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Abstract

In this paper, compact local integrated radial $dsnction (RBF) stencils (Mai-Duy and Tran-
Cong, 2011) are incorporated into the finite-volufoemulation for the discretisation of second-
order differential problems. The unknown field \&dnle and its derivatives are approximated using
compact integrated RBFs defined on local regioas tover the problem domain. The governing
equation is integrated over non-overlapping conwrolumes associated with nodes, and the
divergence theorem is then applied to convert velimtegrals into line integrals. Line integrals are
evaluated by the middle point rule. The proposedes® is numerically verified through the
solution of several test problems including natevection flows. Numerical results indicate that
the proposed method outperforms the standard fioitgme method.

Keywords: Integrated RBF, Compact local IRBF approximatidfigjte volume method, Thermal
natural convection flows.

Introduction

Finite volume methods (FVMSs), which conserve massementum and energy over any control
volume and can work effectively with complex geomeproblems, have been widely used in
computational fluid dynamic (CFD) (Patankar, 1980).

RBFs have been developed as a high order appraxini@at over twenty years. They can be

classified into differentiated and integrated REBRBFs and IRBFs). The latter, in which the

highest order derivatives are decomposed into afsBBFs, and the lower-order derivatives and
the function itself are then calculated by inteigrat has the ability to avoid the reduction of

convergence rate caused by differentiation (Mai-Cand Tran-Cong, 2003). In recent years,
research effort has been focused on constructiisf- IRpproximations in local (to obtain sparse

system matrices) and compact local (to obtain Isgarse system matrices and high rates of
convergence) forms (Mai-Duy and Tran-Cong, 2011).

Global and local IRBFs have been introduced intioamby the point collocation formulation, which

is meshless in nature, but also some other formunlgtsuch as the Galerkin (Ho-Minh et al, 2009),
moving least square (Ngo-Cong et al, 2012), andegjitin collocation (Kansa et al, 2004). In this
paper, we incorporate compact local IRBFs into fhmete volume (subregion collocation)

formulation to approximate the field variable atglderivatives, where the extra information about
partial differential equations (PDES) is includedhathe help of the integration constants and the
middle point rule is utilised to evaluate line igitals. The proposed method is humerically verified
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in some test problems governed by Poisson equatidnthe streamfunction-vorticity formulation.
The remainder of the paper is organised as folldws. proposed method is presented in Section 2
and verified in Section 3. Section 4 concludespiduger.

Proposed method
Consider Poisson equation

DPu(x) = f(x), xOQ (1)
wherex = (x,y)" is the position vector is the domain of interest anfl is a forcing function.

Control volume discretisation
The problem domain is embedded in Cartesian geidn, . For each interior noddi, j) (i.e.

(%,Y;), 2si<n,-1,2< j<n, -1), we define its associated control volume as shown in Figure 1.
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Figure 1. A schematic 9-node stencil

Integrating (1) over a control volunfe, results in
2 —_
jQSD udQ, = jﬂsf (x, y)dQ.. 2)

The divergence theorem is then employed to conliervolume integral in the left side into surface
integral

jr Ouidr, = jQ f (x,y)dQ., (3)

wherei is the outward unit vector normal to the surfdce Making use of the middle point rule,
equation (3) reduces to



(2] 32, o] (3] (3] e

where the subscripts,w,n and s are used to indicate the intersections of the [yneks with the
east, west, north and south faces of the contrdolnve, respectivelyAx = x, —X, andAy =y, - V.

In the case of Dirichlet boundary condition, no @k treatment is required. In the case of

Neumann boundary condition, the field variable @& given and one thus has to define one more
equation, which can be based on the given Neumauandary condition and a half control volume,

to obtain that unknown.

Compact local IRBF approximation
Consider a 9-node stencil identified by the centradle (i, j) . Assume that the stencil is locally

numbered from left to right and from bottom to tfiigure 1) (i, j) = node 5). Hereafter, for
brevity, we will usex, =(X,,Y,) to represent a grid nodk in a local 2D stencil. For the
direction, the second derivative of functianis first decomposed into RBFs

2000 - 31800, ©)

[ x]i

where {w} is the set of weights; an{i[(z) (x)} is the set of RBFs, which are chosen as

Multiquadric functions (MQ) in this study. The firglerivative and the function itself are then
obtained through integration

2O = S W 0+ ), ©)
0 = Y19, 0+ X () + CL (), @

where 15 (x) = I 12 0dx; 159 (x) = I 155 ()dx; and CP(y) and CL(y) are the integration

constants, which are functions of the variaplén (5)-(7), the superscript (.) and notatiof re
used to denote the associated derivative order cuahtity with respect to thex direction,
respectively.

For they direction, in the same way, one has

9° U(X) ZV\’[ 1. (), (8)
6L(;;X) _ ZV\}' 1.0 (x)+CY (x), 9)

u(x) =Zvv””[‘3i. (x)+yCL () + 2 (x). (10)



In this paper, the integration constants are apoasented using IRBFs, which are based on a local
grid [x,,X,,X,] for approximation ofC*¥(y) and C}Y(y), and[x,,X,,x,] for approximation of

CY(x) andCY (x).

The conversion matrix is obtained by collocating-(® and (8)-(10) at every grid point of the
stencil

w.
= |7 -3 (1) (11)

w0 |

~~
Q> O

X, K,
(54

where0 and0 are a vector and a matrix of zeros, respectivielgnd0 are vectors of length 97,

andw, are the RBF coefficient vectors of length 1“5;7—[,50), }[350) are matrices of dimensions
9x15; K, and X, are matrices of dimensiordx 1®quationsii = }[,SO)W} are employed to
collocate the variable over the stencil; equatioﬂﬁ,ﬁo)w; - }[JEO)W} = (0 are employed to enforce
nodal values olu obtained from the integration with respect xoand y to be identical; and
equationsk, w, + X, w, = é are employed to represent values of the PDE (bkekcted nodes

(X,,X4,Xg,Xg) . Further details can be found in (Mai-Duy and F@ong, 2011).

Solving (11) yields

G-

or wy =C; (&, 0, é&)Tandw, =C;'(1, 0, &)", whereC;! andC;' are the first and the
last 15 rows of matrixXc~1. One can thus calculate values of the first déixiea at an arbitrary
point on the stencil in the physical space as

u — ~

a(x) — 7‘[(1)6 1(/\ 0 é)T, (] 3)
u — ~
—a(X) = .7‘[3(,1)63, 1({2 0 é)T (14)

We employ (13) and (14) to estimate the fluxehaEV equations, e.g. (4) in thedirection.

Numerical results
The solution accuracy is measured using the relatiscreteL, norm

D -y
Ne(u) = 1— (15)
/2wy



where n is the number of collocation nodes, amdand u’ are the computed and exact solutions,
respectively.

Example 1
The present method is first verified with

g_j(l: +g_:/l; = 4(1- 772 )sin(27) sinh(2y) +16(1- 772) cosh(4x) cog(475) (16)

where —0.5< x,y < 0.5. Its exact solution isi°(x, y) = sin(27x) sinh(2y) + cosh(4x) cog47y) . The
calculation is performed with several grid densitex5,7x7,...,71x71. We consider 2 types of
boundary conditions: (i) Dirichlet boundary conditi only, and (ii) Dirichlet and Neumann
boundary conditions. For the latter, Dirichlet bdany conditions are prescribed or=-05 and

x =05 with —05< y< 05, while Neumann boundary conditions are specifiadyo= -05 and
y =05 with —05< x< 05.

Figures 2 and 3 display the solution accuracy aattimcondition number in the case of Dirichlet
and of Dirichlet-Neumann boundary conditions, respely. Results obtained by the standard
FVM and local-IRBF FVM are also included for comigan purposes. For both types of boundary

conditions, compact local IRBF FVM yield similar tria condition but much better accuracy than
local-IRBF FVM and standard FVM.
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Figure 2. Example 1, Dirichlet boundary condition:Relative L, errors of the solutionu and

condition numbers of the system matrix against thgrid size by local-IRBF FVM, standard

FVM, and compact-local-IRBF FVM. The ratesO(Ne(u)) are 1.86, 1.87, and 2.25, while

O(Cond) are 2.01, 2.01, and 2.00 by local-IRBF FVM, FVYMand compact-local-IRBF FVM,
respectively.
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Figure 3. Example 1, Dirichlet and Neumann boundaryconditions: Relativel , errors of the
solution u and condition numbers of the system matrix againghe grid size by local-IRBF
FVM, standard FVM, and compact-local-IRBF FVM. The rates O(Ne(u)) are 2.18, 1.92 and
2.47, whileO(Cond) are 1.94, 1.92, and 1.92 by local-IRBF FVM, starmd FVM, and
compact-local-IRBF FVM, respectively.

Thermally Driven Cavity Flow Problem

The thermally driven square cavity flow (Figure id)one of several benchmark test problems,
which is widely used to verify new numerical scheme
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Figure 4. A schematic natural convection flow in @quare slot. The problem is described in a
stationary non-dimensional unit square (& x, y <1). The two vertical walls are heated with
temperature T=1 and T=0, while the horizontal walls are insulated.

The dimensionless governing equations can be writtderms of streamfunctiog, vorticity «,
and temperatur@ as



aT+ W{a(w) a(vT)) 2T 62T a7

2

—a)— 18
ax ay2 (18)
a_a)+ /@ a(ua))+6(va))_6_T 9° w ., 6 a) (19)
ot Pr{ ox oy ox ox® 6y
_oy _ oy . . a .
where u v andv= —a—, Ra is the Rayleigh number, anfer = 0.71 is the Prandtl number.
y X

The cavity is stationary, leading th =0 and d0¢/on =0 on the boundaries. We solve (18) with the
boundary conditiong/ =0. The vorticity on the walls, which is used to so[19), is computed as
w=-07on*, where dyion =0 is included ind*dn®. One needs to integrate (17)-(19) over a
control volumeQ . We assume thal and « are constant over the control volurt® and linear

over the time interva(t®*™,t*) , where the superscrigk) is used to indicate the current iteration.
The time derivative term reduce to

o A ]
L J,cd0,= 1 2lew-ctv) (20)

whereG represents quantiti€es and«; A is the area of),.

The procedure involves the following steps
1. Solve (18) foyy subject to Dirichlet conditions;

2. Compute the velocity componentsandv and the boundary values far;
3. Solve (17) foil subject to Dirichlet and Neumann conditions;

4. Solve (19) fore subject to Dirichlet conditions;

5. Repeat the above steps until the solutamrbached the steady state.

Some important measures associated with this tiyflevo are
* Maximum horizontal velocity,,, on the vertical mid-plane and its location

» Maximum vertical velocity, ., on the horizontal mid-plane and its location
» The average Nusselt number throughout thé&yavhich is defined as

Nu = ["Nu(x)ex 1)

1 _aT
Nu(x)—J.O (uT Fw jdy (22)

» The average Nusselt numbers on the vertiealepatx =0(left wall) and atx = 1/2
(middle cross-section), which are defined by

Nu, = Nu(x =0,y), (23)
Nu,, = Nu(x=1/2,y). (24)



A wide range ofRa, (10°,10%,...,10"), is considered. The computed solution at the losmet

nearest value oRa is taken as the initial solution, and for tRa =10%, the fluid is started from
rest. The obtained results are compared with tinelbeark solutions, which are reported by G. De
Vahl Davis (1983) foll0’ < Ra<1(®, and by P. Le Quere (1991) f&a>10°.

Table 1 presents results obtained by the proposstiad and other methods for several values of
Ra. It can be seen that the present solutions abetiier agreement with the benchmark ones than
those obtained by the Galerkin-RBF approach reddrtgHo-Minh, 2009). Figure 5 displays the
distribution of the streamfunction, vorticity andmiperature over the flow domain. They look
feasible in comparison with those reported in ttezdture.

Table 1: Natural convection flow in a square slotNumerical solutions by compact-local-IRBF
FVM and some other methods. It is noted that the dotions by Galerkin-RBF are taken at the
highest densities used.

Ra Density Umax X Vimax y NU Nuy/, Nug
103 1ix11 3.678 0.815 3.725 0.178 1.115 1.117 1.110
21x21 3650 0.813 3.698 0.179 1.117 1.118 1.116
Galerkin-RBEY - - - - 1.118  1.119 1.117
FDM® 3.649 0813 3697 0.178 1.118 1.118 1.117
1o¢ 11x11 16.454 0.822 19.865 0.128 2.279 2.275 2.276
21x21 16.208 0.823  19.759 0.117 2253 2.252 2.236
31x31 16.191 0.823 19.682 0.119 2.248 2.248 2.242
41x41 16.191 0.823  19.663 0.119 2.247 2.246 2.246
Galerkin-RBF - - - - 2247  2.248 2.244
FDM 16.178 0.823  19.617 0.119 2.243  2.243 2.238
100 31x31 3489 0.855 69.93 0.065 4.552  4.547 4.525
41x41 3472 0.855 69.06 0.065 4528 4.524 4514
51x51 3467 0.855 6894 0.066 4520 4.516 4.520
Galerkin-RBF - - - - 4.529 4.530 4521
FDM 3473 0.855 6859 0.066 4519 4.519 4.509
16 41x41 64.08 0.8521 22563 0.0383 8.842 8.816 9.119
51x51 64.60 0.8497 225.18 0.0375 8.876 8.856 8.892
61x61 64.68 0.8501 223.25 0.0373 8.864 8.855 8.852
71x71 64.46  0.8496 222.07 0.0376 8.829  8.809 8.825
Galerkin-RBF - - - - 8.864  8.865 8.827
FDM 64.63 0.8507 219.36 0.0379 8.800 8.799 8.817
Spectral methdd 64.83 0.850 220.6 0.038 8.825  8.825 -
10/ 71x71 141.251 0.887  713.098 0.022 16.486 16.4108.005
Galerkin-RBF - - - - 16.661 16.661 -

Spectral method 148.595 0.879 699.179 0.021 16.528.523 -

@ [Ho-Minh et al. 2009]
®)[Davis, 1983]
©)[Quere, 1991]






Concluding remarks

This paper reports a new discretisation procedbased on compact local IRBF stencils and
subregion collocation, for heat transfer and fldidw problems. The present technique is
successfully verified in solving Poisson equatiod aatural convection flow. For Poisson equation,
the method is superior to the standard FVM regagrtioth the accuracy and rate of convergence.
For natural convection flow, a convergent solutiesnobtained at high values of the Rayleigh
number and they are in good agreement with the Hmeark solutions. However, the use of the
middle point rule restricts the achievement of ghhiate of convergence. Evaluating line integrals
with a high-order Gauss quadrature rule is curyestudied and the obtained results will be
reported in future work.
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