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ABSTRACT
We present an approach that is able to both rapidly assess the dynamical stability of multiple
planet systems, and determine whether an exoplanet system would be capable of hosting a
dynamically stable Earth-mass companion in its habitable zone (HZ). We conduct a suite of
numerical simulations using a swarm of massless test particles (TPs) in the vicinity of the orbit
of a massive planet, in order to develop a predictive tool which can be used to achieve these
desired outcomes. In this work, we outline both the numerical methods we used to develop the
tool, and demonstrate its use. We find that the TPs survive in systems either because they are
unperturbed due to being so far removed from the massive planet, or due to being trapped in
stable mean-motion resonant orbits with the massive planet. The resulting unexcited TP swarm
produces a unique signature in (a, e) space that represents the stable regions within the system.
We are able to scale and translate this stability signature, and combine several together in order
to conservatively assess the dynamical stability of newly discovered multiple planet systems.
We also assess the stability of a system’s HZ and determine whether an Earth-mass companion
could remain on a stable orbit, without the need for exhaustive numerical simulations.

Key words: astrobiology – methods: numerical – planets and satellites: dynamical evolution
and stability – planets and satellites: general.

1 IN T RO D U C T I O N

The search for potentially habitable worlds is an area of immense
interest to the exoplanetary science community. Since the first
discoveries of exoplanets orbiting main sequence stars (Campbell,
Walker & Yang 1988; Latham et al. 1989; Mayor & Queloz 1995),
planet search surveys have endeavoured to discover the degree to
which the Solar system is unique, and to understand how common
(or rare) are planets like the Earth (e.g. Howard et al. 2010a;
Wittenmyer et al. 2011). The launch of the Kepler spacecraft in
2009 led to a great explosion in the number of known exoplanets
(e.g. Borucki et al. 2010; Sullivan et al. 2015; Morton et al.
2016; Dressing et al. 2017). Kepler carried out the first census
of the Exoplanet era, discovering more than two thousand planets.1

Kepler’s results offer the first insight into the true ubiquity of planets,
and the frequency with which Earth-size planets within the habitable
zone (HZ) can be found orbiting Sun-like stars (Catanzarite & Shao
2011; Petigura, Howard & Marcy 2013; Foreman-Mackey, Hogg &

� E-mail: magnew@swin.edu.au
1As of 2018 September 13 (Kepler and K2 mission site, https://www.nasa.g
ov/mission pages/kepler/main/index.html).

Morton 2014). The Transiting Exoplanet Survey Satellite (TESS)
seeks to continue this trend in exoplanet discoveries (Ricker et al.
2014; Sullivan et al. 2015; Barclay, Pepper & Quintana 2018),
concentrating on planet detection around bright stars that are more
amenable to follow-up spectroscopy (Kempton et al. 2018).

In addition to the rapid increase in the known exoplanet popula-
tion, the generational improvement of instruments being used for
detection, confirmation, and observational follow-up, has recently
allowed for planets to be detected with masses comparable to that
of the Earth, albeit on orbits that place them far closer to their host
stars than the distance between the Earth and the Sun (e.g. Vogt
et al. 2015; Wright et al. 2016; Anglada-Escudé et al. 2016; Gillon
et al. 2017). Whilst such Earth-mass planets generate larger, more
easily detectable radial velocity signals, current and near-future
instruments (e.g. the ESPRESSO and CODEX spectrographs) seek
to detect planets inducing Doppler wobbles as low as 0.1 and
0.01 m s−1, respectively (Pasquini et al. 2010; Pepe et al. 2014;
González Hernández et al. 2017). At such small detection limits,
those spectrographs may well be able to detect Earth-mass planets
that orbit Sun-like stars at a distance that would place them
within the star’s HZ (Agnew et al. 2017; Agnew, Maddison &
Horner 2018a,b). With the advent of these new high-precision
spectrographs, as well as the launch of the next generation of space
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telescopes (such as the James Webb Space Telescope, JWST), it
will be possible to perform observational follow-up in far greater
detail. As a result, it is timely to consider methods by which we
might prioritize the observations needed in order to detect Earth-
size planets (Horner & Jones 2010).

Whilst the detection of a Solar system analogue would be
considered the holy grail in the search for an exoplanet that truly
mimics Earth, finding something that resembles the Solar system
itself beyond a handful of similarities has so far proven to be
particularly challenging (Boisse et al. 2012; Wittenmyer et al.
2014b, 2016; Kipping et al. 2016; Rowan et al. 2016; Agnew et al.
2018a). By relaxing the criteria of our search to instead look for
multiple planet systems where at least one planet is comparable in
mass to Earth and resides in its host star’s HZ (Kasting, Whitmire &
Reynolds 1993; Kopparapu et al. 2013, 2014; Kane et al. 2016), we
will still yield exoplanetary systems that share several similarities
with our own system, and are still candidates for further study from
the perspective of planetary habitability. Additionally, we consider
the notion that the observational bias inherent to several detection
methods (Wittenmyer et al. 2011; Dumusque et al. 2012) can be
interpreted to suggest that systems with massive, giant planets may
also coexist with smaller, rocky exoplanets that so far have been
undetectable due to detection limits (Agnew et al. 2017). Indeed,
given the challenges involved in finding habitable exo-Earths, it
might be the case that such planets exist within known exoplanetary
systems, lurking below our current threshold for detectability.
Future studies of those systems might allow such planets to be
discovered, if they exist – which serves as an additional motivation
for the development of a method by which we can prioritize systems
as targets for the search for Earth-like planets: systems that host
dynamically stable HZs.

The standard method used to determine whether a system could
host unseen planetary companions is by assessing the system’s
overall dynamical stability. This can be done analytically (e.g. Giup-
pone, Morais & Correia 2013; Laskar & Petit 2017), or numerically
(e.g. Raymond & Barnes 2005; Jones, Underwood & Sleep 2005;
Rivera & Haghighipour 2007; Jones & Sleep 2010; Wittenmyer
et al. 2013; Agnew et al. 2017). Such studies have resulted in the
development of several methods that allow exoplanetary systems
to be assessed by planetary architectures as they are observed
today (Giuppone et al. 2013; Carrera, Davies & Johansen 2016;
Matsumura, Brasser & Ida 2016; Agnew et al. 2018a). It has been
frequently demonstrated that a variety of resonant mechanisms are
often integral in determining the dynamical stability of a system
(e.g. Wittenmyer, Horner & Tinney 2012; Gallardo 2014; Kane
2015; Gallardo, Coito & Badano 2016; Mills et al. 2016; Luger
et al. 2017; Delisle 2017; Agnew et al. 2017; Agnew et al. 2018b).
Typically, such studies examine a single exoplanetary system, and
study it in some depth to determine whether it is truly dynamically
stable, and whether other planets could lurk undetected within it.
Such efforts are extremely computationally intensive, which means
that few systems can readily be studied in such detail.

Here, we consider whether it is instead possible to use detailed
N-body simulations to build a more general predictive tool that
could allow researchers to quickly assess the potential stability (or
instability) of any given system without the need for their own suite
of numerical simulations. This would identify systems for which
further observational investigation might be needed. In doing so,
we develop a tool by which one can: (1) rapidly and conservatively
assess the dynamical stability of a newly discovered multiple planet
system to identify those where further observation is required to
better constrain orbital parameters, and (2) identify the regions in

a given exoplanetary system that could host as-yet undiscovered
planets, based on their dynamical interaction with the known planets
in the system. We present a suite of simulations that have identified
the stable regions around generic planetary systems that can be used
to examine the stability of specific systems. Ultimately, we wish to
demonstrate the use cases of our predictive tool to rapidly assess
new systems found with TESS.

In Section 2, we introduce the use cases that we have in mind
when developing our predictive tool. We outline the fundamental
approach of our method in Section 3, and demonstrate how the
general stability signatures we compute can be normalized and
translated to fit any single planetary system discovered. In Section 4,
we show how the mass, eccentricity, and inclination of a massive
body influences its stability signature. We follow this with various
examples of how our method can be used to infer system stability
or to determine where stable resonant HZ companions may exist in
Section 5, and summarize our findings in Section 6.

2 DY NA M I C A L P R E D I C T I O N S

The predictive tool we present was developed to be applied to
exoplanetary systems discovered by TESS with two goals in mind:
(1) to determine the dynamical feasibility of newly discovered
multiple planet systems, and (2) to predict the regions of stability
in TESS systems where another unseen planet may exist.

The first use case is to provide a tool that may be incorporated into
the Exoplanet Follow-up Observing Program for TESS (ExoFOP-
TESS).2 When a multiple planet system is discovered, we can utilize
our tool to dynamically assess the stability of the system given the
inferred orbital parameters. While our approach will miss more
complex destabilizing behaviour (such as the influence of secular
resonant interactions as demonstrated by Agnew et al. 2018b), it
can conservatively assess the dynamical stability of a system ‘on
the fly’. Demonstrating instability using a conservative approach
would suggest further observations are required to better constrain
the orbital parameters of the planets, or to reassess the number of
planets in the system in the cases of potential eccentricity harmonics
and aliasing (Anglada-Escudé, López-Morales & Chambers 2010;
Anglada-Escudé & Dawson 2010; Wittenmyer et al. 2013).

The second use case is to assist in the search for potentially
habitable Earth-size planets. Using N-body simulations, we can
make dynamical predictions of regions in the (a, e) parameter
space where additional planets will definitely be unstable. This
formed the core of our previous work in this series (Agnew et al.
2017, 2018a,b), where we were able to identify systems that could
potentially host dynamically stable HZ planets. Here, we extend
that work to develop a stability mapping process that will enable
future studies to quickly identify the regions in newly discovered
exoplanetary systems where planets can definitely be ruled out,
on dynamical grounds, as well as those regions where additional
planets could only exist under very specific conditions (such as
when trapped in a mutual mean-motion resonance (MMR) with
another planet, e.g. Howard et al. 2010b; Robertson et al. 2012;
Wittenmyer et al. 2014a).

To develop such a tool, we performed a large number of
detailed N-body simulations to determine how the unstable regions
centred on a given planet’s orbit are influenced by its mass, orbital
eccentricity, and inclination in order to produce a scale-free template
that can be applied to any system.

2https://heasarc.gsfc.nasa.gov/docs/tess/followup.html
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3 ME T H O D

We have developed our predictive tool by conducting thorough,
high-resolution test particle (TP) simulations. In each simulation,
a swarm of TPs are distributed randomly throughout a region in
(a, e) space around the orbit of a massive planet. At the end of
the simulation, the distribution of surviving TPs reveals evacuated
regions (which correspond to areas of instability), and regions where
TPs remain unperturbed, and so remain on similar orbits to those
held at the beginning of the integrations. Since our simulations
are primarily focused on facilitating the search for habitable
worlds, we chose to enforce a maximum initial eccentricity on
the orbits of TPs of 0.3, based on studies that suggest that the
habitability of a given Earth-like world would be significantly
reduced for higher eccentricities (Williams & Pollard 2002; Jones
et al. 2005).

The goal of these simulations is to determine the stable, un-
perturbed regions around a massive body, which we refer to as
that body’s ‘stability signature’. More specifically, we put forward
two definitions: the optimistic stability signature being the curve
that bounds the maximum eccentricity of the unexcited TPs,
and the conservative stability signature that bounds the minimum
eccentricity of the excited TPs. The key reasons for considering
the signature as a curve rather than a two-dimensional area in (a,
e) space are: (1) in the simplest case (the massive body moving
on a circular orbit) only those TPs with sufficiently eccentric
orbits have apsides that enter within the region of instability
nearby to the massive planet (generally some multiple of its Hill
radius), and so the regions below the curve (i.e. the TPs with
less eccentric orbits) will be stable, and (2) multiple curves can
be combined and presented in a ‘look-up map’ within which
we can interpolate to find the curves for planetary masses we
do not simulate explicitly. This is explained in greater detail in
Section 4.

By determining the stability signatures for a range of planet
masses, the signatures can be used as a scale-free template that can
be applied to any system in order to assess its dynamical stability
without the need to run numerical simulations. Our proposed
exploration of the planet mass parameter space and the resulting
stability signatures will also enable researchers to predict the
regions of a given exoplanetary system where additional planets
are dynamically feasible, and those where no planets are likely
to be found. We anticipate that this method will provide a useful
filtering tool by which systems can be examined to quickly predict
whether they are dynamically feasible, and which might be able
to host a potentially habitable exoplanet. We present here the
general simulations we carried out from which we determined the
stability signatures and how the signatures from these simulations
can be used to create the stability template for any specific
system.

In this work, we consider the stability of additional bodies moving
on coplanar orbits in circular, single planet systems. While it is
highly unlikely that a planet will have a perfectly circular orbit, our
intent is for this to be a conservative assessment of the stability of the
system. Our approach can be expanded and refined to also consider
eccentric and inclined orbits, which we will pursue in future work.

3.1 Numerical approach

Two observables when detecting an exoplanet are stellar mass, M�

(obtained indirectly from the luminosity of the star, L�), and the
orbital period of a planet, Tpl (obtained directly). We can use these

to calculate the semimajor axis of the planet by

apl = 3

√
GM�T

2
pl

4π2
, (1)

where G is the universal Gravitational constant, and hence we can
infer the distance of a planet from the observed orbital period. For
any fixed M� value, the semimajor axis will scale with orbital period
according to the power law

a ∝ T 2/3. (2)

Kopparapu et al. (2014) put forward a method to calculate the
HZ of a system using M� and the planetary mass, Mpl. In general, a
minimum mass for Mpl is determined via the radial velocity method.
Taken in concert with the above, this means that from the observed
parameters L� and Tpl, we can infer M� and apl, measure Mpl, and
hence compute the HZ around the star.

By numerically simulating a range of mass ratios (μ = Mpl/M�)
while keeping constant the mass of the star (M� = M�) and
semimajor axis of the planet (apl = 1 au), we produce the stability
signature for each of the simulated masses and can consolidate them
to make a ‘look-up map’. To apply our general stability signatures to
a newly discovered system, one would first determine the mass ratio
between the planet and the star in that system, and use that mass ratio
to interpolate between our simulated stability signatures in our look-
up map. This yields the signature around a planet of any mass Mpl.
Once this step is complete, one then translates the signature obtained
from the nominal apl = 1 au to a location closer to, or farther from,
the host star to match the discovered planet. We can then compare
the stability signatures of all planets in multiple planet systems with
one another to conservatively assess dynamical stability, as well as
determine which systems can host hypothetical exo-Earths within
their HZ, without the need to run numerical simulations.

This approach limits the stability constraint to be multiples of
the orbital period rather than number of years. Our numerical
simulations are for a planet orbiting at apl = 1 au in a M� = 1 M�
system (i.e. Tpl = 1 yr). As we simulate our systems for 107 yr (i.e.
107 orbits), if we were to use our stability signature for a planet that
orbits at a semimajor axis with an orbital period of 0.1 yr (i.e. 1/10th
of the simulated orbital period) we can only refer to the planet as
being stable for 106 yr (i.e. 107 orbits).

3.2 Normalization of system

As our general simulations were performed for a range of mass
ratios, but for a fixed stellar mass, normalization is important so
that we are still able to determine the stability signature around a
newly discovered system regardless of its stellar mass.

As per our definition of the stability signature being the curve
that bounds the maximum eccentricity of the unexcited TPs, let us
consider a hypothetical function that maps semimajor axis, a, to this
curve, {(a, f(a)) : a ∈ A}, where A is the domain over which we
simulated. Our simulations all use a stellar mass of M� = 1 M�,
and a planet orbiting at apl = 1 au (i.e. Tpl = 1 yr). To normalize a
system, we first determine what the semimajor axis is that matches
an orbital period of one year for a system with a different stellar
mass. From equation (1), the semimajor axis will scale with stellar
mass according to the power law

a ∝ M1/3
� . (3)

For a given system discovered with stellar mass M� = nM�, we can
scale the masses M� and Mpl by 1/n, and compute that the one-year
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Figure 1. A demonstration of how normalization of a stability signature
is possible. The black points represent those TPs that have not been
removed from the system at the end of the simulation. We plot the points
from (a) as teal points in (b) and (c) to more easily compare structure
between the simulations with different Mpl. The mass ratio remains constant
(μ = 64M⊕/M�) in all three simulations. By ensuring the semimajor axis
of the planet is such that its orbital period remains constant, i.e. Tpl = 1 yr
at (a) 1 au around 1 M�, (b) 0.5 au around 0.25 M� and (c) 2 au around
8 M�, then the stability signature across differing mass planets remains
constant, as shown by the agreement between the black and teal points.
Some common low-order MMRs are shown in pink.

orbital period will occur at a1year = n1/3 au. We demonstrate in Fig. 1
how the stable signatures are shown to be identical when the mass
ratio, μ, and orbital period, Tpl, remain constant. Thus, when an
exoplanet of mass Mpl is discovered orbiting a star of mass M�, it is
possible to first normalize the system by scaling the planetary and
stellar masses while retaining a constant mass ratio.

Once normalized, we can then interpolate between the planetary
masses we simulated in order to obtain the stability signature for
any planetary mass (within the upper and lower μ we simulate).
In terms of function notation, a new function for the normalized
stability signature fnorm will have the scaled domain of f, while still
mapping to the unscaled stability signature values f(a), that is,

{(a, fnorm(a)) : a ∈ n1/3A}, (4)

Figure 2. A demonstration of how translatability of a signature is possible.
The black points represent those TPs that have not been removed from the
system at the end of the simulation. We plot the points from (a) as blue points
in (b) and (c) to more easily compare structure between the simulations. The
mass ratio remains constant (μ = 64M⊕/M�) in all three simulations. The
stability signature is then translated to different semimajor axes i.e. from (a)
apl = 1 au to (b) apl = 0.5 au or (c) apl = 2 au. However, as outlined in
Section 3, the number of years of stability is determined by the semimajor
axis the signal has been translated to. Some common low-order MMRs are
shown in pink.

where fnorm(a) is the function mapping the scaled domain to the
original signature curve, given by

fnorm(n1/3a) = f (a).

We must then determine how the domain will vary for a function
that is translated from the semimajor axis where an orbital period
of one year occurs, a1year, to the semimajor axis of the discovered
exoplanet, apl.

3.3 Translatability of signature

As our general simulations are run for a planet at a fixed semimajor
axis of apl = 1 au, translatability is important so that we are still
able to determine the stability signature around a newly discovered
system regardless of the semimajor axis of the planet. We translate
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the normalized signature by simply taking the ratio between the
semimajor axis of the planet (apl) and the one-year semimajor axis
(a1year). We express this ratio as

k = apl/a1year

= apl/n
1/3. (5)

The discovered exoplanet’s stability signature at its semimajor axis
is then obtained by multiplying the normalized signature by k.
We demonstrate this in Fig. 2. In terms of function notation, a
new function for the planet’s stability signature fplanet will have
the translated domain of fnorm, while still mapping to the unscaled
stability signature values f(a), that is,

{(a, fplanet(a)) : a ∈ k n1/3 A}
{(a, fplanet(a)) : a ∈ (apl/n

1/3) n1/3 A}
{(a, fplanet(a)) : a ∈ apl A} (6)

where fplanet(a) is the function mapping the scaled and translated
domain to the original signature curve, that is,

fplanet(apl a) = f (a).

Thus, from the observed parameters L� and Tpl, we can infer M� and
apl, and from radial velocity measurements we can determine Mpl.
With these parameters, we are able to: (1) normalize the system by
scaling M� and Mpl, (2) interpolate between the planetary masses
in our look-up map in order to obtain the normalized signature,
and (3) translate the normalized signature to the semimajor axis
of the detected planet to find its stability signature without the
need for additional numerical simulations. Being able to obtain
the stability signature of any discovered planetary system allows
us to: (1) combine the stability signatures of all planets within a
multiple planet system in order to rapidly and conservatively assess
its dynamical stability, and (2) determine the stable, unperturbed
regions around an exoplanet in order to constrain where a habitable
terrestrial planet could exist. These applications will be discussed
in depth in Section 5.

3.4 Simulations

All our simulations model a two-body, star–planet system within
which we randomly scatter 105 massless TPs in order to test the
stability of a hypothetical third body. The motion of two massive
bodies and a third massless body constitutes the Restricted Three-
Body Problem. The 105 TPs represent 105 possible orbital parameter
configurations for this third body. These TPs are scattered in order
to find the stable regions within the (a, e) parameter space within
the vicinity of the orbit of a massive body. The central star for
our simulations has mass M� = 1 M�, and the semimajor axis
of the planet is apl = 1 au. We then carry out three distinct
suites of simulations, in which we vary the planetary mass (mpl),
eccentricity (epl) or inclination (ipl). The orbital parameters of the
planet for each suite of simulations is summarized in Table 1. The
orbital parameters for the swarm of TPs are randomly generated
within a fixed range for all three sets of simulations, and will be
discussed in detail after first outlining how the planetary parameters
are varied in each simulation. In our first set of simulations, we
explore the effect of planetary mass, mpl. Since the mass of the
host star is kept constant, this allows us to examine the effect of
the mass ratio μ = Mpl/M� on the resulting stability signatures. In
these simulations, we set the orbital parameters of the planet to
those values shown for Set 1 in Table 1. The mass of the planet
is then varied sampling the range Mpl = 1–1024 M⊕, with the

Table 1. The orbital parameters of the massive planet used in each set of
simulations.

Parameter Set 1 Set 2 Set 3

M (M⊕) 1, 2, 4, . . . ,
1024

32.0 32.0

a (au) 1.0 1.0 1.0
e 0.0 0, 0.05, 0.1, . . . , 0.3 0.0
i (◦) 0.0 0.0 0, 2.5, 5, . . . , 10
� (◦) 0.0 0.0 0.0
ω (◦) 0.0 0.0 0.0
M (◦) 0.0 0.0 0.0

mass increased incrementally by factors of 2 (i.e. 1, 2, 4, 8, . . . ).
We span these masses so as to appropriately cover the expected
mass distribution of planets found with TESS (Sullivan et al.
2015).

In our second set of simulations, we explore the effect of
eccentricity. In these simulations, we fix the planetary mass to
Mpl = 32 M⊕ as this falls within the dominant mass range of
expected TESS findings (Sullivan et al. 2015). In these simulations,
we set the orbital parameters of the planet to those values shown
for Set 2 in Table 1. The eccentricity of the planet is then varied
from epl = 0.0 to 0.3 in steps of 0.05 for each simulation. In our
final set of simulations, we explore the effect of inclination. In these
simulations we again fix the planetary mass to Mpl = 32 M⊕. and
set the orbital parameters of the planet to those values shown for
Set 3 in Table 1. The inclination of the planet is then varied from
ipl = 0.0◦ to 10.0◦ in steps of 2.5◦ for each simulation.

For all of our simulations, we randomly scatter 105 massless
TPs throughout the system. As we are interested in obtaining the
stability signatures in the vicinity of the orbit of a massive body, the
TPs are distributed between orbits with periods in 10: 1 and 1: 10
commensurability with the planet (which for apl = 1 au is given by
0.215 au � a � 4.642 au), and with eccentricities 0.0 ≤ e ≤ 0.3. It
should also be noted that, by varying the values of ωtp and Mtp across
the full 0◦–360◦ range, this allows for a fixed value of ωpl = 0.0◦ and
�pl = 0.0◦ for Sets 2 and 3, respectively, to still cover the relevant
parameter space.

3.5 Analysis

One of the key goals of this work was the development of a tool that
can be used to assess the dynamical stability of a system without the
need to run numerical simulations. We achieve this by running N-
body simulations with a swarm of massless TPs to produce a set of
scalable templates, which reveals the unperturbed regions around
a planet, which we refer to as that planet’s ‘stability signature’.
More specifically, we determine two stability signatures: one that
optimistically provides an upper bound above which TPs are shown
to be excited, and a second that more conservatively provides a
lower bound below which no TPs were shown to be excited.

For each simulation, we determine the system’s stability signa-
tures based on the excitation of the TPs perturbed by the planet
over a period of 107 yr. We consider a TP to be excited by the
planet if its semimajor axis changes relative to its initial position by
�aexcited = (afinal − ainitial)/ainitial > 0.01 over the course of the entire
simulation. This is because ultimately we wish to use the signatures
to predict the locations most likely to host additional planets in
the system – particularly Earth-mass bodies. Since our simulations
use massless TPs, they do not take into account mutual gravitational
interactions between the planet and any companion – represented by
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the TPs – orbit. In order to use TPs to predict the stability of massive
bodies with any confidence (such as demonstrated by Agnew et al.
2017, 2018b), we only need to consider those TPs that are not
excited (in other words, the gravitational influence of the known
exoplanet is not destabilizing it). The gravitational influence of the
less massive Earth-mass planet is also unlikely to perturb the known
exoplanet in this scenario. In the cases of our first and third sets of
simulations, where the massive planet moves on a circular orbit, the
Jacobi integral is constant as the system is a circular restricted three-
body problem. The dynamics in this case differs from the restricted
three-body problem that we see with eccentric orbits, and so the
results of Set 2 will also differ significantly due to the difference in
the dynamical evolution resulting from the additional eccentricity
of the planet itself.

Thus, by considering the relative change in semimajor axis
of TPs, and ignoring those that are excited by the gravitational
influence of the planet (i.e. �aexcited > 0.01), we are left with
the most stable, unexcited bodies. From this, we can extract the
optimistic stability signature by placing the unexcited TPs into bins
in semimajor axis, and taking the maximum eccentricity of the
TPs in each bin. In contrast, we obtain the conservative stability
signature, below which we see no TP excitation, by placing the
excited TPs into bins in semimajor axis, and taking the minimum
eccentricity of the TPs in each bin. In both scenarios, we disregard
outliers. We do this for two reasons. First, tiny regions of stability
seem to be unlikely places for planets to form and survive in all but
the youngest stellar systems, and so such regions typically offer little
prospect of predicting potential stable planet locations. In addition,
we are interested in regions of stability that are represented by stable
swarms of TPs, rather than individual outliers, as stable resonances
are not infinitely thin, but have a measurable width in semimajor
axis space. In this work, we ignore surviving TPs that are alone in a
given bin. For bins that contain multiple surviving TPs, we consider
the cumulative distribution function (CDF) of the eccentricities of
the TPs. We ignore any TPs that have a final eccentricity in the top
2.5 per cent of the CDF within each bin. The converse process
is true for ignoring outliers when determining the conservative
stability signature, considering the excited TPs instead of the
surviving TPs.

Plotting a curve connecting the eccentricity of the most eccentric,
unexcited TP in each semimajor axis bin – and for which outliers
have been removed – yields a signature like that shown by the yellow
curve in the upper plots of Fig. 3. Similarly, we can plot the curve of
the least eccentric, excited TPs as shown by the green curve (middle
plots). Fig. 3(a) shows that at low masses (μ = 8M⊕/M�), other
than the very obvious region that is cleared in the planet’s immediate
vicinity, the optimistic signature is very difficult to extract, and as
a result, the accuracy with which this can be achieved is somewhat
limited. However, the curve of the excited TPs is much more clearly
defined, and so this can still be acquired easily. Fig. 3(b) shows that
for more massive planets (μ = 64M⊕/M�), the outlined method
for obtaining the optimistic stability signatures is much cleaner as
the signature is more distinct. The optimistic stability signatures
(the yellow curves in Fig. 3) are thus the curve in (a, e) space,
above which are the perturbed regions near a given planet. The
conservative stability signatures (the green curves) are the curve in
(a, e) space below which are the stable, unperturbed regions near
a given planet. These can be combined as shown in the tricolour
figures (bottom plots) to yield a classification scheme where planets
can be deemed stable, unstable, or potentially stable in between
these two extremes where we have evidence of TPs being both
excited and unexcited.

Using the approach outlined above, the stability signatures were
extracted for all of our simulations and compiled to produce the
desired look-up maps, and to compare how different parameters
might impact dynamical stability of the systems. The resulting look-
up map forms the basis of the predictive tool we developed in
assessing system stability without further numerical simulations.

4 R ESULTS AND DI SCUSSI ON

4.1 Effect of mass

The influence of the mass of the known planet on the stability in a
given system is the main focus of this work, and as such is covered
in the most detail. We present the compiled stability signatures and
look-up maps in Fig. 4.

Fig. 4(a) shows the stability signature for all the planetary
masses we simulated in Set 1 in Table 1. The stability signatures
were extracted as outlined above, and specifically the signatures
for μ = 8 and 64M⊕/M� can be seen in Fig. 3. The x-axis shows
the semimajor axes between orbits with periods in 10: 1 and 1: 10
commensurability with the planet (which for apl = 1 au is given by
0.215 au � a � 4.642 au), while the y-axis shows the eccentricity
values of the stability signatures in Fig. 4(a), and indicates the mass
ratio of the planet in each simulation in Figs 4(b) and (c). As the
maximum eccentricity we tested with our simulations was 0.3, this
means that the maximum value in these signatures correspond with
very stable, unexcited regions for a body up to an eccentricity of 0.3.
While the maximum values could mean bodies with eccentricities
higher than 0.3 may also be stable at these locations, as we did
not explore higher than 0.3 we can only predict up to this value.
We also overlay various other boundaries for the onset of chaos.
These include simpler approximations, such as the boundaries of
1, 3, and 5 Hill radii from the massive planet, as well as more
developed analytic definitions. There have been several studies
into the onset of chaos (e.g. Mustill & Wyatt 2012; Giuppone et al.
2013; Deck, Payne & Holman 2013; Petit, Laskar & Boué 2017;
Hadden & Lithwick 2018), and here we plot those results presented
by Mustill & Wyatt (2012), Giuppone et al. (2013), and Deck et al.
(2013).

We emphasize that for low-mass planets the optimistic stabil-
ity signatures are difficult to extract accurately without making
significant assumptions or changes to the extraction methodology.
This was demonstrated for μ = 8M⊕/M� in Fig. 3(a), and can be
seen for other masses μ ≤ 8M⊕/M� in Fig. 4(a). Despite this, the
conservative signature for such low-mass scenarios can still be seen
to be demonstrably stable for all but the regions located nearest to
the planet, but this should be kept in mind for any systems with
μ ≤ 8M⊕/M�.

Fig. 4(a) shows that for systems with μ > 8M⊕/M�, the
optimistic stability signatures are much less noisy and hence
more distinctly defined. The semimajor axes that correspond with
stabilizing MMRs are also clearly visible (shown by the dashed
magenta lines), as is the manner in which the widths of those
resonances can vary with planetary mass. In contrast, Fig. 4(a)
shows that the conservative signals are much more distinctly defined
even for low-mass ratios, and so are useful for identifying stability.

Figs 4(b) and (c) show the look-up maps we developed by
representing the eccentricity values of the stability signature for
each μ as shaded areas. The dark regions represent strongly
stable regions, specifically where the maximum eccentricity of an
unexcited TP is 0.3 (the maximum value we used in our simulations).
Conversely, the lighter regions represent the unstable regions, where
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System stability and HZ companions in the TESS era 4709

Figure 3. Stability signature extraction from two different systems. The TPs plotted to extract the optimistic signature (yellow) are those considered to be
‘unexcited’ (�aexcited < 0.01). Conversely, the TPs plotted to extract the conservative signature (green) are those considered to be ‘excited’ (�aexcited > 0.01).
The semimajor axis is divided into 400 equally spaced bins, and the value of that bin is determined to be the maximum eccentricity of the unexcited TPs within
that bin (for the yellow optimistic case) or the minimum eccentricity of the excited TPs within that bin (for the green conservative case). The signatures can be
combined to yield a tricolour plot with three distinct regions: unstable, stable, and potentially stable. Some common low-order MMRs are shown in pink.

the maximum eccentricity of an unexcited TP is zero or near zero,
meaning that region in (a, e) space has been completely cleared of
TPs. The stabilizing resonances are again evident in Fig. 4(b) (the
vertical dark streaks embedded in the light white cloud, highlighted
by the dashed magenta lines), as is the strong influence that the
mass ratio has on the reach of the unstable region. We see similar
features in Fig. 4(c), but in this case the MMRs can be seen to have a
destabilizing effect on the TPs, specifically the 2:1 and 1:2 MMRs.
In general, the various analytic definitions for the onset of chaos
bounds or straddles the unstable regions we present to some extent
in both the optimistic and conservative cases, suggesting there is use
to both the optimistic and conservative definitions depending on the
desired application. It also highlights that a more robust definition
of excitation utilizing the derivations in these works may yield

better, more precisely defined signatures. Generally, these analytic
criteria derive the boundary of the onset of chaos to be related to
the relative difference in semimajor axis between the two bodies.
As such, monitoring this throughout each simulation may yield a
far more robust method by which to obtain the stability signatures.
The results of each simulation from which the stability signature
was extracted can be found in Fig. C1.

In addition to the details that are evident in Figs 4(b) and (c),
the look-up map can also be used to assess dynamical stability
in a system, with specific emphasis on the conservative stability
contour map. We can interpolate between the masses we simulated
to obtain the signature for a planet of any mass (within the
maximum and minimum mass ratios of μ = 1–1024M⊕/M�).
We look at how to do this to achieve our two goals – assessing
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4710 M. T. Agnew et al.

Figure 4. The (a) stability signatures, (b) optimistic look-up map, and (c) conservative look-up map, of the 11 planetary masses simulated between μ = 1
and 1024M⊕/M�. In these simulations, the systems considered consist of TPs on initially low eccentricity (e < 0.3) orbits that are coplanar with the massive
planet that perturbs them. Subpart (a) shows the stability signature for each planetary mass simulated. The red region is the unstable region, the green is the
stable region, and the yellow is in between where demonstrably stable and unstable TPs have been shown to exist. Subparts (b) and (c) combine all the stability
signatures into contour maps, allowing for stability signatures at interim masses to be obtained by interpolating logarithmically between those we simulated.
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System stability and HZ companions in the TESS era 4711

Figure 4 – continued

dynamical stability in multiple planet systems, and how to identify
systems where an exo-Earth may exist in the HZ of systems – in
Section 5.

4.2 Effect of eccentricity

Whilst we focus primarily on coplanar, circular orbits, our method
can be further developed and refined to extend to eccentric orbits.
In this work, the eccentricity look-up map we generate is limited
to a single mass ratio (μ = 32M⊕/M�) and is not used like the
ones presented in Fig. 4. However, it does allow us to explore
the influence of planetary eccentricity on the stability of a system.
Fig. 5 shows the optimistic and conservative stability signatures, and
the look-up maps for a mass ratio of μ = 32M⊕/M�. The x-axis
shows the semimajor axis range simulated to obtain the stability
signatures, i.e. between orbits with periods in 10: 1 and 1: 10
commensurability with the planet (which for apl = 1 au is given by
0.215 au � a � 4.642 au), while the y-axis shows the eccentricity
values of the stability signatures in Fig. 5(a), and indicates the
eccentricity of the planet in each simulation in Figs 5(b) and
(c). We only explore between e = 0 and 0.3, given that existing
literature shows that multiple planet systems (especially where one
is a potentially habitable terrestrial planet) are uncommon for high
eccentricity orbits (e > 0.4). This has been explained as being
most likely attributable to planet–planet scattering during planetary
formation and evolution (Matsumura et al. 2016; Carrera et al. 2016;
Agnew et al. 2017; Zinzi & Turrini 2017).

The stability signatures resulting from these simulations prove
more challenging to extract since the TPs become far more excited.
This can be seen by plotting the excitation of the TPs in (a, e) space in
Figs C1 and C2 for the circular and non-circular cases, respectively.
While we do see the theoretical work bounding the unstable, chaotic

region in Fig. 5(c), there is a noticeable deviation with the optimistic
signature (as evident in Fig. 5b). This highlights two important
notions: (1) as mentioned earlier, the case for investigating the effect
of eccentricity means the system is no longer a circular restricted
three-body problem. As such, the Jacobi integral is not conserved
and so we see significantly different dynamics than in the circular
case when investigating the effect of mass, and (2) the method by
which we determine excitation is not well suited when investigating
eccentric orbits. Since we see qualitative agreement in Figs 4(b)
and (c), and 5(c) with different analytic derivations for the onset of
chaos (e.g. Mustill & Wyatt 2012; Deck et al. 2013; Giuppone et al.
2013), a modification of the excitation criteria that utilizes some
of the research presented in these works should be incorporated in
future work that seeks to include the eccentricity parameter space.
This may yield criteria that are more suitable for the eccentric cases.

Fig. 5 demonstrates the destabilizing influence planetary ec-
centricity has on the dynamical stability of nearby objects – a
result that matches what has been found in previous studies of
proposed multiple planet systems (Carrera et al. 2016; Agnew et al.
2017). Fig. 5 shows how rapidly the regions nearby a planet are
destabilized as the planet moves from a circular to an eccentric orbit.
The semimajor axes that correspond to the locations of potential
stabilizing MMRs are also far less pronounced, as seen by the less
distinct dark vertical streaks in Fig. 5(b). Even more impressive is
the range of destabilization in semimajor axis in Fig. 5(c), reaching
out in both directions to the locations of the 3: 1 inner resonance
and the 1: 4 outer resonance with the planet’s orbit in the highest
eccentricity case we examined (epl = 0.3). In contrast, the unstable
regions in the circular case only reached to the 5: 3 inner, and just
beyond the 1: 2 outer respectively, re-enforcing the significance
of even moderate orbital eccentricities on multiple system stability
(Zinzi & Turrini 2017).
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4712 M. T. Agnew et al.

Figure 5. The (a) stability signatures, (b) optimistic look-up map and (c) conservative look-up map for the seven planetary eccentricities simulated between
e = 0 and 0.3. In these simulations, the systems are coplanar and the planet has mass ratio μ = 32M⊕/M�. Subpart (a) shows the stability signature for each
planetary mass simulated. The red region is the unstable region, the green is the stable region, and the yellow is inbetween where demonstrably stable and
unstable TPs have been shown to exist. Subparts (b) and (c) combine all the stability signatures into contour maps, allowing for stability signatures at interim
eccentricities to be obtained by interpolating between those we simulated.
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System stability and HZ companions in the TESS era 4713

4.3 Effect of inclination

Similar to our investigation into the effect of eccentricity on the
stability signatures of a planet, here we explore the influence of
planetary inclination on the stability of a system. Fig. 6 shows
the various stability signatures and the look-up maps for a mass
ratio of μ = 32M⊕/M�. The x-axis shows the semimajor axes
that we simulated to obtain the stability signatures, while the y-axis
shows the eccentricity values of the stability signatures in Fig. 6(a),
and indicates the inclination of the planet in each simulation in
Figs 6(b) and (c). The 5 inclined systems can be seen in Fig. C3.

What is immediately apparent from both Figs 6(a) and (b) is that
shallow mutual inclinations (i.e. i ≤ 10◦) have very little influence
on the stability signatures of a system. Fig. 6(a) shows that the
stability signatures vary very little outside of the inherent stochastic
variations expected using a randomly distributed swarm of TPs.
Fig. 6(b) shows that the stabilizing influence of MMRs remains
more or less consistent across the range of inclinations explored, as
is evident by the near-uniform vertical dark streaks. Similarly, the
destabilizing effect of the 2:1 and 1:2 MMRs are evident across all
inclinations, with the conservative signature in Fig. 6(c) showing
depletion in regions that align with the locations of the 2:1 and 1:2
MMRs.

While the conditions here are those for the circular restricted
three-body problem, it is important to note that the dynamics will
change still further when the third body is treated as a massive,
rather than massless object – in other words when we move from
considering the restricted three-body problem to the unrestricted
three-body problem. The mutual gravitational interactions that
would exist between massive bodies, rather than a massive body and
massless TPs, are expected to yield more complicated dynamical
behaviour. In such a scenario, inclination would have a much more
significant influence on dynamical stability. However, previous
studies have shown that multiple planet systems are likely to exist
on shallow, near coplanar orbits (Lissauer et al. 2011a,b; Fang &
Margot 2012; Figueira et al. 2012; Fabrycky et al. 2014).

5 A PPLICATIONS

The first batch of TESS science observations has already resulted in
the detection of two planets (Huang et al. 2018; Vanderspek et al.
2018), and this is expected to grow to several thousand throughout
the lifetime of the survey (Ricker et al. 2014; Sullivan et al. 2015;
Barclay et al. 2018). Here, we demonstrate how our approach can
be applied for our two proposed use cases for newly discovered
TESS systems.

The first use case is to conservatively assess the dynamical
stability of multiple planet systems. The approach we take is to
assess the stability of each planet separately to provide insight into
the multiple planet system as a whole. We detail this in Section 5.1.
The assessments presented here are conducted using the best-fitting
orbital parameters inferred from observations to test the robustness
of our approach. We follow this with a demonstration of how to
assess stability across the region covered by the uncertainties of the
orbital parameters of planets, and so how our method can provide a
means to assess the stability of a system with the currently inferred
planetary parameters, and if more observations are needed to better
constrain the true nature of the system (e.g. Anglada-Escudé et al.
2010; Anglada-Escudé & Dawson 2010; Wittenmyer et al. 2013;
Horner et al. 2014). As our look-up map in Figs 4(b) and (c) are
only for circular orbits, and does not take into account secular
interactions which can occur over longer time-scales, this is a

conservative assessment that can be used as a quick, first-order
check of a system, enabling a rapid assessment of systems that
are likely to be dynamically unstable with their current nominal
best-fitting orbits.

The secondary use case allows for the rapid identification of
single planet (and certain multiple planets) systems where additional
planets can maintain stable orbits within the HZ (with potential
Earth-mass planets being of particular interest here). In this way,
the expected return of several thousand newly discovered systems
by TESS can be quickly assessed to identify those which could
contain as yet undetected exo-Earths. We detail how we achieve
this in Section 5.2.

5.1 Multiple planet stability

To assess the stability of multiple planet systems, the stability of
each planet needs to be assessed separately. Thus, for any planet,
P1, we must investigate the gravitational influence that the other
planets, P2, P3, P4 . . . , Pn have on P1. The same assessment
must be conducted for each planet in the system, investigating the
gravitational influence that the other planets P1, P3, P4, . . . , Pn have
on P2; the gravitational influence that the other planets P1, P2, P4,
. . . , Pn have on P3; and so on.

Let us consider a three planet system. Starting with P1, we first
obtain the stability signature of the other planets by combining
their masses with P1 (i.e. with respective masses M ′

2 = M1 + M2

and M ′
3 = M1 + M3), interpolating within our look-up maps, and

translating the signatures to each planet’s semimajor axis a2 and
a3, respectively. We combine these signatures to get an optimistic
and a conservative signature by taking the minimum value of the
P2 and P3 stability signatures at each semimajor axis location. We
then plot these combined stability signatures, as well as where P1

is located, in (a, e) parameter space. We can then infer if P1 would
be stable, unstable, or potentially stable based on where it lies
within the combined stability signature. The inference of stability
is determined as outlined in Section 3: below the conservative line
corresponds with the unexcited, stable regions around a planet;
above the optimistic line corresponds with the excited regions
around a planet; and in between corresponding with potentially
stable regions. This process is then repeated for P2 and P3. Once
all planets in the multiple system have been assessed, if any planet
is located above the optimistic stability signature, the system is
considered potentially unstable. Conversely, if all of them fall below
the conservative stability signature, the system can be considered
stable. A worked example of this process for HD 5319 can be found
in Appendix A.

We test the robustness our stability signature predictions with
the dynamical stability of systems found through numerical simu-
lations. Agnew et al. (2018b) conducted such a study, simulating
all multiple planet systems with a gas giant within the then known
exoplanet population for 108 yr in order to assess their dynamical
stability. Fig. 7 shows the HD 5319 system, which Agnew et al.
(2018b) found to be dynamically unstable. We can see that the red
planet is located above the optimistic stability signature of the blue
planet, meaning it resides in the excited, unstable regions within
the system, suggesting the system overall is unstable. In Fig. 8, we
show a similar assessment of the 47 UMa system which was found
to be potentially dynamically stable by Agnew et al. (2018b). We
follow the method outlined earlier for assessing the stability of a
three body system by combining stability signatures, and we can
see that all three planets are located within the potentially stable
region.
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4714 M. T. Agnew et al.

Figure 6. The (a) stability signatures, (b) optimistic look-up map, and (c) conservative look-up map for the various planetary inclinations simulated between
i = 0◦ and 10◦. In these simulations, the planet is on a circular orbit and has mass ratio μ = 32M⊕/M�. Fig. 6(a) shows the various stability signatures for
each planetary inclination simulated. The red region is the unstable region, the green is the stable region, and the yellow is inbetween where demonstrably
stable and unstable TPs have been shown to exist. Figs 6(b) and (c) combine the stability signatures into contour maps, allowing for stability signatures at
interim inclinations to be obtained by interpolating between those we simulated.

We can compare our stability signature predictions with all
the multiple planet systems that Agnew et al. (2018b) tested
numerically. As they sought to identify systems that may host hidden
exo-Earths in the HZ, they had additional criteria relating to the
habitability of each system that ultimately yielded a selection of 51

multiple planet systems from the then known exoplanet population.
As our stability signatures only cover mass ratios μ≤ 1024M⊕/M�,
and e ≤ 0.3, this places a limitation on which systems we can test our
predictions against. Of the 51 systems, Agnew et al. (2018b) tested
numerically, 25 systems fall within the mass ratio and eccentricity
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System stability and HZ companions in the TESS era 4715

Figure 7. A comparison between the predictions made using our method,
and a previously run numerical simulation conducted by Agnew et al.
(2018b) for HD 5319. For each planet, we overlay its stability signature
and assess the location of the other planet with respect to the first. In (a),
the red planet is located above the optimistic stability signature, suggesting
instability. In (b), the blue planet is located within the potentially stable
region. Despite that, as one of the planets is considered unstable, it can be
suggested these particular system parameters are unstable.

Figure 8. A comparison between the predictions made using our method,
and a previously run numerical simulation conducted by Agnew et al.
(2018b) for 47 UMa. In each panel, one of the planets stability (the circle
and cross marker) is assessed based on where it is located relative to the
combined stability signature of the other two planets (the solid markers). In
this system, all the planets potentially stable, so it can be suggested that this
particular system may be stable.

Table 2. Multiple exoplanet systems stability signature predictions com-
pared with the stability of the system determined from detailed numerical
simulations of Agnew et al. (2018b). This table is intended to demonstrate
the agreement between our approach and numerical simulations, but should
not be seen as a definitive assessment of those system’s stability.

System Numerical Signature Agreement?
Result Prediction

24 Sex Unstable Unstable �
47 UMa Stable Potentially stable –
BD-08 2823 Stable Stable �
HD 10180 Stable Potentially stable –
HD 108874 Stable Potentially stable –
HD 113538 Stable Potentially stable –
HD 134987 Stable Potentially stable –
HD 141399 Stable Potentially stable –
HD 142 Stable Potentially stable –
HD 159868 Stable Potentially stable –
HD 1605 Stable Potentially stable –
HD 160691 Unstable Potentially stable –
HD 187123 Stable Potentially stable –
HD 200964 Unstable Unstable �
HD 219134 Stable Stable �
HD 33844 Unstable Unstable �
HD 47186 Stable Stable �
HD 4732 Stable Potentially stable –
HD 5319 Unstable Unstable �
HD 60532 Stable Potentially stable –
HD 9446 Stable Potentially stable –
HIP 65407 Stable Stable �
HIP 67851 Stable Potentially stable –
TYC 1422-614-1 Stable Potentially stable –
XO-2 S Stable Potentially stable –

ranges we used here, and so we can directly compare our stability
signature predictions with these 25 systems. Our comparison is
summarized in Table 2.

We find that our stability signatures yield agreement on the
dynamical stability of a system in 32 per cent (8/25) of the systems
tested numerically by Agnew et al. (2018b), no strong disagreement
in any of the systems tested, and only one case of disagreement with
a system found to be unstable numerically (HD 160691). This is a
promising result, as our predictions are using stability signatures
for circular orbits, and as highlighted in Section 4.2, higher
eccentricity orbits will create less stable signatures. This means that
the discrepancy in the numerical and signature predictions found
for the HD 160691 (the only system Agnew et al. 2018b found to
be unstable that our method did not also predict to be unstable)
may be reconciled, as the signature being used to predict stability
would be more stable (due to it being circular) than what it should
be in reality (e > 0). It should be noted that our stability signatures
do not take into account higher order secular interactions, and so
stable predictions are inherently less conclusive because of these
not being incorporated. There is also agreement in the potentially
stable system predictions, although for multiple planet stability it is
the unstable predictions that are more useful.

By demonstrating the robustness of our predictions, we can now
present the use case for assessing the stability of a planetary system.
We do this by carrying out Monte Carlo (MC) simulations for a
system, randomly sampling within the accepted range of values. For
each simulation, we can determine a stability metric by assigning a
value of 0 for an unstable system, 1 for a stable system, and linearly
interpolating the metric between 0 and 1 between the two signatures
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4716 M. T. Agnew et al.

for the potentially stable systems (taking the minimum interpolated
value of all planets in a given multiple system). Taking the mean
of all the MC simulations for a system yields a measure of how
stable the system is with the current planetary parameters. As an
example, we consider HIP 65407, for which planet HIP 65407 b has
0.172 ≤ ab ≤ 0.182 au and 0.396 ≤ Mb ≤ 0.46 MJ and HIP 65407 c
has 0.308 ≤ ac ≤ 0.324 au and 0.73 ≤ Mc ≤ 0.838 MJ. We run
100 000 MC simulations and yield a stability metric of 92 per cent,
suggesting this system should not be prioritized when determining
which systems require additional observations to better constrain
the planetary parameters.

It must be re-iterated that this is a conservative prediction, and
the implications of some dynamical interactions may be missed.
Specifically, this assessment only compares stability between pairs
of planets. For systems with more than two planets, this method
will not include the effect of multiple-body interactions. Such
interactions could potentially destabilize a planet-pair that would,
on their own, be mutually stable. As a result, it seems likely that truly
stable solutions would require planets to be somewhat more widely
spaced in such systems than our two-planet stability maps might
otherwise suggest (e.g. Pu & Wu 2015, 2016; Tamayo et al. 2016).
Additionally, previous studies have demonstrated that the ratio of
two planet’s masses has very little influence on stability. Instead, it
is the cumulative mass of the planets that impacts most upon their
stability (Petit et al. 2017; Hadden & Lithwick 2018). As such, our
planetary predictions between large-mass planets is optimistic as
the application is more suited to identifying less massive, Earth-
mass companions. The most appropriate use case for our approach
in assessing planetary stability is in identifying unstable systems
by assessing many permutations of planetary parameters across
the constrained error bars, and using that assessment to inform
observers as to whether to gain more data to better constrain them.

5.2 Predicting HZ companions

Generally, detailed numerical simulations are the means by which
to identify the stable and unstable regions within a planetary
system (Barnes & Raymond 2004; Raymond & Barnes 2005; Kane
2015). Such simulations are computationally expensive and so other
methods to more rapidly predict stability within a system would be
particularly useful. Here, we demonstrate how we can utilize our
approach to identify where additional planets can maintain stable
orbits within the HZ – with a specific focus on Earth-mass planets
– in lieu of computationally expensive simulations. It is essential
to test the robustness of our approach, and we do so by comparing
our predictions with the standard numerical approach. Agnew et al.
(2017, 2018a,b) have performed such simulations to assess HZ
stability (with both massless TPs and 1 M⊕ bodies) for a large
sample of single Jovian planet systems. Here we draw upon the
results of their simulations to compare with our predictions.

5.2.1 TP companion in HZ

We first compare our predictions with systems that were simulated
numerically with massless TPs. Agnew et al. (2018a) conducted a
large suite of simulations for 182 single Jovian planet systems using
5000 TPs randomly distributed throughout the HZ, and simulated
each system for 107 yr. Depending on the orbital parameters of
the Jovian planet, these simulations took days of computational
time. In contrast, our predictions can be performed in seconds.
We compare the TPs that were not removed from the system by

Figure 9. A comparison between the predictions made using our method,
and previously run numerical TP simulations conducted by Agnew et al.
(2018a) for Kepler-16 (epl = 0.0069) and kappa Cr B (epl = 0.044). The
coloured dots show the final position of the TPs in (a, e) space with the colour
representing �a. The blue circle represents the planet, the green curve shows
its optimistic stability signature, and the shaded green region shows the HZ
below the stability signature. It can be seen that a large majority of the stable
TPs fall below the stability signature, where we predict the unperturbed
stable regions in the system to be.

ejection or collision at the end of the simulation with the predicted
unperturbed, stable regions below the stability signature using our
method to assess the robustness of our approach for massless bodies.

As our stability signatures have only been determined for mass
ratios μ ≤ 1024M⊕/M� and e ≤ 0.3, this places limitations on
which systems we can compare with. Agnew et al. (2018a) present
10 near-circular systems (i.e. epl < 0.05) that have mass ratios which
fall within this range, and for which they have explored the stable
regions in the HZ using a swarm of massless TPs. These systems
are ideal candidates to demonstrate how the stability signatures can
predict regions of HZ stability. To do this, we: (1) normalize the
system by scaling the mass of the star and the planet, (2) interpolate
between the masses on the look-up map to obtain the optimistic
stability signature of each planet, (3) translate the signature of each
planet to its semimajor axis, and (4) overlay the stability signature
over (a, e) alongside the TPs that survived to the end of the numerical
simulations ran by Agnew et al. (2018a). We can then examine if
the TPs align with the area beneath the stability signature which
corresponds with the unexcited, stable regions in the system. A
worked example of this process for Kepler-16 can be found in
Appendix A. Fig. 9 shows the stability signatures and surviving TPs
as found by Agnew et al. (2018a) for Kepler-16 and kappa Cr B,
two systems where the known planet interacts significantly with the
HZ. All 10 of the near-circular systems can be seen in Fig. B1.

In these figures, the coloured dots represent the final position and
the relative change in semimajor axis of the TPs that remained at the
end of the simulation, the green curve is the stability signature, the
shaded green area is the HZ that exists beneath the signature, and
the blue point is the massive planet. It can be seen that there is strong
agreement between the stability signatures and the surviving TPs
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for each system as was determined numerically by Agnew et al.
(2018a). Especially so in the case of Kepler-16 as it is the most
circular of the two systems. kappa Cr B also shows strong agreement
in that a large majority of the TPs fall below the stability signature,
but as the orbit of the planet is slightly less circular (0.0069 in
Kepler-16 versus 0.044 in kappa Cr B) we see some excitation
of the TPs to eccentric orbits greater than e > 0.3. Regardless,
for near-circular systems we see that the stability signature is a
strong predictor of stable regions, and that further development to
incorporate eccentric orbits has the potential to yield even stronger
predictions for less circular orbits.

5.2.2 Earth-mass companion in HZ

As one of the goals of our work is to identify where Earth-mass
planets could maintain stable orbits, we need to demonstrate the
stability predictions are not just valid for massless TPs, but also
for massive bodies. We have the same mass ratio and eccentricity
constraint as we did for the TP predictions, and so we similarly focus
on systems with mass ratios μ ≤ 1024M⊕/M� where the planet
moves on near-circular orbits. Agnew et al. (2017) conducted a
suite of simulations to explore the stable regions in the HZ of
15 single Jovian planet systems by sweeping a 1 M⊕ body over
the (a, e) parameter space. For each system, 20 400 individual
simulations were run, where the orbital parameters of the 1 M⊕ body
were gradually varied to cover the desired parameter space. Such
thorough numerical simulations take days to weeks to complete,
whereas our predictions can be performed in seconds. We compare
the 1 M⊕ bodies that were not removed from the system by
ejection or collision at the end of the simulations with the predicted
unperturbed, stable regions below the stability signature using our
method to assess the robustness of our approach for Earth-mass
bodies.

None of those systems studied by Agnew et al. (2017) would
be considered near-circular, so we just look at those that have
mass ratios that fall within the μ range and with an epl ≤ 0.3.
Three systems fulfill these requirements, HD 132563 B, HD
147513, and HD 34445, and hence are candidates to demonstrate
how the stability signatures can predict HZ stability. While these
systems have relatively low eccentricities (0.22, 0.26, and 0.27,
respectively), they are not what one would consider near-circular.
As such we also include a multiple planet system where the planet
in closest proximity to the HZ is much closer to circular. That
system is 47 UMa, for which Agnew et al. (2018b) carried out a
similar massive body parameter sweep. In this case, the separations
between planets in 47 UMa are such that the predictions are still
useful. To perform these HZ predictions, we perform the same
steps as outlined in Section 5.2.1, but instead of plotting the TPs
that survived to the end of the numerical simulations, we plot the
1 M⊕ bodies that survived to the end of the numerical simulations
performed by Agnew et al. (2017, 2018b). Fig. 10 shows the stability
signatures and surviving 1 M⊕ bodies found by Agnew et al. (2017,
2018b) for HD 132563 B, HD 147513, HD 34445, and 47 UMa.

An additional step required for 47 UMa is that the stability
signatures of all planets must be combined. At any semimajor
axis location, the stability signature of each planet will have a
corresponding eccentricity representing the maximum eccentricity
of the unexcited region. As we assess whether one planet would
excite any other, the smallest of these eccentricity values will
ultimately bound the unexcited region at that semimajor axis
location. As such, we can take the lowest value of all the stability

Figure 10. A comparison between the predictions made using our method,
and previously run numerical 1 M⊕ body simulations conducted by Agnew
et al. (2017, 2018b) for HD 132563 B, HD 147513, HD 34445, and 47 UMa.
The coloured dots show the final position of the 1 M⊕ bodies in (a, e) space
with the colour representing �a. The large coloured circles represent the
planets in each system, the green curve shows optimistic stability signature of
each system, and the shaded green region shows the HZ below the signature.
It can be seen that a large majority of the stable 1 M⊕ bodies fall below
the optimistic stability signature, where we predict the unperturbed stable
regions in the system to be.

signatures at each semimajor axis location to generate a combined
stability signature. The combined signature for 47 UMa is that
shown in the bottom panel of Fig. 10.

In these figures, the coloured dots represent the final position
and the relative change in semimajor axis of the 1 M⊕ bodies that
remained at the end of the simulation, the green curve is the stability
signature, the shaded green area is the HZ that exists beneath the
signature, and the blue, red, and yellow points are the massive
planets.

As the known massive planet in HD 132563 B, HD 147513, and
HD 34445 is eccentric, the stable bodies do not fit the predictions
as accurately as the near-circular cases. We can see that while the
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massive bodies tend to align along the semimajor axis, they are
excited to higher eccentricity orbits. This matches what we see
in the eccentric simulations as described in Section 4.2 and with
what can be seen in Appendix C. However, it does demonstrate that
the predictive ability of the stability signatures is still valid for a
1 M⊕ body. In the case of 47 UMa, as the planets are adequately
separated the stability signature of the planet nearest to the HZ
can be used to predict stability within it. That planet moves on a
much more circular orbit, and so we can see that the stable 1 M⊕
bodies align very closely with the area below the stability signature.
This agreement of the stability signature with 1 M⊕ bodies shows
that our method can be used effectively to identify where stable,
HZ Earth-mass planets could maintain stable orbits in known
exoplanet systems without the need to run exhaustive numerical
simulations.

It is important to note that Figs 9 and 10 demonstrate that several
bodies do remain stable at the end of the numerical simulations
carried out by Agnew et al. (2017, 2018a,b) that have eccentricities
greater than 0.3. The limit of e ≤ 0.3 that we enforce here to find the
stability signatures and develop our look-up map is the result of our
focus on habitability (Williams & Pollard 2002; Jones et al. 2005).
As such, it should be kept in mind that our method only predicts the
unperturbed regions in (a, e) space with e ≤ 0.3, even though it is
possible for orbits with higher eccentricities to be stable.

6 C O N C L U S I O N S

Numerical simulations are integral to assessing the detailed dynam-
ics of planetary systems. However, alternative methods to classify
system stability are beneficial in ensuring computational resources
are efficiently allocated to assess only the most complicated sys-
tems. In this work, we have presented an alternative approach
in assessing the stability of newly discovered exoplanet systems,
such as those that will be found in coming years by TESS, and
its associated follow-up programs. This includes the dynamical
stability of a multiple planet system with the best-fitting orbital
parameters, the overall stability of the HZ of a system, and whether
an Earth-size planet could maintain a stable orbit within the HZ.
The key findings of our work are as follows:

(i) Mass ratio (μ = Mpl/M�) and orbital eccentricity are very
influential in determining a system’s overall dynamical stability. In
particular, we find that even moderate orbital eccentricities can
prove to be destabilizing, a finding that re-enforces the results
of several studies that highlight the inverse relationship between
multiplicity and eccentricity (Carrera et al. 2016; Agnew et al.
2017; Zinzi & Turrini 2017).

(ii) ‘Stability signatures’ can be obtained using our method for
each planet in a multiple planet system, and these signatures can
be used to assess the stability of each planet, and to determine
the overall dynamical stability of a particular set of planetary
parameters for a multiple planet system. Comparing our predictions
with previously run numerical simulations using best-fitting orbital
parameters (Agnew et al. 2018b), we found our approach yields no
strong disagreement in any of the systems assessed, and agreement
in 32 per cent of cases.

(iii) The stability of a planetary system can then be investigated
by carrying out the stability signature assessment for many different
permutations of planetary and orbital parameters. By considering
the parameters over their respective error ranges, one can suggest
whether more observations should be taken in order to better
constrain the system to more stable orbital parameters.

(iv) The stability signature interpolated from our results also
proves effective at predicting the stability of massless TPs in near
circular systems. Comparing the signature of several single planet
systems with those TPs that were found to be stable with numerical
simulations by Agnew et al. (2018a) shows strong agreement.

(v) The stability signature is also good at predicting the stability
of a 1 M⊕ planet in the HZ of low eccentricity systems. Comparing
the stability signature of several single planet systems with stable
1 M⊕ bodies found numerically by Agnew et al. (2017), we can
see good agreement, with discrepancies being due to the stable
1 M⊕ bodies being more excited to higher eccentricities as a result
of the existing single planet not being on a near-circular orbit (an
assumption of our model).

(vi) The stability signature is also very good at predicting the
stability of a 1 M⊕ planet in multiple planet systems where the
separation between known planets is such that the HZ only interacts
with the nearest planet. 47 UMa provides such a case where the
planet nearest to the HZ is near circular, and here we again see
strong agreement between the stability signature and the numerical
simulations performed by Agnew et al. (2018b).

Our work has focused on the simplest, near-circular, coplanar case,
and so there is room to refine our approach, which we intend to do
in the future. We have demonstrated that our method shows a high
degree of success for low eccentricity systems, and for multiple
planet systems with large orbital separations.

This approach will be particularly useful for systems discovered
with TESS, allowing the system stability to be assessed for the
best-fitting orbital parameters and informing whether additional
observations should be made to further constrain the orbits. It can
also be used to rapidly predict which newly discovered systems may
have dynamically stable Earth-size planets orbiting in their HZ. As
our predictive tool does not require further numerical simulations,
they can be incorporated into the ExoFOP-TESS to provide these
insights as planets are discovered.
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APPENDI X A : WORKED EXAMPLES

A1 Multiple planet stability

Here, we show a worked example for assessing the dynamical
stability of HD 5319. The current known arrangement of HD 5319
is summarized in Table A1. We follow the steps as they are outlined
in Section 5.1.

We first normalize the system. For a star with mass M� = nM�,
we scale the masses of both the star, M�, and the combined mass
of the planet pair, M ′

pl,1 =′
pl,2= Mpl,1 + Mpl,2, by 1/n. This yields a

normalized planet mass of

1

1.51
(1.76 + 1.15) MJup = 1.927 MJup = 612.8 M⊕

With the normalized mass, we are now able to obtain the stability
signature of the each planet (which is the same in the two planet case)
from our look-up maps by interpolating between the masses we have
simulated. Fig. A1(a) shows where the combined normalized mass
of the planets ‘slices’ across our two maps. The shading of the
look-up map corresponds with the maximum unexcited eccentricity
for the optimistic stability signature, and the minimum excited
eccentricity for the conservative stability signature, each slice of
the contour map will have a corresponding curve. These are shown
in Fig. A1(b).

Having obtained the stability signatures for the planets, we next
need to translate the signatures to the semimajor axes of each planet.
The domain over which our simulations were run is

a ∈ [0.215, 4.642]

As per equation (3.3), the domain of our translated signature will
be

a ∈ apl [0.215, 4.642]

Table A1. Summary of stellar mass, planetary mass, and planetary semi-
major axes of the planet/s in the HD 5319 and Kepler-16 systems as they
are currently known.

HD 5319 b c

Mass 1.51 M� 1.76 MJup 1.15 MJup

Normalized mass 1 M� 1.166 MJup 0.762 MJup

Semimajor axis (au) – 1.6697 2.071

Kepler-16 b
Mass 0.69 M� 0.333 MJup –
Normalized mass 1 M� 0.483 MJup –
Semimajor axis (au) – 0.7048 –
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Figure A1. A worked example of HD 5319 demonstrating the key steps
in assessing multiple planet stability. The coloured circles represent the
planets, while the curves represent the stability signatures.

Figure A2. A worked example of Kepler-16 demonstrating the key steps
in determining if HZ companions may exist. The blue circle represents the
planets, the black dots represent the massless TPs, and the curve represents
the stability signatures.
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This yields a domain for planet b of

a ∈ 1.6697 · [0.215, 4.642]

⇒ a ∈ [0.359, 7.751]

and a domain for planet c of

a ∈ 2.071 · [0.215, 4.642]

⇒ a ∈ [0.445, 9.614]

The translated signatures for each planet can be seen in Fig. A1(c).
To assess stability, we identify where each planet is located rela-

tive to the stability signatures of the other. Fig. A1(c) demonstrates
that in the case of HD 5319, planet c falls outside the optimistic sta-
bility region of planet b, and so is excited and so it may be unstable.

A2 Predicting HZ companions

Here, we show a worked example of predicting HZ companions
in Kepler-16. The current known arrangement of Kepler-16 is
summarized in Table A1. We follow the steps as they are outlined
in Section 5.1.

We first normalize the system. For a star with mass M� = n M�,
we scale the masses of both the star, M�, and planet, Mpl, by 1/n.
This yields normalized mass for planet b of

1

0.69
0.333 MJup = 0.483 MJup = 153.4 M⊕

With the normalized mass, we are now able to obtain the stability
signature for planet b from our look-up map by interpolating
between the masses we have simulated. Fig. A2(a) shows where
the normalized mass of the planet ‘slices’ across our map. For

predicting HZ companions, we use the optimistic stability signature.
The shading of the look-up map corresponds with the maximum
unexcited eccentricity for the optimistic stability signature. This is
shown in Fig. A2(b).

Having obtained the stability signature of planet b, we next need
to translate the signature to its semimajor axis. The domain over
which our simulations were run is

a ∈ [0.215, 4.642]

As per equation (3.3), the domain of our translated signature will
be

a ∈ apl [0.215, 4.642]

This yields a domain for planet b of

a ∈ 0.7048 · [0.215, 4.642]

⇒ a ∈ [0.152, 3.272]

We then compute the HZ boundaries for the system. We use the
conservative HZ definition for a 1 M⊕ as given in Kopparapu et al.
(2014) for our HZ boundaries. Fig. A2(c) shows the translated
signature and the HZ that falls below it for Kepler-16.

Finally, using the results of the numerical simulations run by
Agnew et al. (2018a), we can plot the final position of the TPs
remaining at the end of their simulation in (a, e) space. Fig. A2(d)
demonstrates there is tight agreement between the stability signa-
tures and the numerical simulations.

A P P E N D I X B: H Z C O M PA N I O N F I G U R E S
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Figure B1. Comparison between all the HZ predictions made using our method, and previously run numerical TP simulations conducted by Agnew et al.
(2018a) for all near-circular systems (epl < 0.05). The coloured dots show the final position of the TPs in (a, e) space. The blue circle represents the planet,
the green curve shows its stability signature, and the shaded green region shows the HZ below the stability signature. It can be seen that a large majority of the
stable (coloured dots) TPs fall below the stability signature, where we predict the unperturbed stable regions in the system to be.
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APPENDIX C : TEST PARTICLE FIGURES

Figure C1. The11 simulations using different mass ratios to investigate its influence on stability near to the planet. The dots show the initial position of the
105 TPs in (a, e) space, while the colour represents the relative change in semimajor axis. The shaded red curves show the boundaries of the 1, 3, and 5 Hill
radii of the planet.
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Figure C2. The seven simulations using different eccentricities to investigate its influence on stability near to the planet. The dots show the initial position of
the 105 TPs in (a, e) space, while the colour represents the relative change in semimajor axis. The shaded red curves show the boundaries of the 1, 3, and 5 Hill
radii of the planet.
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Figure C3. The five simulations using different inclinations to investigate its influence on stability near to the planet. The dots show the initial position of the
105 TPs in (a, e) space, while the colour represents the relative change in semimajor axis. The shaded red curves show the boundaries of the 1, 3, and 5 Hill
radii of the planet.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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