Motivation to Continue Driving while Sleepy: The effects on Sleepiness and Performance Levels

Christopher N. Watling

ICTTP Conference - 4/8/2012

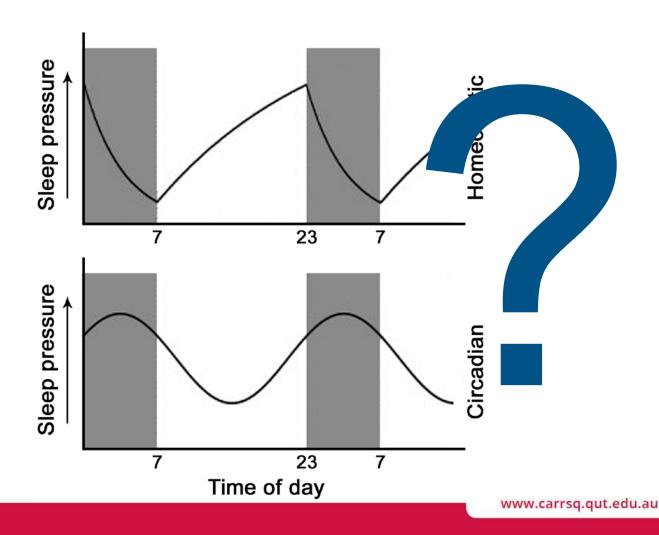
Centre for Accident Research & Road Safety - Queensland (CARRS-Q) CARRS-Q is a joint venture initiative of the Motor Accident Insurance Commission and Queensland University of Technology

Acknowledgements

• Funding source: ARRB Group

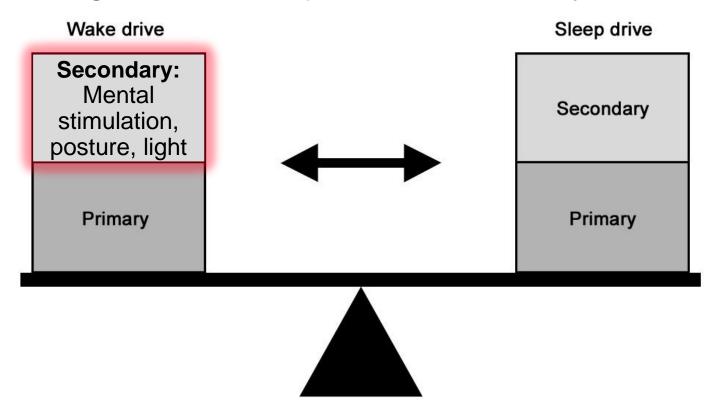
- PhD supervisors
 - Herbert Biggs
 - Kerry Armstrong
 - Joanne Voisey
 - Simon Smith

Driver Sleepiness


- Strongest evidence (case-control data) suggests that 19% of all fatal and severe crash are due to sleepiness
- Crashes often have mutifactoral causes
 - Sleepiness and alcohol
 - Sleepiness and distraction
- Sleepy driving is not viewed as a critical issue for road safety by most drivers
 - Between 59-77% of drivers will drive when sleepy
 - 73% of drivers will continue to drive once aware of their increasing sleepiness

Younger Persons

- Younger drivers (< 25 years) are over represented in sleep-related crashes
 - Accounting for one third of sleep-related crashes
- Younger persons are more critically affected by sleepiness
 - Greater levels of physiological and subjective sleepiness as well as performance impairment
 - Drive frequently during times of high sleepiness
- Different influences for younger drivers
 - ↑ motivations + ↓ risk perceptions = ↑ continue drive sleepy


Sleep-Wake Regulation

Two-process model (Borbély, 1982)

Sleep-Wake Regulation(2)

- Four-process model (Johns, 1993)
 - Sleep or wake is dependant upon the comparative strengths of the sleep and wake drive systems

Motivation

- Motivation can reduce the duration to fall asleep but also can effect our ability to remain awake
- Motivation negates performance impairment from sleep deprivation on low-order tasks
- Smaller effects of motivation (no sleep deprivation) are found with performance of highorder tasks
 - Increases of speed or accuracy of responses
- Increases of physiological arousal levels

Study Aim

 What are the effects of motivation on sleepiness and performance?

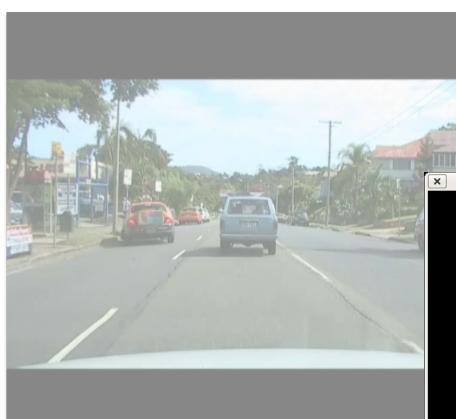
Method

Participants

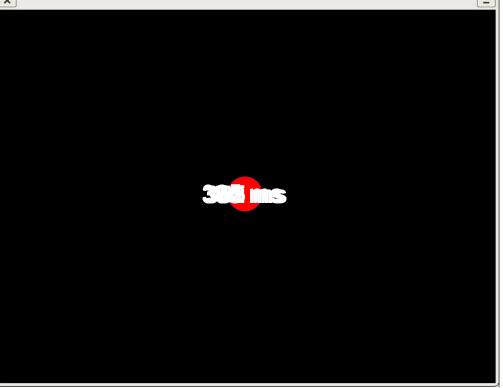
- In total, 18 young adults, 20-25 (M = 22.29) yrs
- Extensive exclusion criteria
 - Habitual bedtime later than 12 midnight
 - Excessive daytime sleepiness and/or sleeping difficulties
 - Drank more than three cups of coffee per day and/or more than two standard drinks of alcohol per day

Measures:

- Physiological (EEG: F5, C3, O1 electrode sites)
- Subjective (Karolinska Sleepiness Scale)
- Performance (PVT & HPT: reaction time latencies)
- Intrinsic task experiences


Performance Measures

Hazard Perception Test (HPT)

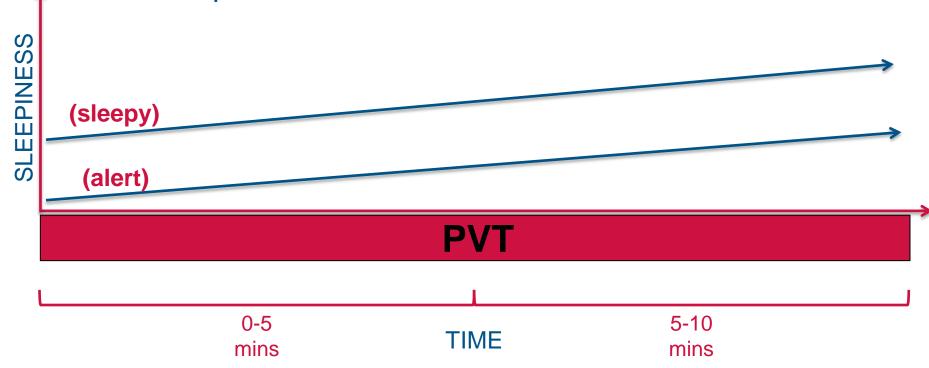

- Hazard perception is the skill to notice that a traffic situation may result in a dangerous situation, requiring an action from the driver to avoid an incident
- High-order cognitive task
- Validity data with actual on-road crashes
- Sensitive to sleepiness

Performance Measures

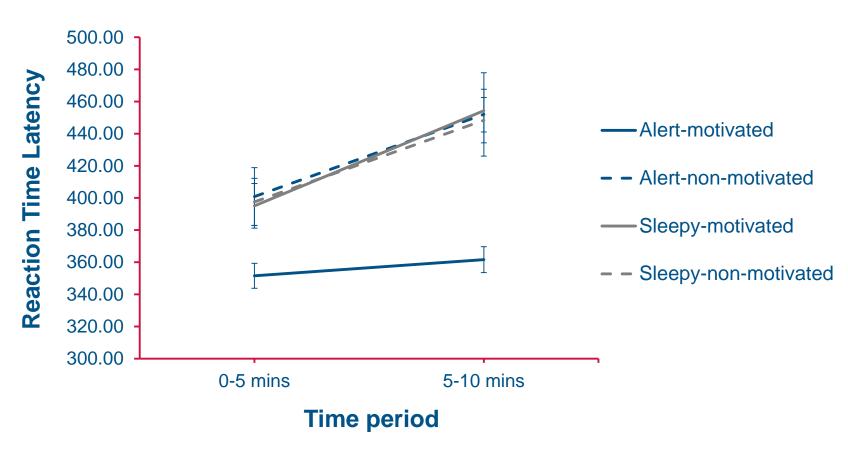
Psychomotor Vigilance Test

- Neurocognitive attentional network
- Low-order cognitive task
- Sensitive to sleepiness

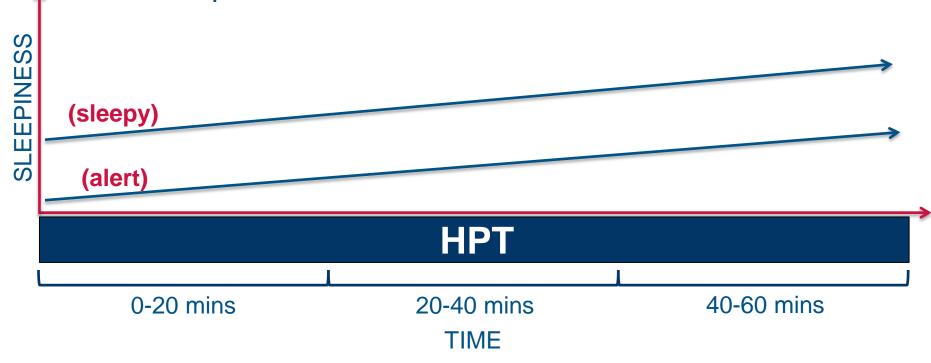
Method₍₂₎


- A series of 2 x 2 x 2 (PVT) and 2 x 2 x 3 (HPT)
 repeated measures ANOVAs
 - Three within-subjects factors
 - Sleepiness level (alert: 7.9 hrs, sleepy: 6 hrs)
 - Motivation level (motivated, non-motivated: via instructions)
 - Time period (PVT: 0-5, 5-10 mins; HPT: 0-20, 20-40, 40-60 mins)

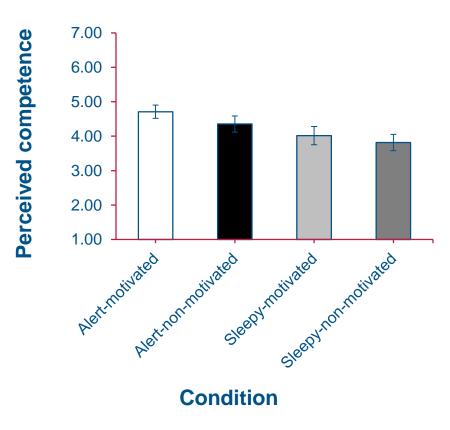
0-5 mins 5-10 mins


Results: PVT

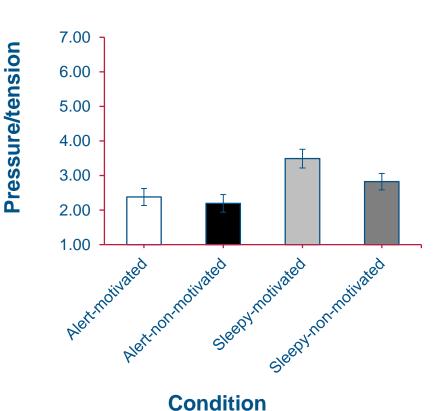
- EEG and KSS data, Main effects for
 - Sleepiness level
 - Motivation level
 - Time period


Results: PVT₍₂₎

- PVT performance data
 - Three-way interaction



Results: HPT


- EEG, KSS, and HPT data, Main effects for
 - Sleepiness level
 - Motivation level
 - Time period

Results: Task Experiences

- Sleepiness level
- Motivation level

- Sleepiness level
- Motivation level
- SLP*MOT interaction

Discussion

- Overall, limited effect of motivation
 - BUT, on a low-order task there was some capacity to maintain performance
 - Room for improvement
 - Performance feedback
- Motivation did not reduce physiological or subjective sleepiness
 - Sleep drive is King!
- Differences between conditions for intrinsic task experiences
 - — ↑ pressure/tension during the sleepy-motivated condition

Discussion(2)

- Motivation could have a major effect on road safety
 - Negative/unsafe aspects
 - No effects for reducing sleepiness or improving HPT performance
 - Positive/safe aspects
 - Absence of motivation to continue driving
- Reinforces safe driving practices
 - Good sleep health practices
 - Especially before a long drive
 - Awareness of signs of sleepiness
 - Recognition of the dangerousness of driving while sleepy

Discussion(3)

- Limitations
 - Small-ish sample size
 - Laboratory environment
- Strength
 - Use of a number of convergent measures

Conclusion

- To date, this is the first study to examine psychophysiological and performance changes with motivations and driving while sleepy
- Overall, motivation had no effect on physiological and subjective sleepiness
- Differential effects of motivation on performance
 - Low-order vs. high-order cognitive tasks
- The obtained results reaffirm the dangerousness of continuing to drive while sleepy

Thank you for listening!

Comments or Questions?

christopher.watling@qut.edu.au