

In this article, we propose a multi-layer real-time wireless network
architecture. This architecture divides the wireless network into three
layers: SNs at the bottom layer, and UAVs divided into two layers
based on their functions for data collection and data processing. The
advantages of this architecture are twofold. Firstly, it leverages the
performance advantages of different UAVs, aligning with industry re-
quirements. Secondly, it enables parallelization and pipeline processing
of data collection and processing tasks, enhancing task efficiency. Ad-
ditionally, we consider the mobility of SNs by updating area partitions
using stream K-means and incorporating SN status into DQNs. This
enables real-time SN localization and dynamic learning of shortest
paths by UAVs. Our experimental results demonstrate that our method
outperforms traditional approaches in terms of data collection effec-
tiveness, energy efficiency, and network stability. Furthermore, we
compare our method with popular path planning algorithms (GPSO,
MCFO, and RRT), and find that our method excels in data collection
efficiency and network stability, ranking second only to GPSO in terms
of energy saving efficiency.
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