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Abstract 

In this paper, compact local integrated radial basis function (RBF) stencils (Mai-Duy and Tran-
Cong, 2011) are incorporated into the finite-volume formulation for the discretisation of second-
order differential problems. The unknown field variable and its derivatives are approximated using 
compact integrated RBFs defined on local regions that cover the problem domain. The governing 
equation is integrated over non-overlapping control volumes associated with nodes, and the 
divergence theorem is then applied to convert volume integrals into line integrals. Line integrals are 
evaluated by the middle point rule. The proposed scheme is numerically verified through the 
solution of several test problems including natural convection flows. Numerical results indicate that 
the proposed method outperforms the standard finite volume method. 
 
Keywords: Integrated RBF, Compact local IRBF approximations, Finite volume method, Thermal 
natural convection flows. 

Introduction 

Finite volume methods (FVMs), which conserve mass, momentum and energy over any control 
volume and can work effectively with complex geometry problems, have been widely used in 
computational fluid dynamic (CFD) (Patankar, 1980).  
 
RBFs have been developed as a high order approximator for over twenty years. They can be 
classified into differentiated and integrated RBFs (DRBFs and IRBFs). The latter, in which the 
highest order derivatives are decomposed into a set of RBFs, and the lower-order derivatives and 
the function itself are then calculated by integration, has the ability to avoid the reduction of 
convergence rate caused by differentiation (Mai-Duy and Tran-Cong, 2003). In recent years, 
research effort has been focused on constructing IRBF approximations in local (to obtain sparse 
system matrices) and compact local (to obtain both sparse system matrices and high rates of 
convergence) forms (Mai-Duy and Tran-Cong, 2011). 
 
Global and local IRBFs have been introduced into not only the point collocation formulation, which 
is meshless in nature, but also some other formulations, such as the Galerkin (Ho-Minh et al, 2009), 
moving least square (Ngo-Cong et al, 2012), and subregion collocation (Kansa et al, 2004). In this 
paper, we incorporate compact local IRBFs into the finite volume (subregion collocation) 
formulation to approximate the field variable and its derivatives, where the extra information about 
partial differential equations (PDEs) is included with the help of the integration constants and the 
middle point rule is utilised to evaluate line integrals. The proposed method is numerically verified 



in some test problems governed by Poisson equation and the streamfunction-vorticity formulation. 
The remainder of the paper is organised as follows. The proposed method is presented in Section 2 
and verified in Section 3. Section 4 concludes the paper. 
 
Proposed method 
Consider Poisson equation  
 

 Ω∈∇ xxx ),(=)(2 fu  (1) 
 

 where Tyx ),(=x  is the position vector, Ω  is the domain of interest and f  is a forcing function. 
  
Control volume discretisation 
The problem domain is embedded in Cartesian grid yx nn × . For each interior node ),( ji  (i.e. 

),( ji yx , 11,22 −≤≤−≤≤ yx njni ), we define its associated control volume as shown in Figure 1. 

 

 
Figure 1. A schematic 9-node stencil 

 
 
Integrating (1) over a control volume sΩ  results in  
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The divergence theorem is then employed to convert the volume integral in the left side into surface 
integral  
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 is the outward unit vector normal to the surface sΓ . Making use of the middle point rule, 

equation (3) reduces to 
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where the subscripts nwe ,,  and s  are used to indicate the intersections of the grid lines with the 

east, west, north and south faces of the control volume, respectively; we xxx −∆ =  and sn yyy −∆ = . 

In the case of Dirichlet boundary condition, no special treatment is required. In the case of 
Neumann boundary condition, the field variable is not given and one thus has to define one more 
equation, which can be based on the given Neumann boundary condition and a half control volume, 
to obtain that unknown. 

 
Compact local IRBF approximation 
Consider a 9-node stencil identified by the central node ),( ji . Assume that the stencil is locally 
numbered from left to right and from bottom to top (Figure 1) ( ≡),( ji  node 5). Hereafter, for 

brevity, we will use ),(= kk yxkx  to represent a grid node k  in a local 2D stencil. For the x  

direction, the second derivative of function u  is first decomposed into RBFs  
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iixI x  is the set of RBFs, which are chosen as 

Multiquadric functions (MQ) in this study. The first derivative and the function itself are then 
obtained through integration  
 

 ),()(=
)( ][

1
(1)

][
][

9

1=

yCIw
x

u x
ix

x
i

i

+
∂

∂
∑ x

x
 (6) 

 ),()()(=)( ][
2

][
1

(0)
][

][
9

1=

yCyxCIwu xx
ix

x
i

i

++∑ xx  (7) 

 

 where dxII ixix )(=)( (2)
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][ xx ∫ ; and )(][
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2 yC x  are the integration 

constants, which are functions of the variable y. In (5)-(7), the superscript (.) and notation [x] are 
used to denote the associated derivative order and quantity with respect to the x  direction, 
respectively. 
 
For the y  direction, in the same way, one has  
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In this paper, the integration constants are also represented using IRBFs, which are based on a local 
grid ][ 321 x,x,x  for approximation of )(][

1 yC x  and )(][
2 yC x , and ][ 741 x,x,x  for approximation of 

)(][
1 xC y  and )(][

2 xC y . 
 
The conversion matrix is obtained by collocating (5)-(7) and (8)-(10) at every grid point of the 
stencil  
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where 0� and � are a vector and a matrix of zeros, respectively; ��  and 0� are vectors of length 9; �
�  

and ���  are the RBF coefficient vectors of length 15; �, ℋ
(�), ℋ�(�) are matrices of dimensions 

159× ; �
 and �� are matrices of dimensions 154× ; equations �� = ℋ
(�)�
�  are employed to 

collocate the variable u  over the stencil; equations ℋ
(�)�
� − ℋ�(�)��� = 0 are employed to enforce 
nodal values of u obtained from the integration with respect to x  and y  to be identical; and 
equations �
�
� + ���
� = �̂ are employed to represent values of the PDE (1) at selected nodes 

),,,( 8642 xxxx . Further details can be found in (Mai-Duy and Tran-Cong, 2011). 

 
Solving (11) yields  
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 ! and �� ! are the first and the 
last 15 rows of matrix � !. One can thus calculate values of the first derivatives at an arbitrary 
point on the stencil in the physical space as 
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We employ (13) and (14) to estimate the fluxes in the FV equations, e.g. (4) in the x  direction.  

 
Numerical results 
The solution accuracy is measured using the relative discrete 2L  norm  
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where n  is the number of collocation nodes, and iu  and e
iu  are the computed and exact solutions, 

respectively.  
 
Example 1 
The present method is first verified with  
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where 0.5,0.5 ≤≤− yx . Its exact solution is )(4cos)(4cosh)(2sinh)(2sin=),( yxyxyxue ππ + . The 

calculation is performed with several grid densities 5×5,7×7,…,71×71. We consider 2 types of 
boundary conditions: (i) Dirichlet boundary condition only, and (ii) Dirichlet and Neumann 
boundary conditions. For the latter, Dirichlet boundary conditions are prescribed on 5.0= −x  and 

5.0=x  with 5.05.0 ≤≤− y , while Neumann boundary conditions are specified on 5.0= −y  and 
5.0=y  with 5.05.0 ≤≤− x . 

Figures 2 and 3 display the solution accuracy and matrix condition number in the case of Dirichlet 
and of Dirichlet-Neumann boundary conditions, respectively. Results obtained by the standard 
FVM and local-IRBF FVM are also included for comparison purposes. For both types of boundary 
conditions, compact local IRBF FVM yield similar matrix condition but much better accuracy than 
local-IRBF FVM and standard FVM. 
 

 

 
 

Figure 2. Example 1, Dirichlet boundary condition: Relative L2 errors of the solution u and 
condition numbers of the system matrix against the grid size by local-IRBF FVM, standard 

FVM, and compact-local-IRBF FVM. The rates O(Ne(u)) are 1.86, 1.87, and 2.25, while 
O(Cond) are 2.01, 2.01, and 2.00 by local-IRBF FVM, FVM, and compact-local-IRBF FVM, 

respectively. 



 
 

Figure 3. Example 1, Dirichlet and Neumann boundary conditions: Relative L2 errors of the 
solution u and condition numbers of the system matrix against the grid size by local-IRBF 

FVM, standard FVM, and compact-local-IRBF FVM. The rates O(Ne(u)) are 2.18, 1.92 and 
2.47, while O(Cond) are 1.94, 1.92, and 1.92 by local-IRBF FVM, standard FVM, and 

compact-local-IRBF FVM, respectively. 
 

Thermally Driven Cavity Flow Problem 
The thermally driven square cavity flow (Figure 4) is one of several benchmark test problems, 
which is widely used to verify new numerical schemes.  
 

 
Figure 4. A schematic natural convection flow in a square slot. The problem is described in a 
stationary non-dimensional unit square (0≤ x, y ≤1). The two vertical walls are heated with 

temperature T=1 and T=0, while the horizontal walls are insulated. 
 

The dimensionless governing equations can be written in terms of streamfunction ψ , vorticity ω , 
and temperature T  as  
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 where 
y

u
∂
∂ψ

=  and 
x

v
∂
∂− ψ

= , Ra  is the Rayleigh number, and 0.71=Pr  is the Prandtl number. 

The cavity is stationary, leading to 0=ψ  and 0=/ n∂∂ψ  on the boundaries. We solve (18) with the 
boundary conditions 0=ψ . The vorticity on the walls, which is used to solve (19), is computed as 

22 /= n∂−∂ ψω , where 0=/ n∂∂ψ  is included in 22 / n∂∂ ψ . One needs to integrate (17)-(19) over a 

control volume sΩ . We assume that T  and ω  are constant over the control volume sΩ  and linear 

over the time interval ),( )(1)( kk tt − , where the superscript )(k  is used to indicate the current iteration. 
The time derivative term reduce to  
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 where G  represents quantities T  and ω ; A  is the area of sΩ . 

 
The procedure involves the following steps   

    1.  Solve (18) for ψ  subject to Dirichlet conditions;  
    2.  Compute the velocity components u  and v  and the boundary values for ω ;  
    3.  Solve (17) for T  subject to Dirichlet and Neumann conditions;  
    4.  Solve (19) for ω  subject to Dirichlet conditions;  
    5.  Repeat the above steps until the solution has reached the steady state.  

 
Some important measures associated with this type of flow are   

    • Maximum horizontal velocity maxu  on the vertical mid-plane and its location  

    • Maximum vertical velocity maxv  on the horizontal mid-plane and its location  

    • The average Nusselt number throughout the cavity, which is defined as  
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    • The average Nusselt numbers on the vertical plane at 0=x  (left wall) and at 1/2=x  

(middle cross-section), which are defined by  
 
 ),0,=(=0 yxNuNu  (23) 

 ).1/2,=(=1/2 yxNuNu  (24) 



 A wide range of Ra, ( ),10,,1010 743
… , is considered. The computed solution at the lower and 

nearest value of Ra  is taken as the initial solution, and for the 310=Ra , the fluid is started from 
rest. The obtained results are compared with the benchmark solutions, which are reported by G. De 
Vahl Davis (1983) for 63 1010 ≤≤ Ra , and by P. Le Quere (1991) for 610≥Ra . 
Table 1 presents results obtained by the proposed method and other methods for several values of 
Ra . It can be seen that the present solutions are in better agreement with the benchmark ones than 
those obtained by the Galerkin-RBF approach reported in (Ho-Minh, 2009). Figure 5 displays the 
distribution of the streamfunction, vorticity and temperature over the flow domain. They look 
feasible in comparison with those reported in the literature. 
 
Table 1: Natural convection flow in a square slot: Numerical solutions by compact-local-IRBF 
FVM and some other methods. It is noted that the solutions by Galerkin-RBF are taken at the 

highest densities used. 
 
 Ra Density umax x vmax y  Nu   Nu1/2 Nu0 

 103 11×11 3.678 0.815 3.725 0.178 1.115 1.117 1.110 

 21×21 3.650 0.813 3.698 0.179 1.117 1.118 1.116 
 Galerkin-RBF(a)  - - - - 1.118 1.119 1.117 
 FDM(b)  3.649 0.813 3.697 0.178 1.118 1.118 1.117 

 104 11×11 16.454 0.822 19.865 0.128 2.279 2.275 2.276 

 21×21 16.208 0.823 19.759 0.117 2.253 2.252 2.236 
 31×31 16.191 0.823 19.682 0.119 2.248 2.248 2.242 
 41×41 16.191 0.823 19.663 0.119 2.247 2.246 2.246 
 Galerkin-RBF  - - - - 2.247 2.248 2.244 
 FDM  16.178 0.823 19.617 0.119 2.243 2.243 2.238 

 105 31×31 34.89 0.855 69.93 0.065 4.552 4.547 4.525 

 41×41 34.72 0.855 69.06 0.065 4.528 4.524 4.514 
 51×51 34.67 0.855 68.94 0.066 4.520 4.516 4.520 
 Galerkin-RBF - - - - 4.529 4.530 4.521 
 FDM  34.73 0.855 68.59 0.066 4.519 4.519 4.509 

 106 41×41 64.08 0.8521 225.63 0.0383 8.842 8.816 9.119 

 51×51 64.60 0.8497 225.18 0.0375 8.876 8.856 8.892 
 61×61 64.68 0.8501 223.25 0.0373 8.864 8.855 8.852 
 71×71 64.46 0.8496 222.07 0.0376 8.829 8.809 8.825 
 Galerkin-RBF - - - - 8.864 8.865 8.827 
 FDM 64.63 0.8507 219.36 0.0379 8.800 8.799 8.817 
 Spectral method(c)  64.83 0.850 220.6 0.038 8.825 8.825 - 

 107 71×71 141.251 0.887 713.098 0.022 16.486 16.410 18.005 

 Galerkin-RBF - - - - 16.661 16.661 - 
 Spectral method 148.595 0.879 699.179 0.021 16.523 16.523 - 

(a) [Ho-Minh et al. 2009]  
(b) [Davis, 1983] 
(c) [Quere, 1991] 
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Figure 5. Natural convection flow in a square slot, grid of 71×71: Contour plots for streamline 
(left), vorticity (middle), and temperature (right) . 

 



Concluding remarks 

This paper reports a new discretisation procedure, based on compact local IRBF stencils and 
subregion collocation, for heat transfer and fluid flow problems. The present technique is 
successfully verified in solving Poisson equation and natural convection flow. For Poisson equation, 
the method is superior to the standard FVM regarding both the accuracy and rate of convergence. 
For natural convection flow, a convergent solution is obtained at high values of the Rayleigh 
number and they are in good agreement with the benchmark solutions. However, the use of the 
middle point rule restricts the achievement of a high rate of convergence. Evaluating line integrals 
with a high-order Gauss quadrature rule is currently studied and the obtained results will be 
reported in future work. 
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