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Abstract

A novel node-based smoothing element for triangular and quadrilateral meshes is

presented for static analysis of planar piezoelectric structures. In contrast to the

smoothed finite element formulation that was based on sub-cells within an original

quadrilateral element, this new method transforms a general original finite element

mesh into a mesh of new smoothing cells individually associated with a single node

which is termed as node-based elements. The displacement fields of the element are

approximated by the linear interpolation functions of the original mesh while the ap-

proximations of mechanical strains and electric potential fields are normalized using

the stabilized conforming nodal integration technique over each node-based element.

This technique allows field gradients to be directly computed from interpolating shape

functions by using boundary integrations along each edge of the node-based element.

Furthermore, the present elements do not require any additional degrees of freedom

and are insensitive to bad element shapes in the original mesh. Several numerical

examples and comparative studies with other numerical results as well as analytic

solutions in the literature are carried out in order to demonstrate the simplicity,

efficiency and reliability of the novel elements.

1 Introduction

Piezoelectric materials have many applications in various modern engineering fields

such as smart structures, mechatronics, ultrasonic transducers or micro-electromechanical

system (MEMS) technology. It is evident that they have attracted significant atten-

tion of researchers. Many models and methods have been proposed over past decades
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towards better understanding of electromechanical coupling behaviour of piezoelec-

tric materials including analytic/numerical methods and experimental models. Since

only a few simple problems can be solved analytically [Crawley and Luis (1987);

Im and Atluri (1989); Shen (1995); Tzou and Tiersten (1994); Bisegna and Maceri

(1996); Ray et al. (1998); Lam and Ng (1999)], several finite element methods (FEM)

for coupled electro-mechanical systems have appeared in the literature such as Al-

lik and Hughes (1970), Sze and Pan (1999); Sze and Yao (2000); Wu et al. (2001);

Sze et al. (2004) and Cannarozzi and Ubertini (2001). More details and reviews on

the development of the FEM applied to the modeling and analysis of piezoelectric

material and smart structures can be found in Mackerle (2003). Some new special

elements are still being developed as can be seen from recent works of Benjeddou

(2000), Carrera and Boscolo (2007).

Although the FEM is considered to be a versatile and effective numerical method,

there often exist difficulties and deteriorations in performance when mesh distortion

occurs. On the other hand, several mesh-free methods have become an alternative

approach for analysis of piezoelectric material, including the Radial Point Interpola-

tion Meshfree (RIPM) method of Liu et al. (2003), the Point Interpolation Meshfree

(PIM) method of Liu et al. (2002), the Point Collocation Meshfree (PCM) method

of Ohs and Aluru (2001), the Element Free Galerkin (EFG) method of Liew et al.

(2002), the Meshless Local Petrov-Galerkin (MLPG) method of Sladek et al. (2006);

Sladek et al. (2007), etc.

A recent meshless technique is the stabilized conforming nodal integration (SCNI)

mesh-free method [Chen et al. (2001)]. The application of the SCNI in the FEM

was first proposed by Liu et al. [Liu, Dai and Nguyen (2007); Liu, Nguyen, Dai and

Lam (2007); Dai et al. (2007); Dai and Liu (2007)] for 2D elasticity and further for

laminated composite plates [Nguyen-Van et al. (2007), Nguyen-Van et al. (2008b)]

and piezoelectric problems by Nguyen-Van et al. (2008a). It is found that the FEM,

integrated with the SCNI technique, achieves more accurate results as compared with

the conventional one without increasing the modelling and computational costs.

In this study, an alternative approach to incorporate the SCNI technique into the

FEM is developed to formulate an efficient node-based smoothing element for analy-

sis of planar piezoelectric structures. The proposed elements are created from a finite

element mesh of triangular or quadrilateral elements and each of these new elements

is associated with a single node of the original mesh. These node-based elements

are generated in a similar way to the generation of background cells used for nodal

integration in the meshfree radial point interpolation method of Liu, Zhang, Wang,
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Zhong, Li and Han (2007). When only triangular elements are used, the proposed

element is similar to the node-based uniform strain element proposed by Dohrmann

et al. (2000). However, the significant distinguishing character of the present node-

based elements is that the strains are normalized using the SCNI technique over the

boundary of each smoothing cell, while the node-based uniform strain element ap-

proach requires the strains to be computed within each element using nodal averaging

technique.

In comparison with the cell-based piezoelectric quadrilateral element (SPQ4) us-

ing the same SCNI technique [Nguyen-Van et al. (2008a)], the present node-based

piezoelectric elements differ in the way that the smoothed cell is built to perform

smoothing operations. While the cell-based element (SPQ4) is based on the sub-

division of original quadrilateral finite elements, the node-based element is created

by transforming a given more general mesh (triangular or quadrilateral elements)

into a mesh of new smoothing cells each associated with a single node. Problem

domains, therefore, can be discretized in more flexible ways. The displacement fields

of the node-based element are approximated by linear interpolation functions of the

original mesh while the approximations of mechanical strains and electric potential

fields are normalized using the SCNI technique over each node-based element sur-

rounding a single node. With a constant smoothing function, domain integrations

can be changed into boundary integrations and field gradients can be directly com-

puted from interpolating shape functions. No mapping or coordinate transformation

and derivatives of shape functions are necessary so that the original meshes can be

used even with badly shaped elements. Furthermore, the present elements do not

introduce any additional degrees of freedom and stresses can be computed directly

at field nodes.

Several numerical examples and comparison with other numerical or analytic solu-

tions in the literature are carried out to demonstrate the capability, efficiency and

reliability of the present novel element. Numerical experiment does show that the

proposed element is robust and uniformly accurate in modelling static behavior of

planar electro-mechanical problems even in the case of extremely distorted meshes

or coarse discretization.

The remainder of the paper is outlined as follows. First, a brief review of a two-

dimensional piezoelectric finite element formulation is presented in Section 2. The

description of the node-based smoothing method for piezoelectric material is derived

in Section 3. Several numerical applications are carried out in Section 4 to assess the

performances of the proposed element. Finally, some concluding remarks are made
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in Section 5.

2 Review of a finite element formulation for 2D piezoelectric

problems

In this section, the principal equations of piezoelectricity and finite element for-

mulation for two-dimensional piezoelectric problems are briefly reviewed. A two-

dimensional piezoelectric problem in domain Ω bounded by Γ is considered.

The mechanical constitutive relation for 2D piezoelectric materials can be expressed

in the e-form as

σ = cEε− eTE, (converse effect) (1)

D = eε + gE, (direct effect) (2)

where σ, ε, D and E are the plane stress tensor, the plane strain tensor, the plane

electric displacement vector and the plane electric field vector, respectively. cE, e

and g are the plane elastic stiffness, piezoelectric and dielectric tensor, respectively.

Equations (1)–(2) can be rewritten in the explicit form in the x− z plane as




σx

σz

τxz


 =




c11 c13 0

c13 c33 0

0 0 c55







εx

εz

γxz




−




0 e31

0 e33

e15 0





 Ex

Ez


 , (3)


 Dx

Dz


 =


 0 0 e15

e31 e33 0







εx

εz

γxz




+


 g11 0

0 g33





 Ex

Ez


 . (4)
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The finite element approximation solution for 2D piezoelectric problems using the

standard linear element can be expressed as

u =

np∑
i=1

Ni
uqi = Nuq, (5)

φ =

np∑
i=1

Ni
φφi = Nφϕ, (6)

where np is the number of nodes of an element; q, ϕ are the nodal displacement and

nodal electric potential vectors and Nu, Nφ are shape function matrices.

The corresponding approximation of the linear strain ε and electric field E are

ε = ∇su =




∂
∂x

0

0 ∂
∂z

∂
∂z

∂
∂x


u = Buq, (7)

E = −∇φ = −Bφϕ, (8)

where

Bi
u =




Ni,x 0

0 Ni,z

Ni,z Ni,x


 , (9)

Bi
φ =


 Ni,x

Ni,z


 . (10)

By using Hamilton’s principle, the piezoelectric dynamic equations of an element can

be obtained as

 Me

uu 0

0 0








q̈

ϕ̈



 +


 Ke

uu Ke
uφ

Ke
uφ Ke

φφ








q

ϕ



 =





F

Q



 , (11)
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in which

Me
uu =

∫

Ω

ρNT
uNudΩ, (12)

Ke
uu =

∫

Ω

BT
ucEBudΩ, (13)

Ke
uφ =

∫

Ω

BT
ueTBφdΩ, (14)

Ke
φφ = −

∫

Ω

BT
φgBφdΩ, (15)

F =

∫

Ω

NT
u fdΩ +

∫

Γσ

NT
u t̄dΓ, (16)

Q =

∫

Γq

NT
φ q̄dΓ. (17)

where f, t̄ are the vectors of mechanical body and surface forces, respectively; q̄ is

the vector of surface charges.

For the static analysis (q̈ = 0), the governing equation of motion (11) is reduced to

 Ke

uuK
e
uφ

Ke
uφK

e
φφ








q

ϕ



 =





F

Q



 . (18)

3 Node-based smoothing approach for piezoelectric finite el-

ement method

3.1 Smoothing technique

Consider a problem domain Ω with a mesh of triangular or quadrilateral elements

numbered from 1 to Ne and nodes numbered from 1 to Nn. The basic idea of the

following development is to associate new elements (smoothing elements) with each of

the nodes of the original mesh. For this process, the problem domain is transformed

into smoothing cells associated with nodes such that Ω = Ω1 ∪ Ω2 ∪ ... ∪ Ωn

and Ωi ∩ Ωj = ∅, i 6= j. A new element (smoothing cell) Ωk associated with a

single node k is termed as the node-based element. These elements are created by

connecting sequentially the mid-side points of edges emanating from node k to the

centroidal points of original elements surrounding node k as shown in Figure 1.

Introducing the smoothing operation of the SCNI, the strain and electric fields over
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Figure 1: Node-based elements: Transformation of an original mesh into smoothing ele-

ments associated with nodes. The dashed lines are formed by connecting midside points

with centroidal points of original elements and serve as new cell (element) boundaries.

the smoothing cell Ωk associated with node k are assumed as follows.

ε̃k(xk) =

∫

Ωk

ε(x)Φk(x− xk)dΩ, (19)

Ẽk(xk) =

∫

Ωk

E(x)Φk(x− xk)dΩ, (20)

where ε, E are respectively the mechanical strain and electric field obtained from

displacement compatibility condition as given in Equations (7) and (8). Φk is a

smoothing function that satisfies the following properties

Φk ≥ 0 and
∫
Ωk ΦkdΩ = 1. (21)

For simplicity, Φk is chosen as a constant function

Φk(x− xk) =





1/Ak x ∈ Ωk,

0 x /∈ Ωk.
(22)

where Ak =
∫

Ωk dΩ is the area of the smoothing cell Ωk as shown in Figure 1.

Substituting Φk into Equation (19)–(20) and applying the divergence theorem, we

obtain a smoothed strain and smoothed electric field in the domain Ωk as follows.

ε̃k(xk) = 1
Ak

∫
Ωk ∇su(x)dΩ = 1

Ak

∫
Γk nk

uu(x)dΓ, (23)

Ẽk(xk) = − 1
Ak

∫
Ωk ∇φ(x)dΩ = − 1

Ak

∫
Γk nk

φφ(x)dΓ, (24)
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where nk
u and nk

φ are matrices associated with unit outward normal to the boundary

Γk,

nk
u =




nk
x 0

0 nk
z

nk
z nk

x


 , nk

φ =


 nk

x

nk
z


 , (25)

and u(x), φ(x) are approximated functions as in Equations (5)–(6).

Introducing the finite element approximation of u and φ into Equations (23) and

(24), the smoothed strains on the smoothing cell Ωk associated with the node k can

be expressed in the following matrix form

ε̃k(xk) =
nk∑
i=1

B̃i
u(x

k)qi, (26)

Ẽk(xk) = −
nk∑
i=1

B̃i
φ(x

k)ϕi, (27)

in which nk is the number of nodes connecting directly to the node k (i.e. nodes

whose shape functions support node k). B̃ui(x
k) and B̃φi(x

k) are smoothed gradient

matrices for u and φ respectively, on the smoothing cell Ωk

B̃i
u(x

k) =
1

Ak

∫

Γk




Nin
k
x 0

0 Nin
k
z

Nin
k
z Nin

k
x


 dΓ, (28)

B̃i
φ(x

k) =
1

Ak

∫

Γk


 Nin

k
x

Nin
k
z


 dΓ. (29)

When a linear completed displacement field along the boundary Γk is used, one

Gauss point is sufficient for accurate boundary integration along each line segment

Γk
i of the contour Γk of Ωk. Therefore, Equations (28)–(29) can be evaluated with

one-point Gauss quadrature integration as follows.

B̃i
u(x

k) =
1

Ak

nb∑

b=1




Ni(x
G
b )nk

x 0

0 Ni(x
G
b )nk

z

Ni(x
G
b )nk

z Ni(x
G
b )nk

x


lkb , (30)

B̃i
φ(x

k) =
1

Ak

nb∑

b=1


 Ni(x

G
b )nk

x

Ni(x
G
b )nk

z


lkb , (31)
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where nb is the total number of the line segments of the contour Γk, xG
b is the

midpoint (Gauss point) of each line segments Γk
b , whose length and outward unit

normal are denoted as lkb and nk, respectively.

Finally, the linear static equation (11) can be rewritten as follows

 K̃k

uu K̃k
uφ

K̃k
uφ K̃k

φφ








u

φ



 =





F

Q



 , (32)

where

K̃k
uu =

nk∑
i=1

B̃iT
u cEB̃i

uA
k, (33)

K̃k
uφ =

nk∑
i=1

B̃iT
u eT B̃i

φA
k, (34)

K̃k
φφ = −

nk∑
i=1

B̃iT
φ gT B̃i

φA
k. (35)

The stiffness matrix K̃ of the system is then assembled in a manner similar to that

in the conventional FEM such as

K̃ =
Nn∑

k=1

K̃k, (36)

where

K̃k =


 K̃k

uu K̃k
uφ

K̃k
uφ K̃k

φφ


 . (37)

It can be seen that only values of shape functions at Gauss points along the edges of

boundary Γk
i are need for evaluating Equations (30)–(31). The details for computing

values of shape functions are presented in the following section.

3.2 Linear shape functions

In this study, a finite element mesh of linear triangular or bilinear quadrilateral

elements is considered. It should be noted that the purpose of introducing midside

9



points and centroidal points is to form the linear compatible contour of the node-

based element and to evaluate the shape functions at the Gauss points. No additional

degrees of freedom are associated with these points and the nodal unknowns are the

same as in the original FEM mesh. Moreover, the derivations of the smoothed

strain and smoothed electric fields of the smoothing cell Ωk associated with node k

transforms the domain integration into line integration along the contour Γk of Ωk.

Therefore, only the shape function values at Gauss points along each edge Γk
i of the

contour Γk are used. Values of shape functions at these points of interest (mid-edge

points and centroidal points) for triangular and quadrilateral element are illustrated

in Figure 2. Note that the shape function values in Figure 2 are denoted in the

format (N1, N2, ..., Nne) where ne is the number of nodes of an element.

Figure 2: Shape function values for a typical linear triangular and bilinear quadrilateral

element.

By using an original mesh of linear triangular or bilinear quadrilateral elements,

a linear compatible displacement field along the boundary Γk of a smoothing cell

(node-based element) is obtained. Only one Gauss point at midside point on each

edge of Γk is required for accurate boundary integration. The shape function values

at the Gauss points (e.g. point c) are shown in Figure 3.

3.3 Implementation procedure

In order to clarify how the node-based smoothing technique is incorporated into a

finite element code, a numerical implementation for the method is briefly presented

as follows.

1. Discretize the domain into triangular or quadrilateral elements and get the
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Figure 3: Detail of a node-based element (smoothing cell) and values of shape functions at

Gauss points (a,b,c,d,e,f,g,h)

matrices of nodes coordinates (coord) and element connections (nodes).

2. Find surrounding cells of each node k and determine the area of each smoothing

cell Ωk associated with node k:

Loop over all nodes, k = 1 to Nn

Loop over all elements, j = 1 to Ne

if (find (k == nodes(j, :))) ≥ 1, add the element j to the list of

surrounding cells and compute the area of the surrounding cell j.

End the loop over all elements.

End the loop over all nodes.

3. Calculate and assemble element stiffness matrices to build the system stiffness

matrix:

Loop over all nodes, k = 1 to Nn

(a) Determine the connecting points of each smoothing cell Ωk associated

with node k.

(b) Calculate the outward unit normal vector nk on each boundary side of

the smoothing cell Ωk.

(c) Evaluate smoothed gradient matrices B̃k
u, B̃k

φ using Equations (30)–

(31).

(d) Compute smoothed element stiffness matrices corresponding to the Ωk

using Equations (33)–(35).

(e) Assemble the contribution of smoothed element stiffness matrices to

form the system stiffness matrix using Equation (36).
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End the loop over all nodes.

4. Assign boundary conditions.

5. Solve the system equation to obtain nodal kinematics.

6. Post-process strains and stresses at points of interest.

4 Numerical results

In this section, several numerical examples are employed to test and assess the perfor-

mance of the node-based smoothing elements as applied to the linear static analysis

of two-dimensional piezoelectric structures. The node-based smoothing piezoelectric

element is termed as NSPE-T3 if based on triangular FE mesh and as NSPE-Q4 if

based on quadrilateral FE mesh.

4.1 Patch testing

Passing the patch test is a sufficient condition for the convergence of a finite element

method. It is an essential check in order to verify that the elements exhibit proper

convergence properties, consistency and stability. In this section, a patch test is used

to verify that the proposed node-based element, NSPE-T3 or NSPE-Q4, has proper

convergence properties. A choice of geometry, mesh and boundary conditions was

adopted from the work of Sze et al. Sze et al. (2004), as shown in Figure 4.

(a) (b)

Figure 4: Typical meshes of the patch test: (a) triangular mesh (NSPE-T3 elements); (b)

quadrilateral mesh (NSPE-Q4 elements).
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The following PZT4 material in Reference Sze et al. (2004) is used for the patch test.

c11 = 139× 103, c33 = 113× 103, c13 = 74.3× 103, c55 = 25.6× 103(N/mm2),

e15 = 13.44× 106, e31 = −6.98× 106, e33 = 13.84× 106 (pC/mm2),

g11 = 6.00× 109, g33 = 5.47× 109 (pC/GV mm).

The prescribed mechanical displacements and electric potentials are applied at the

edges defined by nodes 1, 2, 3 and 4 as follows.

u = s11σ0x, w = s13σ0z, φ = b31σ0z.

where σ0 = 1000 is an arbitrary stress parameter. s11, s13 and b31 are material

constants which can be calculated by the following relation




s11 s13 b31

s13 s33 b33

b31 b33 −f33


 =




c11 c13 e31

c13 c33 e33

e31 e33 −g33




−1

.

Under the boundary conditions described above, the corresponding exact stress σ

and electric displacement D are given as: σx = σ0, σz = τxz = Dx = Dz = 0.

It is found that the obtained results with NSPE-T3 and NSPE-Q4 elements match

well the exact solution as shown in Table 1 and hence the node-based elements

successfully pass the patch test.

Table 1: Results of the patch test.

Results

NSPE-T3 NSPE-Q4 Exact

σx 1000.0000 1000.0000 1000

σz 2.0240× 10−10 −8.6968× 10−14 0

τxz 2.2414× 10−10 −4.1149× 10−13 0

Dx −1.0658× 10−8 −2.2461× 10−10 0

Dz 5.5046× 10−8 1.1983× 10−10 0

4.2 Single-layer piezoelectric strip in shear deformation

In this example, we consider the shear deformation of a 1× 1mm single-layer square

strip polarized in the z−direction. The strip is subjected to a combined loading of
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Figure 5: Piezo-strip subjected to a uniform stress and a voltage.

pressure σ0 in the z direction and an applied voltage V0 as depicted on Figure 5. The

material PZT-5 is used for this problem and its properties are summarized in Table

2.

Table 2: Single-layer piezoelectric material properties, dimensions and other constants.

s11 16.4× 10−6 (mm)2

N d31 −172× 10−9 mm
V

s13 −7.22× 10−6 (mm)2

N d33 −374× 10−9 mm
V

s33 18.8× 10−6 (mm)2

N d15 584× 10−9 mm
V

s55 47.5× 10−6 (mm)2

N g11 1.53105× 10−8 N
V 2

σ0 −5.0 N
mm2 g33 1.505× 10−8 N

V 2

σ1 20.0 N
mm2 V0 1000V

L 1.0mm h 0.5mm

The following mechanical and electrical boundary conditions were applied to the

sides of the strip

φ,z(x,±h) = 0, σz(x,±h) = σ0, τxz(L, z) = 0,

τxz(x,±h) = 0, φ(L, z) = −V0, σx(L, z) = 0,

φ(0, z) = +V0, u(0, z) = 0, w(0, 0) = 0.

The strip is modelled with two types of mesh in this analysis with 8×8 quadrilateral

elements or triangular elements as shown in Figure 6.

The present numerical results are compared with the standard linear triangular piezo-

electric finite element FEM-T3, the cell-based smoothed quadrilateral piezoelectric

element SPQ4 [Nguyen-Van et al. (2008a)] and the exact solutions given by Gaudnzi

and Bathe Gaudnzi and Bathe (1995). Figure 7a and Figure 8a depict the distri-
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Figure 6: Typical meshes of a piezo-strip in shear: (a) triangular mesh (NSPE-T3 ele-

ments); (b) quadrilateral mesh (NSPE-Q4 elements).

bution of the displacements u and w along the bottom edge (z = −h), respectively.

The distribution of the computed electric potential φ along this edge is also demon-

strated in Figure 9a. It is observed that all the computed displacements and electric

potentials for both types of mesh are in excellent agreement with the analytical

solutions.

The relative errors (in log scale) of the displacements and electric potentials are

illustrated on Figure 7b–Figure 9b. It can be seen that the node-based NSPE-

T3 element achieves the best prediction for displacements (both of u and w) when

compared with other numerical solutions. The superior accuracy of the present

node-based elements (NSPE-T3 and NSPE-Q4 elements) over the standard FEM-

T3 element is evident.

4.3 Single-layer piezoelectric strip in bending

The strip with the same material and geometry as in the previous example is con-

sidered but with modified boundary conditions for bending situation. In this case,

a voltage V0 is applied on the top and bottom surfaces together with a linear stress

applied at the right edge as shown in Figure 10.

The following mechanical and electrical boundary conditions are applied to the edges

of the strip

φ(x,±h) = ±V0, σz(x,±h) = 0, τxz(x,±h) = 0,

φ,x(L, z) = 0, σx(L, z) = σ0 + σ1z, τxz(L, z) = 0,

φ,x(0, z) = 0, u(0, z) = 0, w(0, 0) = 0.
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Figure 7: Piezo-strip in shear: Computed and exact u−displacements: (a) Distribution of

u on the edge z = −h; (b) Comparison of the error of u−displacement.

The analytical solution is available for this problem and can be found in Gaudnzi

and Bathe (1995); Ohs and Aluru (2001). Two types of mesh as shown in Figure 6

are used again in the analysis.

Figure 11 illustrates the distribution of displacement u and its relative error along

the right side (x = L) while the vertical displacement w and its relative error along

the bottom edge (z = −h) are shown in Figure 12. The distribution of the computed

electric potentials along the right side (x = L) and its relative error are demonstrated

in Figure 13. Both computed displacements and electric potential match well the

exact solutions for the node-based NSPE-T3 element as well as for the NSPE-Q4 ele-

ment. Again, the node-based element NSPE-T3 demonstrates the best performance
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Figure 8: Piezo-strip in shear: Computed and exact w−displacements: (a) Distribution of

w on the edge z = −h; (b) Comparison of the error of w−displacement.

with respect to displacement fields when compared with the FEM-T3, SPQ4 and

NSPE-Q4 elements as can be seen in the Figure 11b–Figure 12b. For the prediction

of electric potential fields, all elements yield virtually identical results which appear

indistinguishable from each other as can be seen in Figure 13.

4.4 A parallel piezoelectric bimorph beam

The example to be discussed here is the two-layer parallel bimorph beam. It consists

of a cantilever piezoelectric beam made of two PVDF layers of the same thickness
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Figure 9: Piezo-strip in shear: Computed and exact electric potential φ: (a) Distribution

of φ on the edge z = −h; (b) Comparison of the error of electric potential.

ht = hb = H/2 = 0.2 mm and a length of L = 5 mm, with same polarization

orientations as shown in Figure 14. The PVDF material properties are summarized

as follows.

E = 2 GPa, ν = 0.29, e31 = 0.046 C/m2,

e32 = 0.046 C/m2, g11 = 0.1062× 10−9 F/m,

g33 = 0.1062× 10−9 F/m.

For the parallel bimorph configuration, a zero voltage (V = 0) is applied to the

intermediate electrode, while the voltage V = 1 is applied to the bottom and top

faces of the beam. As a result this will generate moments that bend the bimorph.
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Figure 10: Piezo-strip subjected to a linear stress and a voltage.

In this study, the beam is assumed to be in a plane stress state. For an applied

electric field V only, the tip deflection δ of the cantilever parallel bimorph can be

approximated as [ Cambridge (1995)]

δ =
2L2V d31

H2
. (38)

With L = 5 mm and H = 0.4 mm, the approximated value of the tip deflection

calculated from Equation (38) is δ = 1.0206× 10−8 (m).

Table 3: Tip deflections of the bimorph beam and comparison with available literatures

(×10−8 m).

Model
Mesh

15×2 25×2 35×2 50×2

FEM-T3 0.4967 0.6287 0.6785 0.7084

(-30.589%)

PIM – 1.098 – 1.111

(8.856%)

RPIM – – – 1.204

(17.970%)

SPQ4 0.814 0.937 0.978 1.003

(-1.724%)

NSPE-Q4 1.0321 1.0287 1.0275 1.0269

(0.617%)

NSPE-T3 1.0263 1.0276 1.0270 1.0264

(0.568%)

Analytic 1.0206
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Figure 11: Piezo-strip in bending: Computed and exact u−displacements: (a) Distribution

of u on the edge x = L; (b) Comparison of the error of u−displacement.

The beam is analyzed using 15×2, 25×2, 35×2 and 50×2 uniform meshes of NSPE-

T3 and NSPE-Q4 elements. Table 3 presents the obtained tip deflections together

with meshless solutions such as PIM [Liu et al. (2002)] and RPIM [Liu et al. (2003)],

the cell-based smoothed element SPQ4 [Nguyen-Van et al. (2008a)] and the analytic

solution. Note that the values in parentheses are the relative errors compared with

analytic solutions. Numerical results in the Table 3 also indicate that the node-based

element performance, in terms of rate of convergence and accuracy, with respect to

exact solution is excellent.

Figure 15 depicts the relative error on tip deflection for different mesh refinement

on a log scale. It is evident that the present NSPE-T3 element, gives more accurate

20



0 0.2 0.4 0.6 0.8 1
1.5

2

2.5

3

3.5
x 10

−4

x (z= −h) [mm]

D
is

pl
ac

em
en

t w
 [m

m
]

 

 

Exact
FEM−T3 (128 elements)
SPQ4 (64 elements)
NSPE−T3 (81nodes)
NSPE−Q4 (81nodes)

(a)

0 0.2 0.4 0.6 0.8 1
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

x (z= −h) [mm]

R
el

at
iv

e 
er

ro
r 

of
 w

 

 
Exact
FEM−T3 (128 elements)
SPQ4 (64 elements)
NSPE−T3 (81nodes)
NSPE−Q4 (81nodes)

(b)

Figure 12: Piezo-strip in bending: Computed and exact w−displacements: (a) Distribution of w

on the edge z = −h; (b) Comparison of the error of w−displacement.

results than those of other numerical solutions cited here where the displacement

prediction error for the 50 × 2 mesh is only 0.568%. On the whole, all the node-

based element perform similarly well and better than the cell-based SPQ4 element

and the FEM-T3 element.

4.5 A piezoelectric Cook’s membrane

This section deals with a clamped tapered panel with distributed in-plane tip load

F = 1 similar to the well-known Cook’s membrane. The lower surface is subjected
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Figure 13: Piezo-strip in bending: Computed and exact electric potential φ: (a) Distribu-

tion of φ on the edge x = L; (b) Comparison of the error of electric potential.

to a voltage V = 0. The geometry and boundary conditions of the beam are shown

in the Figure 16. The beam is made of PZT4 material as in Section 4.1. The two

typical types of mesh with 8 × 8 quadrilateral elements or triangular elements are

shown in Figure 17.

There is no analytic solution available for this problem. The present results are

compared with the best known values of the displacement, the electric potential, the

first principal stress and the electric flux density at node A, B, C according to Long

et al. (2006). They are summarized as follows.

wA = 2.109× 10−4mm,φA = 1.732× 10−8GV,

σ1B = 0.21613N/mm2, DC = 22.409pC/mm2.
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Figure 14: Two-layer parallel bimorph cantilever beam.
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Figure 15: Convergence behaviour of tip deflection.

Table 4 presents the obtained results with mesh refinement and relative error (values

in parentheses) when compared with the best known values of Long et al. (2006). It

can be seen that with a mesh of 24×24, all the results of node-based elements achieve

better accuracy (relative error within 2%) than those of the FEM-T3 element.

Figure 18a displays the magnitude of the relative error of vertical displacement wA

at point A with various meshes. The accuracy of the node-based element is again

found to be better than the SPQ4 and FEM-T3 elements.

Figure 18b depicts the magnitude of the relative error of electric potential φA at

point A. Again, the node-based elements is superior to the FEM-T3 elements. It is

found that the cell-based SPQ4 element performs slightly better than the node-based

elements in this case.

Figure 19 presents the magnitude of relative errors of the first principle stress σ1B

at point B and the electric flux density DC at point C. Again, all the node-based

elements perform similarly well and achieve better results than those of SPQ4 and

FEM-T3 elements.
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Figure 16: Piezoelectric Cook’s membrane.
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Figure 17: Typical meshes of a piezoelectric Cook’s membrane: (a) triangular mesh (NSPE-

T3 elements); (b) quadrilateral mesh (NSPE-Q4 elements).

4.6 A double bimorph optical micro-scanner

An optical micro-scanner is usually composed of an adjustable mirror that is used

to reflect light beams. It has a large variety of applications such as optical scanning,

display devices, printer or barcode scanning. This section concerns the modelling

of a simple micro-scanner, as depicted in Figure 20. The device is composed of

two parallel bimorphs connected by a mirror at their tip center. When a voltage is

applied, the bimorphs deflect in opposite directions. This bending moves the edges

of the mirror up and down, rotating the mirror with an tilt angle β. The angle of

rotation β is larger than the angle at the tip of each bending bimorphs, owing to the

mechanical amplification that is achieved in this MEMS device. The direction of the

reflected light, therefore, can be changed under different applied voltages.
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Table 4: Computed results of piezoelectric membrane and relative error percentage.

Mesh wA × 10−4(mm) φA × 10−8(GV ) σ1B(N/mm2) DC(pC/mm2)

NSPE-Q4 4× 4 2.2414 2.2294 2.1982E-01 1.8898E+01

8× 8 2.1568 1.9565 2.1423E-01 2.1548E+01

16× 16 2.1204 1.8109 2.1476E-01 2.2133E+01

24× 24 2.1137 1.7680 2.1512E-01 2.2179E+01

(0.223%) (2.078%) (-0.453%) (-1.026%)

NSPE-T3 4× 4 2.2630 2.4646 3.8899E-01 3.2448E+01

8× 8 2.1688 1.9597 2.2729E-01 2.4441E+01

16× 16 2.1227 1.8177 2.1904E-01 2.1828E+01

24× 24 2.1156 1.7622 2.1696E-01 2.1944E+01

(0.313%) (1.744%) (0.398%) (-2.075%)

FEM-T3 24× 24 2.0046 1.6213 2.0955E-01 1.8476E+01

(-4.950%) (-6.391%) (-3.031%) (-17.551%)

SPQ4 24× 24 2.1005 1.7033 2.1093E-01 2.0754E+01

(-0.403%) (-1.657%) (-2.392%) (-7.385%)

Long et al. (2006) 2.109 1.732 0.2161 22.409

The two-layer bimorphs are made of PVDF material whose properties are summa-

rized as follows.

c11 = 2.18× 10−3 N
µm2 , c13 = 6.33× 10−4 N

µm2 ,

c33 = 2.18× 10−3 N
µm2 , c55 = 7.75× 10−4 N

µm2 ,

e31 = 4.6× 10−8 N
V µm

, e33 = 4.6× 10−8 N
V µm

,

g11 = 1.062× 10−10 N
V 2 , g33 = 1.062× 10−10 N

V 2 .

The following boundary conditions apply to the bottom layer of the bimorph beam
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Figure 18: Piezoelectric Cook’s membrane: Convergence behaviours: (a) vertical displace-

ment w at point A; (b) electric potential φ at point A.

φ(1)(x,−h) = V0, σ(1)
z (x,−h) = 0, τ (1)

z (x,−h) = 0,

φ(1)(x, 0) = 0, σ(1)
z (x, 0) = σ(2)

z (x, 0),

τ (1)
xz (x, 0) = τ (2)

xz (x, 0),

φ(1)
,x (0, z) = 0, u(1)(0, z) = 0, w(1)(0, z) = 0.

φ(1)
,x (L, z) = 0, σ(1)

x (L, z) = 0, τ (1)
xz (L, z) = 0.

and boundary conditions for the top layer are
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Figure 19: Piezoelectric Cook’s membrane: Convergence behaviours: (a) first principle

stress σ1B at point B; (b) electric flux density DC at point C.

φ(2)(x, 0) = φ(1)(x, 0), u(2)(x, 0) = u(1)(x, 0),

w(2)(x, 0) = w(1)(x, 0) φ(2)(x, h) = V0,

σ(2)
z (x, h) = 0, τ (2)

xz (x, h) = 0,

φ(2)
,x (0, z) = 0, u(2)(0, z) = 0, w(2)(0, z) = 0,

φ(2)
,x (L, z) = 0, σ(2)

x (L, z) = 0, τ (2)
xz (L, z) = 0.

Referring to Figure 20, each bimorphs have a length L = 10µm and a height 2h =

1µm. The length of the mirror is λ = 1µm. For sufficiently small rotations, β can
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Figure 20: A bimorph optical micro-scanner MEMS device.

be approximated as

β =
2δ

λ
. (39)

A 80 × 2 uniform mesh with node-based elements (NSPE-T3, NSPE-Q4), the cell-

based element (SPQ4) and the FEM-T3 is used to analyse the problem. The tip

displacements of the bimorph are calculated for several applied voltage and shown

in the Table 5. All the results are compared with the meshless PCM solution [Ohs

and Aluru (2001)].

Table 5: Tip deflection of the bimorph beam of the micro-scaner MEMS device.

Applied voltage FEM-T3 SPQ4 NSPE-Q4 NSPE-T3 Meshless PCM

1.00 4.3765E-03 5.1194E-03 4.7828E-03 4.9138E-03 4.9360E-03

2.00 8.7529E-03 1.0239E-02 9.5656E-03 9.8276E-03 9.8720E-03

5.00 2.1882E-02 2.5597E-02 2.3914E-02 2.4569E-02 2.4681E-02

10.00 4.3765E-02 5.1194E-02 4.7828E-02 4.9138E-02 4.9362E-02

15.00 6.5647E-02 7.6791E-02 7.1742E-02 7.3707E-02 7.4043E-02

20.00 8.7529E-02 1.0239E-01 9.5656E-02 9.8276E-02 9.8724E-02

25.00 1.0941E-01 1.2798E-01 1.1957E-01 1.2285E-01 1.2341E-01

50.00 2.1882E-01 2.5597E-01 2.3914E-01 2.4569E-01 2.4681E-01

From the tip displacements, the tilt angles of the mirror are determined from Equa-

tion (39). The tilt angles that vary linearly with applied voltages as expected are

shown on Figure 21. It can be seen that the results obtained from node-based and

cell-based elements are in closer agreement with the meshless PCM solution than

FEM-T3 solutions. It is interesting to note that the result of NSPE-T3 element
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Figure 21: Behaviour of the mirror tilt angle under applied voltages.

compares very favorably with the meshless PCM solution but the computational

cost is lower.

4.7 An infinite piezoelectric plate with a circular hole

The last problem considered in this section is that of a piezoelectric plate with

a central circular cavity subjected to a uniform uniaxial far-field stress σ∞ in the

z−direction as shown in Figure 22. This example is used to show the efficiency of

the proposed node-based elements in predicting stresses in a stress concentration

problem.

Figure 22: An infinite piezo-plate with a circular hole subjected to the far field stress.

The material is PZT-4 ceramic and its mechanical and piezoelectric elastic constants

are as follows.

c11 = 12.6× 1010, c33 = 11.5× 1010, c12 = 7.78× 1010,

c13 = 7.43× 1010, c55 = 2.56× 1010(N/m2),
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e15 = 12.7, e31 = −5.2, e33 = 15.1 (C/m2),

g11 = 6.463× 10−9, g33 = 5.611× 10−9 (F/m).

Owing to symmetric conditions of the geometry and the loading case, only one

quadrant of the problem needs to be modeled. According to Saint-Venant’s principle,

stress disturbance due to the hole extends no more than a few diameters from the

hole. Thus, it is reasonable to use a 10a by 10a domain to model one quadrant of the

problem domain. In the analysis, the hole radius a is taken to be 1 and the applied

stress σ∞ = 10. Two types of mesh used in the calculation are shown in Figure 23.
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Figure 23: Typical meshes of a quadrant of a piezo-plate with a central circular hole: (a)

triangular mesh (NSPE-T3 elements); (b) quadrilateral mesh (NSPE-Q4 elements).

All numerical results are compared well with the analytical solutions given by Sosa

(1991) as shown in Figures 24 –27.

Figure 24 and Figure 25 describe the distributions of σr and σθ on the line θ = 0,

respectively. It can be seen from Figure 25 that σθ has maximum value at the

intersection of the hole and the x−axis as in Sosa’s theorical results. Obviously, σθ

and σr correspond to the uniaxial stress state at infinity.

The distributions of σr and σθ on the line θ = π/2 are displayed in Figure 26 and

Figure 27. It is observed from Figure 27 that σθ approaches to zero rapidly when r

increases, which indicates there is a stress concentration region near the hole. The

minimum value of σθ, obtained where the circle intersects the z−axis, agrees well

with the theory of piezoelasticity as depicted in Figure 27.
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Figure 24: Distribution of σr along the line θ = 0.
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Figure 25: Distribution of σθ along the line θ = 0.

5 Conclusion

This paper presents a novel node-based smoothing element built on a general trian-

gular or quadrilateral finite element mesh for linear static analysis of planar problems

involving piezoelectric materials. The incorporation of the SCNI technique into the

node-based finite element has several advantages: (1) field gradients are to be com-

puted directly from shape functions themselves (i.e. derivatives of shape functions

are not required) and no limitation is imposed on the shape of elements in the origi-

nal mesh; (2) the transformation of domain integrations into boundary integrations

contributes to the preservation of high accuracy of the method; (3) the method is

straightforward and simple to implement because the constructions of the stiffness

matrices of the node-based elements are very similar to those of the standard FEM.

The reliability, computational efficiency and convergence of the node-based elements

(NSPE-T3 and NSPE-Q4) formulation are demonstrated through various favourable
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Figure 26: Distribution of σr along the line θ = π/2.
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Figure 27: Distribution of σt along the line θ = π/2.

comparisons with other existing elements as well as analytic solutions. It is found

that the node-based elements can provide more accurate prediction of the solution

than those of the cell-based smoothed SPQ4 elements and the standard FEM-T3

elements with the same degrees of freedom and its performance with respect to

analytic solution is excellent even with extreme element distortions. The numerical

results presented herein, also indicate that the NSPE-T3 element (based on triangular

FE meshes), in general, are better in term of accuracy than the NPSE-Q4 element

(based on quadrilateral FE meshes).
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