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Abstract— Many distribution network disturbances exhibit 

unique electrical signatures which can be observed from voltage 

and current waveforms. With the continuous enhancement of 

Power Quality Data (PQD) acquisition capabilities, it is feasible 

to continuously monitor the operating status of power nodes 

from a more detailed perspective. In the past decade, an 

increasing amount of high-quality PQD has been collected

accumulating a massive and unique high-resolution power grid 

data asset. However, how to obtain valuable information, such 

as Power Quality Disturbance Events (PQDEs) from massive 

PQD remains challenging in the research community. In this 

paper, a reliable PQDEs detection method is proposed based on 

the improved Robust Random Cut Forest (RRCF). This method 

achieves accurate detection of PQDEs through the adaptive 

improvement of pre-filtering based on Ensemble Empirical 

Mode Decomposition (EEMD) and redundant interpolation. 

Numerical test results on the synthetic PQD and the realistic 

pollution experiment of a silicone rubber insulator in a salt fog 

chamber demonstrate the reliability, efficiency, and scalability 

of the proposed approach in practical online detection.

Keywords—Power quality, Robust Random Cut Forest 

(RRCF), abnormality detection, big data, arcing

I. INTRODUCTION

The current development of the power grid has entered a 
new era of digitization and intelligence. As more and more 
power electronic-based devices are integrated into the power 
grids, there is a sharply increased risk of PQDEs occurring.
With the continuous improvement of condition monitoring 
methods and data acquisition infrastructures, researchers can 
interpret and analyze the operating status of the power grid 
from a more microscopic view.

High-precision power operation information can be 
collected through power quality meters installed at the key 
power nodes. This information usually includes phase voltage, 
phase current, power angel, etc. In terms of the nature of the 
problem, the occurrence of PQDEs can cause voltage and 
current to fluctuate to varying degrees. Thus, by analyzing the 
collected voltage and current data, the abstract power quality 
problem can be refined into an anomaly detection problem for 
time-series data.

Traditional time-series abnormality detection methods
mostly rely on manual feature extraction. Most of them focus 
on data analytics of PQD in the time domain, frequency
domain or both. For example, the Fast Fourier Transform 
(FFT) built on the time-series waveform can reveal the 
distribution in the frequency spectrum of the time series data,
and these distributions can be used as the signatures for 
detecting PQDEs [1]-[2]. However, the detection methods
based on FFT mainly focus on the frequency characteristics of 

the time series, and they may lose valuable disturbance 
characteristics in the time domain. The Short-Time Fourier 
Transform (STFT) has been introduced to overcome the
shortcoming of the FFT-based methods and it demonstrates to 
have a better detection accuracy [3]-[4]. STFT samples the 
time series by introducing a dynamic moving window with an 
adjustable scale so that it can obtain the time-frequency
domain characteristics simultaneously. However, the 
selection of the window length will affect the performance of 
the STFT-based method [5]-[6]. To extract the signatures in
the time-frequency domain more efficiently and avoid the 
limitations of STFT and FFT algorithms, the Wavelet 
Transform (WT) was introduced [7]-[8]. Although these 
traditional methods have been widely used in various fields, 
and some of them achieved relatively high detection accuracy,
the truth is that they heavily rely on experts’ knowledge for
feature extraction and feature selection, and they mostly focus 
on events associated with specific datasets. The effort to find 
a generic detection method that can be applied to any kind of 
situation is very limited.

To solve the shortcomings of artificial decision-making in 
feature engineering, abnormality detection methods based on 
Deep Learning (DL) and Neural networks (NN) have begun 
to emerge. The methods based on DL and NN mainly solve 
detection problems from the perspective of classification and 
clustering. These methods first automatically learn the 
relationship between the features and different classes of 
PQDEs from historical datasets, and then make classification 
of the PQDE using the power quality data of interest. Among 
these methods, artificial neural networks and support vector 
machine [9, 10] are the two most used methods in abnormality 
detection. probabilistic neural network based on Bayes 
minimum risk criteria can give the possibility of sample 
classification into different categories [11]-[12], which can 
also be used in the PQDEs detection. Moreover, multi-layer 
perceptron neural network [13] with more hidden layers is 
regarded as an improved algorithm of function neural 
network. The capabilities of the model have been improved to 
a certain extent. But at the same time, due to its complex 
structure, the substantial increase in the number of parameters 
also has a non-negligible impact on the model training and 
classification speed. Compared with the above methods, the 
convolutional layer in Convolutional Neural Network (CNN) 
[14]-[15] has stronger automatic feature learning capabilities. 
By setting the appropriate number of filters and the size of the 
convolution kernel, the CNN model can be well qualified for
multi-classification based on one-dimensional time series
PQD. However, it is worth noting that due to the 
polymorphism of PQDEs and the shortage of real-life datasets
with confirmed events, the model training process is still a 
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very challenging task. The current mainstream solution is to 
use standard-recommended simulation models to establish 
synthetic datasets. Some researchers also use their own 
measured data combined with synthetic data for model
training and verification. Differences in datasets and operating 
equipment will also affect the final performance of the NN 
model.

There are many practical problems in the power grid, such 
as complex and diverse operating states, relatively high noise 
levels and integration of PQDEs. Restricted by the limited 
authenticity and accuracy of PQDE datasets, most PQDEs 
detection algorithms based on traditional neural networks can 
only achieve better results on their specially designed datasets. 
When in the face of these polymorphism problems, the models 
trained based on the specific datasets are often unable to make 
correct judgments on the real situation due to the limited 
information learned. This problem can greatly affect the 
generalization capability of these models. Unsupervised 
learning (UL) methods do not require a specific training 
process and can effectively overcome the problem of low 
model availability due to limited dataset quality.

This paper proposed a UL-based method for PQDEs
detection to fill this gap. Accurate detection of PQDEs in the 
real-world grid is achieved without requiring training with the 
specific dataset and manual feature selection as support. The 
rest of this paper is organized as follows: Section II elaborates 
on the proposed PQDE detection method which combines 
EEMD with improved RRCF. Then the performance of the 
proposed method is verified in Section III using both synthetic 
PQDEs data and the real-world data. The synthetic data is 
generated based on the IEEE 1159-2009 standard and the real-
world data is collected from extensive insulator pollution
experiments in a salt fog chamber. Finally, the conclusions are
provided in Section IV.

II. PROPOSED POWER QUALITY DISTURBANCE EVENT 

DETECTION METHOD 

The workflow of the proposed method is shown in Fig 1.
Firstly, through the EEMD based filter, the environmental 
noise in the original signal can be accurately removed, thereby 
it can improve the signal-to-noise ratio (SNR) and can 
facilitate in realising unique PQDEs features. Afterwards, the 
RRCF-based module is designed to determine the abnormality 
score of the specific signal point and achieve accurate 
detection of complex PQDEs.

A. Original Robust Random Cut Forest (RRCF)

A typical RRCF can be understood as consisting of several 
Robust Random Cut Trees (RRCTs) with adjustable sizes. As 
the basic parts of RRCF, RRCTs on point set S can be 
generated by choosing random dimensions and numerical 
operations based on normalized values [16]-[17]. To form the 
structure of an RRCT, the dynamic maintenance should be 
supported by the random sampling processes with point 
inserting and deleting operations, among which the recency-
based weighted random sampling [18] and the reservoir 
sampling [19] are used. 

Considering the given sample S, the corresponding tree 
T(S), and the point p, a random tree can be easily calculated as 
T(S ∪ p) and the depth of 𝑝 in tree T(S ∪ p) is denoted as 
d(p, S ∪ p, T)[16]. The anomaly will be identified when the 
difference between the joint distribution including the point p
and the differential distribution becomes too significant. In 
other words, the anomaly can be determined by the impact of 
sampling point 𝑝 on the original distribution.

To quantify the influence of the presence or absence of the 
new point 𝑝 on the original distribution, literature [16]
proposed the concept of displacement DISP(p, S) and the 
collusive displacement CODISP(p, S, |S|) to determine the 
degree of the abnormality of a single point. Assuming 𝐶 is a 
point set that includes point 𝑝 , 𝑦 is a point in S - p and 

y ∈ C ∈ S , random tree T’=T (S – x) and T’’= T(S – C) . The 
difference is that the CODISP(p, S, |S|) remove C, a point set 
that includes point p , while DISP(p, S) removes a single 
point p in each trail. Additionally, the DISP(p, S, |S|) mainly 

focuses on the difference between d(y, S, T) and d(y, S-p, T’)
while the CODISP(p, S, |S|) mainly takes 

d(y, S, T) – d(y, S – C, T’’) into consideration. If the 

abnormality score of all data points in the signal segment is 
always lower than the predetermined threshold, the segment 
will be considered normal. If the abnormality score exceeds a 
certain threshold, the abnormality is detected. The process and 
parameter design of the original RRCF is detailed in [18]. This 
part summarizes the key steps and concepts of the original 
RRCF, the rest of the details will not be further repeated since 
they are not the key point of this paper.

Start

Raw signal X

Data in time window Xt 

EEMD denoising Xdn

RRCF with redundant interpolation

Abnormality score s of specific point x⸦Xt

End

Fig 1. Flowchart of the proposed method

Fig 2. Flowchart of original RRCF



B. Redundant Interpolation

RRCF is a powerful tool to detect abnormality in the 
periodical data. However, the initial section failure at the 
beginning of the moving window greatly affects the accuracy 
of the original RRCF. In addition, the PQD collected from the 
power grid often contains noise which will also have a 
significant impact on the detection results. The pre-filter based 
on EEMD and the redundant interpolation are designed to 
solve this problem.

Considering the original sampling window as W(t, t+∆t)
where t is the initial moment of sampling, ∆t is the length of 
the moving window which is usually set as an integer multiple 
of the wave cycles. Redundant interpolation is achieved by 
connecting a short normal signal without event before the 
target waveform in the moving window. Let ∆t’ be the length 
of the interpolation segment. Then, the interpolation segment

can be denoted as W’(t-∆t’,t) where ∆𝑡′ is adjustable and 
usually can be set as half period. Then, the new segment W’
will replace the original W as the input of the RRCF. Such
redundant interpolation can help to overcome the initial 
segment failure of the original RRCF and greatly improve the 
accuracy of the proposed method for PQDEs detection.

C. EEMD-based Filter

EEMD refers to the principle of noise-assisted signal 
processing [20], which can effectively fix the modal aliasing 
problem existing in traditional EMD-based methods. As a 
significant improvement compared with the traditional EMD-
based method [21]-[22], EEMD uses the Gaussian white noise 
whose zero-mean property can help to characterise the 
original signal. Specifically, EEMD can decompose a signal
into several component waves in the time-frequency domain
and these component waves are called Intrinsic Mode 
Functions (IMFs). The main steps of the EEMD method can 
be summarised as follows: In the first step, the white noise 
signal 𝑁𝑛(𝑡)is added to the original signal X(t) in each trial to 
form a new composite signal Yn(t).

Yn(t)=Nn(t)+X(t) (1)

Then, Yn(t) is decomposed using the traditional EMD 
algorithm to obtain a series of IMFs and a residual signal.

𝑌𝑛(𝑡) = ∑ 𝐼𝑀𝐹𝑚
𝑛(𝑡) + 𝑟𝑀

𝑛(𝑡)

𝑀−1

𝑚=1

(2)

where IMFm
n (t)is the 𝑚-th IMF of Yn(t) in the 𝑛-th trial and 

M -1 is the total number of IMFs based on the EMD 
decomposing. And rM

n (t) is the residual signal in the 𝑛-th trail.
Then, the previous two steps will be repeated 𝑁 times since 
the ensemble number was set to N. At the final step, the results

output from the EEMD (IMFM

avg
) are the average values of the 

corresponding order IMFs obtained from N trials:

IMFM

avg(t)=
1

N
∑ IMFm

n (t)

N

n=1

(3)

Based on the above discussion, it is easy to find that the 
number of trials N and the amplitude A of the white noise 
added to each trial will have an impact on the decomposition 
results. The final standard deviation ε was defined in [20] to 
evaluate the performance of the EEMD decomposition:

ε=
A

√N
(4)

where N is the total number of trials and A is the amplitude of 
the white noise signal Nn(t) added in each trial.

The noise signal and the pure signal can be accurately 
synthesized by the IMFs decomposed by the EEMD. In order 
to preserve the information of the original signal as much as 
possible on the premise of accurately extracting the noise 
signal, the correlation between the different order IMFs and 
the original signal needs to be clarified. Specifically, those 
IMF components that are closely related to noise have strong 
random normal distribution characteristics, so they will have 
a low correlation with the original signal. For those
components that are closely related to the original signal, they
will have a similar distribution to the original signal. Thus,
these IMFs will have higher correlated coefficients to the 
original signal. In this paper, Pearson correlation is used to 
evaluate the correlation between different order IMFs and the 
original signal, so that the IMFs representing the noise and the 
pure signal can be determined.

The correlation characterisation 𝑟 and 𝑝 of each IMF can 
be obtained from the Pearson analysis. The parameter r is the 
Pearson correlation coefficient, which represents the strength 
of the correlation. R can represent the degree of covariance of 
the two time-series, and the range of r is (-1, 1). P is a 
parameter that characterizes the significance of the IMF. 
When p<0.05, the correlation is significant, which means the 
correlation between the two time-series can be observed under 
the current sample. The larger r and smaller p indicate the 
higher the correlation between the two waveforms.

This section mainly presents the adaptive improvements to 
the original RRCF, including redundant imputation and the 
EEMD-based filter. The principle and processes of the 
proposed method have been detailly discussed. Furthermore, 
the effectiveness of the proposed method will be verified in 
the following section.

III. EXPERIMENT AND VALIDATION

A. Validation on Synthetic PQDE Data

In this section, seven basic PQDEs, namely swell, sag,
oscillation, interruption, notch, flicker and arcing are used to 
construct the simulation dataset (as shown in Fig. 3). The 
PQDEs are generated by IEEE 1159-2009 standard [23]. In 
this paper, the synthetic dataset contains 200 samples for each 
type of PQDE.

Fig 3. Examples of PQDEs including swell, sag, oscillatory, interruption, 
notch, flicker and arcing



Based on this synthetic dataset, the comparison between 
the proposed method and the original RRCF and the widely 
adopted Kullback-Leibler divergence (KLD) method [24] is 
performed to verify the performance of these methods. As 
shown in Table 1, the proposed method exhibits 
comprehensive advantages in the detection of each type of 
PQDEs. Overall, the proposed method achieves a 
comprehensive detection accuracy of 98.71% on the synthetic 
dataset of multiple types PQDEs, which is 12.57% higher than 
the original RRCF method and 26.43% higher than the 
traditional KLD-based method. Among seven types of
PQDEs, the detection accuracy of arcing has been 
significantly improved by 24%. This is because the energy 
fluctuations caused by arcing are relatively small and are 
easily mixed with ambient noise making it difficult to separate 
them. The pre-filter design for eliminating environmental 
noise in the proposed method can better suppress the 
environmental noise and make the arcing feature more 
obvious. The above simulation results also demonstrate the 
advantages of the pre-filter design.

TABLE I. COMPARISON OF DETECTION ACCURACY AMONG 

DIFFERENT METHODS BASED ON SYNTHETIC PQDES DATASET

PQDEs
Original

RRCF
KLD

Proposed

method 

Improvement

(RRCF/KLD)

Arcing 76% 50% 100% +24%/+50%

Voltage 
Swell

89% 74% 100% +11%/+26%

Voltage 

Sag
91% 74% 100% +9%/+26%

Flicker 88% 76% 98% +10%/+22%

Oscillation 86% 68% 95% +9%/+27%

Interruption 90% 92% 100% +10%/+8%

Notch 83% 72% 98% +15%/26%

Overall 86.14% 72.28% 98.71%
+12.57%

/+26.43%

B. Validation on Real-Life Arcing Data

In this section, the effectiveness of the proposed method is
verified by using real-life arcing data collected from the 
insulator pollution experiment in a salt fog chamber. Fig 4 
shows the schematic diagram of the insulator pollution 
experiment. An electrical switchgear is installed in a salt fog 
chamber. The fusible salt can significantly reduce the 
electrical breakdown strength of the silicone rubber [25] so 
that the discharge phenomenon will appear more frequently 
on the surface of the insulator string. When the discharge 
occurs, there will be a short circuit at S. A high-performance 
power quality meter is used to record the voltage and current 
on the low voltage side. Since the duration of arcing is 
relatively short (mainly within 100ms to 800ms). Thus, the 
sampling rate is set to 1024×50Hz to obtain a more detailed
waveform of the discharge.

A moving window with 10 cycles window length is used 
to scan the original waveform for event detection. To 
determine the noise and the true signal, EEMD decomposition 

and Pearson analysis are conducted, and the results are shown 
in Fig 5 and Fig 6.

As shown in Fig 6, 𝑝 decreases sharply from the IMF_2
and reaches a value close to 0 after the IMF_3, which means 
that from the perspective of the p value, IMFs are more related 
to the original signal from the third IMF. The values of 𝑟 for 
IMF_6 to IMF_10 increase significantly meanwhile the peek 
value is close to 1, which means that these five IMFs have 
stronger covariance with the original waveform. 

In most cases, the correlation between the 6th to 10th IMF 
and the original signal is more prominent than the other IMFs, 
in other words, the composite wave of the 6th to 10th IMF 
should be used as the main component of the waveform after 
noise reduction. In addition, from the results of the waveform 
decomposition in Fig 5, the IMFs after the 10th are all low-
frequency and low-amplitude signals. These signals may 
contain long-term trend characteristics or base value 
fluctuations caused by equipment ageing or environmental 
factors. Consequently, they should also be taken into 
consideration when constructing the final denoised signal. 
According to Fig 6 and the previous discussion, the first five
IMFs are used to construct the environmental noise. 

As shown in Fig 7, the noise level in the noise-reduced 
waveform is well suppressed, while the amplitude and shape 
characteristics of the main event are also well preserved. This 
result is also consistent with the Person analysis results
discussed before. Fig 8 shows the distribution of the 
reconstructed noise, which shows that the noise signal follows
the Gaussian distribution and can be treated as white noise.
The proposed noise filter based on EEMD performs well on 
the real-world arcing data.Fig 4. Schematic diagram of insulator pollution experiment

Fig 5. IMFs of the waveform decomposition based on the EEMD 
method

Fig 6. Results of the Pearson analysis for each IMF after EEMD-based 

filter



Fig 9 shows the abnormality scores determined by the 
proposed method where an obvious turning point is observed. 
The existence of the turning point means that the abnormality 
scores for PQDEs in the detection result are much greater than 
the scores for normal conditions. Additionally, based on this, 
the threshold can be selected as 54.31 as shown in Fig 9.
Through the previous discussion, the effectiveness of the 
proposed method is well validated in both synthetic and real 
datasets. It has been proved that the RRCF improved by pre-
denoising and redundant interpolation can be well qualified 
for the adaptive PQDEs detection.

IV. CONCLUSION

This paper proposed an unsupervised PQDEs detection 
method based on the improved RRCF and EEMD. Due to the 
improvements in the redundant interpolation, the problem of 
initial section failure of the original RRCF is solved and the 
PQDEs at the beginning of the moving window can also be 
detected. At the same time, the noise filter based on the EEMD
segregates the noise from the desired true signal which further 
improves the difference between the abnormality score 
obtained by the normal conditions and PQDEs. The proposed 

method is validated on both synthetic and real-world PQDEs 
datasets. It is expected that the proposed method would lay a 
foundation for fully exploring the value of PQD and realizing
the application of real-time monitoring and automatic 
classification of complicated PQDEs.
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