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Abstract
In this paper, the potential of the five latest artificial intelligence (AI) predictive techniques, namely multiple linear

regression (MLR), multi-layer perceptron neural network (MLPNN), Bayesian regularized neural network (BRNN),

generalized feed-forward neural networks (GFFNN), extreme gradient boosting (XGBoost), and their ensemble soft

computing models were evaluated to predict of the maximum peak load (PL) and displacement (DP) values resulting from

pull-out tests. For this, 34 samples of the fully cementitious grouted rock bolts were prepared and cast. After conducting

pull-out tests and building a dataset, twenty-four tests were randomly considered as a training dataset, and the remaining

measurements were chosen to test the models’ performance. The input parameters were water-to-grout ratio (%) and curing

time (day), while peak loads and displacement values were the outputs. The results revealed that the ensemble XGBoost

model was superior to the other models. It was because having higher values of R2 (0.989, 0.979) and VAF (99.473,

98.658) and lower values of RMSE (0.0201, 0.0435) were achieved for testing the dataset of PL and DP’ values,

respectively. Besides, sensitivity analysis proved that curing time was the most influential parameter in estimating values of

peak loads and displacements. Also, the results confirmed that the ensemble XGBoost method was positioned to predict the

axial-bearing capacity of the fully cementitious grouted rock bolting system with extreme performance and accuracy.

Eventually, the results of the ensemble XGBoost modeling technique suggested that this novel model was more eco-

nomical, less time-consuming, and less complicated than laboratory activities.
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1 Introduction

In general, excavating underground spaces may decrease

load-bearing capacity in the surrounding rocks or walls and

create a void from moving the displacement rocks into an

excavated cavity (Galvin 2016). This risk of caving must

be permanently or temporarily reinforced by applying

tendons. Among all tendons’ types, rock bolting systems,

categorized as both active and passive reinforcement sys-

tems, are more practical for avoiding further collapsing in

the excavated spaces’ roofs or walls (Cao et al. 2012;

Galvin 2016; Tincelin 1991). In this type of reinforcing

system, rock bolts are generally inserted into a borehole

and drilled into unstable rocks (Blanco Martı́n et al. 2011).

After extending into the unstable zone, they will be

anchored into the stable areas to stabilize the fracture zone
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using a fixture. This mechanism causes transfer of loads

from surrounding rocks with lower tensile strength’s values

to the rock bolts (Ho et al. 2019; Thompson et al. 2012).

Due to the simplicity, availability of materials, easing of

installation in the field, and lower costs, fully grouted rock

bolting system is the most popular of the rock bolting

systems, which is being extensively applied in many fields

of mining, civil, and geotechnical engineering (Blanco

Martı́n et al. 2011; Li 2017; Thenevin et al. 2017; Jodeiri

Shokri et al. 2024). Unlike other ground support tech-

niques, for underground spaces, such as U-shaped steel,

steel mesh, and hydraulic props, which passively resist rock

mass deformation around the tunnel perimeter, this con-

tinuously mechanically coupled (CMC) rock bolt system

actively interacts with the surrounding rocks. The bolts and

grout, typically cement or resin, act as an internal rein-

forcement, creating a composite structure that behaves

more like a solid mass and reduces stress concentrations

around the excavation (Blanco Martı́n et al. 2011; Feng

et al. 2017; Nourizadeh et al. 2023a, b).

Pull-out tests, in which a bolt is grouted into a rock

sample and then steadily pulled out, are generally per-

formed to determine the failure or maximum pull-out

capacity and displacement’s values of a fully grouted rock

bolting system (Che et al. 2020). For several decades, the

pull-out test has been conducted in-situ or laboratory to

study the axial load transfer mechanism resulting from the

fully grouted rock bolts (Aziz et al. 2017; Aziz et al. 2020;

Blanco Martı́n et al. 2011; Che et al. 2020; Chen et al.

2018; Chen et al. 2021; Chen et al. 2019; Entezam et al.

2023; Gregor 2023a, b; Hao et al. 2020; Høien et al. 2021;

Jodeiri Shokri et al. 2023; Kılıc et al. 2002; Li et al. 2016;

Moosavi et al. 2005; Motallebiyan et al. 2023; Nemcik

et al. 2014; Salcher and Bertuzzi 2018; Thenevin et al.

2017; Yu et al. 2022). For instance, Kilic et al. (2002)

conducted 80 laboratory fully grouted pull-out tests to

suggest new empirical relationships between grouting

materials and untensioned fully grouted rock bolts on

basalt blocks. Also, they presented several relationships for

calculating the maximum pull-out capacity capacity based

on different influential factors of grouts, such as the shear

strength, the uniaxial compressive strength (UCS), the

curing time (CT), and considering bolt profile specifica-

tions, such as length, diameter, and the bonding area.

Moosavi et al. (2005) presented some empirical relation-

ships based on confining pressure and a maximum pull-out

capacity of the pull-out test. Blanco Martin et al. (2011)

predicted mechanical behaviors of fully grouted rock bolt

with a new analytical approach. For this, the considered

bolt radius, young modules, and displacement of the free

end of the bolt were considered input parameters. Even-

tually, they developed a closed-form solution for predicting

the load vs. displacement curve resulting from the pull-out

tests. Feng et al. (2017) designed and performed a series of

pull-out tests to find a laboratory solution for interpreting

the mechanical behaviors of rock bolting systems in strata

layers with applying different segmented steel tubes. They

found that the bolt installed in the strata layers was more

durable and stable. Thenvin et al. (2017) provided a com-

prehensive dataset of laboratory pull-out tests considering

various diameters of rebars and types of grouts under

constant radial stiffness or confining pressure boundary

conditions. Che et al. (2020) investigated a series of

comprehensive pull-out tests in resin-forced soft rocks

under various conditions. The discrete element method

(DEM) analyzed the test, considering a new micro-bond

contact model. Chen et al. (2019) developed a new ana-

lytical model based on the ratio of the bolt to grout. Giot

et al. (2019) carried out several in-situ pull-out tests in

claystone for investigating the load transfer mechanism of

fully grouted rock bolts. The bolts were instrumented using

strain gages along their lengths. The results showed an

increasing the axial strains from the head to the far end of

the bolts. Entezam et al. (2023) suggested that the UCS

values of grout and the axial-bearing capacities increased

by replacing a small fly ash content in the grout mixture.

Motallebiyan et al. (2023) found that the ultimate bearing

capacity increased by increasing the ribs spacing. In

another research, Jodeiri Shokri et al. (2023) concluded

that the confinement’s diameter directly impacted on the

maximum peak loads values of pull-out tests in the fully

grouted rock bolting system.

As the literature reviews reveals, measuring the axial

bearing capacity of fully grouted rock bolting systems

through a pull-out test is critical for ensuring their safety,

stability, and overall performance. Indeed, accurate pre-

dictions are a base and pillar of the structural integrity of

various engineering projects, from underground mining to

geotechnical engineering. By accurately forecasting maxi-

mum peak loads (PL) and displacements (DP) values using

machine-learning (ML) methods, researchers and engineers

can identify potential failures in reinforcement systems in

advance, saving time and reducing costs. In addition, pre-

cise predictions contribute to optimizing design parame-

ters, ensuring the efficient use of resources and materials in

various projects. Therefore, the accurate prediction of these

parameters in the pull-out tests is not only essential for the

immediate safety of the structures but also contributes to

the long-term sustainability and resilience of the built

environment.

Moreover, literature reviews revealed that although

some valuable relationships have been suggested for the

investigation of the fully grouted pull-out test, artificial

intelligence (AI) techniques have not been employed yet

for predicting the most influential parameters, including the
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peak load of the test and its’ displacement during the test.

For this purpose, the main objectives of this paper are:

(a) To present and develop the most recent AI tech-

niques, such as multiple linear regression (MLR),

multi-layer perceptron neural network (MLPNN),

Bayesian regularized neural network (BRNN), gen-

eralized feed-forward neural networks (GFFNN),

extreme gradient boosting (XGBoost) and ensemble

soft computing models as powerful tools for inves-

tigating the pull-out test;

(b) To build a dataset in predicting the axial-bearing

capacity of the fully grouted rock bolting system;

(c) To find the effects of the most crucial parameters,

such as CT and water-to-grout ratios (W/G), on the

maximum capacity of the pull-out test.

2 Materials and Methods

2.1 Data measurements

To determine the maximum peak loads and displacements

values of the rock bolt system, 34 fully grouted pull-out

small-scale with various values of water-to-grout ratios

(W/G) and CT, were conducted after preparing the required

samples.

2.2 Designing fully grouted pull-out tests

2.2.1 Required materials

Cementitious grout (Stratabinder HS), 16 mm diameter

rebars, 50 mm diameter and 50 mm long steel pipes, a

casting board base, and a tensile machine attachment, were

chosen as the required materials (Fig. 1). A base with a top

layer of polymethyl methacrylate with 53 mm holes regu-

larly spaced across the base was prepared for casting the

required samples. Also, a medium-density fibreboard

(MDF) with a Melamine laminate overlay was used as the

second layer with 18 mm holes to locate the rebars inside

them (Fig. 1d). Also, an attachment made from a square

steel tube, a steel bolt, and a nut was designed for the

tensile testing machine (Fig. 1e).

2.2.2 Sample preparation

As mentioned before, two independent variables, including

various (W/G) and CT, were considered as input data. The

(W/G) were 30%, 35%, and 40%. After preparing the

grouts, they were carefully cured for 7, 14, 21, and 28 days

(Fig. 2). Figure 3 shows the prepared samples after casting

them on a base.

2.2.3 Pull-out tests

After preparing and casting the required samples, series of

comprehensive pull-out tests were conducted by using a

tensile testing machine made by measure test simulate

(MTS) Insight� electromechanical testing systems at the

University of Southern Queensland (UniSQ). The rate of

the test was 1 (mm/min). It is noteworthy that to better

simulate the actual conditions of the rock bolt system in

underground spaces, the steel pipe acted as the confining

rock, while the grout and rebar together represented the

rock bolt system itself. It means that confining pressure of

the surrounding rocks would be assumed to be as hoop

strength of the pipe. Additionally, the tensile testing

machine will simulate the external forces acting on the

rock bolt by applying a pulling force along its axis. A

general view of pull-out tests and prepared samples were is

shown in Fig. 3.

3 Overview of employed AI techniques

3.1 Artificial neural network

Artificial neural network (ANNs) is one of the AI tech-

niques inspired by the biologic nature of neural networks

(Jodeiri Shokri et al. 2013). ANN dataset includes two

primary datasets: the training dataset, 80% of the dataset,

and the testing dataset, including the rest. ANNs are the

best alternative to other statistical methods, such as MLR

and non-linear (NMLR) regression analyses, so that ANNs

can identify input similarity, improving the indefinite

data’s interpolation. Three following ANNs methods,

including the multi-layer perceptron neural network

(MLPNN), Bayesian regularized neural network (BRNN),

and generalized feed-forward neural network (GFFNN),

were used in this study.

3.1.1 MLPNN

The MLP technique consists of three main layers: the

input, hidden, and output. All data have proceeded in the

form of signals in all layers. Generally, the number of input

neurons is the same as the number of independent vari-

ables, while the output neuron(s) represent the dependent

variable(s). The number of hidden neurons will be deter-

mined based on previous experience knowledge and using

a trial-and-error procedure. An overfitting in the network

might happen when too many hidden neurons are assigned.

It also may result in increasing network processing time.

The general Fig. 4 shows the MLP’s structure. Noteworthy,

MLP simulates the output value by Eq. 1 (Bakhtavar et al.

2021):
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y ¼ fi
Xn

i¼1

wijxj þ bi

 !
ð1Þ

where x and y are the input and output values, respectively.

w signifies the weights, and b denotes the bias values, and

f shows the activation (transfer) function.

3.1.2 BRNN

In 1992, MacKay proposed the Bayesian regularized

algorithm for tackling issues such as finding optimal hid-

den layers in designing ANN structures. He applied

Bayes’s theory to the regularization procedure (Mackey

1992). Indeed, the BRNN is a type of propagation neural

network that integrates the conventional sum of the least-

squares error function as follows (Fig. 5) (Bui 2012):

ED ¼
Xn

i¼1

yi � tið Þ2¼
Xn

i¼1

eið Þ2 ð2Þ

S wð Þ ¼ bED þ aEW ð3Þ

EW ¼
Xm

i¼1

w2
i ð4Þ

where n and t indicate the number of training datasets and

the target value, respectively. a and b are hyperparameters

Fig. 1 The materials, including a stratabinder, b rebars, c steel pipe, d casting board, and e attachment for the tensile machine, have been used

for the required pull-out test

Fig. 2 a and b A view of one of the pull-out samples; c procedure of
casting samples (Nourizadeh et al. 2021)

S. Hosseini et al.

123



(regularization parameters), Ew indicates penalty term

(large penalizer values of the weights), m is the number of

Fig. 3 A view of the pull-out

test

Fig. 4 The general architecture of the MLP model Fig. 5 Topology of the BRNN model
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weights, and S(w) is the performance function of the

network.

3.1.3 GFFNN

GFFNNs are generalizations of MLPNNs in which one or

more layers can be connected. The GFFNN prevents

complexity problems much more considerably than

MLPNN. Outwardly clarifying the issue, MLPNN is usu-

ally trained hundreds of times, further learning epochs.

However, a GAFFNN uses only a few training epochs

(Fig. 6) (Abbaszadeh Shahri and Asheghi 2018).

3.1.4 XGBoost

In 2015, Chen and Guestrin proposed the XGBoost method

to solve the main classification and regression problems

(Chen and Guestrin 2016). This technique enables the

parallel creation of boosting trees efficiently and generates

them simultaneously (Bhattacharya et al. 2020; Duan et al.

2020; Nguyen et al. 2019; Ren 2017; Zhang and Zhan

2017). The XGBoost model employs gradient boosting

(GB) to provide a circumstance under which an objective

function (OF) is comprised. The optimizer of the value of

OF is the core of the XGBoost method, which operates

with each different optimization technique (Nguyen et al.

2019; Duan et al. 2020). The defined OF in the XGBoost

consists of two main elements, i.e., training loss (L) and

regularization (X) (Eq. 5) (Zhao et al. 2023):

OF hð Þ ¼ L hð Þ þ X hð Þ ð5Þ

To measure model performance relevant to the training

dataset, training loss must be determined. The regulariza-

tion term is effectively applied to control the overfitting

problem and deal with its accruing. In this regard, the

system complexity related to boosted trees is investigated

using Eq. 6 (Zhao et al. 2023):

X fð Þ ¼ c � nð Þ þ 1=2k �
Xn

j¼1

x2
j

� �
ð6Þ

In which c is the complexity of each leaf, n stands the

number of leaves, k scales the penalty and xj indicates the

vector of scores on leaves. Notably, the structure score of

XGBoost is the OF formulated as Eqs. 7 and 8 (Zhao et al.

2023):

OF ¼
Xn

j¼1

qþ c � nð Þ ð7Þ

q ¼ Gj � xj

� �
þ 1=2 Hj þ k

� �
x2

j

� �
ð8Þ

where xj and q are independent vectors and best xj for a

presented structure (a quadratic form). Gi and Hi are first

and second derivatives of the MSE loss function,

respectively.

3.2 Ensemble model

This research also incorporated the implementation of

ensemble learning models to predict PL and DP values

resulting from the pull-out test. For this, several base

models (sub-models) were integrated to build an ensemble

learning model. There are four following approaches to

integrate sub-models, such as, (a) simple averaging (SAE),

(b) weighted averaging (WAE), (c) integrated stacking, and

(d) separate stacking ensemble models. Besides, super

learner ensembles can be implemented using bagging and

boosting techniques.

The selection of diverse base models may improve the

ensemble technique’s overall predictive performance. For

this, base models with reliable performance are combined

to provide a better comprehensive analysis. This technique

helps to tackle the limitations of individual models while

allowing the ensemble to boost the collective strengths of

each base model. Among the base models, which have had

a better performance, which higher values of evaluation

criteria can determine, will be chosen. Opting for high-

performance models helps ensure that the ensemble

maintains a high level of accuracy and generalizability

compared to any single model. This process of selecting

Fig. 6 A view of the general GFFNN architecture

S. Hosseini et al.

123



and combining the required base model may reduce the

variance associated with individual models, minimizing the

impact of noisy data points, and mitigate the risk of

overfitting, leading to more stable and consistent predic-

tions. Furthermore, ensemble learning techniques are ver-

satile and can be applied to different data and ML

algorithms, including regression, classification, and

clustering.

3.2.1 Sub-models

Several AI techniques were employed to develop a set of

base models. Each base model had a unique structure or

architecture. These base models were then averaged to

create a final, more robust model. For instance, in devel-

oping an ANN model, n basic MLP model with different

hidden layers, transfer functions, and optimisers can be

presented. These base models were utilized to achieve

averaging values using basic, weighted, integrated, and

separate stacking techniques.

3.2.2 Averaging techniques

3.2.2.1 SAE The SAE technique generated all the results

by averaging the outputs from each sub-model learning

(Fig. 7).

3.2.2.2 WAE In the SAE technique, equal weights were

assigned for each sub-model which can improve the results.

The obtained WAE (Fig. 8) combined results by averaging

the outputs for all base models. Optimization algorithms

can be employed to determine sub-model weight.

3.2.2.3 Stacking ensemble One of the other methods is

stacking ensemble (Fig. 9) to average sub-model results, in

which the meta-learner procedure combines sub-models in

large numbers into an averaged model. This process con-

siderably resulted in having better results. In other words, a

meta-learner model was trained by training basic models

and combining base model predictions. In this paper, two

following stacking ensembles were used for training basic

models: (a) the phrase-integrated stacking ensemble (ISE)

and (b) the separate stacking ensemble (SSE).

3.2.2.4 Super learner The super learner (SL) as an

ensemble technique uses the stacked generalization to

k-fold cross-validation. In addition, this technique is cate-

gorized in the cross-validation ensembles. The k-fold

divides of the datasets are imported into each sub-model,

and then a meta-model is obtained for each base model out-

of-fold outcomes. Figure 10 shows the SL technique. After

dividing the dataset into train and test datasetes, the

training dataset was divided into tenfolds for cross-vali-

dation. Subsequently, k-fold splitting was applied for

evaluating all sub-models, and prediction results obtained

from each model were then recorded.

3.3 Data analysis

3.3.1 Data presentation

A comprehensive statistical analysis was conducted based

on the dataset. Two effective parameters were identified as

model inputs to predict the maximum peak load and dis-

placement values resulting from pull-out tests on fully

cementitious grouted rock bolts. Thirty-four data with

different W/G and CT were measured. Descriptive statis-

tics of inputs and output parameters are given in Table 1.

The W/G values varied between 30 and 40%, while CT

ranged from 7 to 28 days. The measured maximum peak

load and DL values were also 23.65–53.67 kN and

4.98–12.24 mm, respectively. The boxplots of effective

parameters are illustrated in Fig. 11, which indicates that

neither the median nor the equivalence line lies in the

centre of the boxes, and available data are not symmetric.

Notably, the effective parameters had only outlier data for

displacement. The adverse relationships between the vari-

ables and, subsequently, the creation of natural groups in

the dataset, are due to outliers in the data set. Thus, data

investigation for detecting outliers and natural groups

facilitates the development of predictive models by pro-

viding a more homogeneous dataset. Figure 11 shows

Fig. 7 The SAE procedure
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Pearson correlations. As seen, both the W/G and CT neg-

atively affected the displacement values (Fig. 12). Also,

the W/G parameter negatively affected the peak load val-

ues. The violin and histogram plots of effective parameters

are demonstrated in Figs. 13 and 14, respectively.

3.4 Pre-analysis and model evaluation

To facilitate model development for peak load and dis-

placement, the measured data was normalized beforehand.

This normalization simplifies the modeling process. The

normalized data should have been imported into AI models

in the first step. For this, available data were normalized

using the min–max normalized method that changes the

data range to 0 to 1 values based on Eq. 9 (Hosseini et al.

2022c):

Xn ¼
Xm � Xmin

Xmax � Xmin
ð9Þ

where xn signifies the normalized values of x, xmax, xmin
represent the maximum and minimum value of variables,

and xm is the measured value of the variable.

Afterwards, training and testing datasets were randomly

determined. Twenty-four data (80%) were considered for

model training, while the rest (20%) were used for the

testing model. This selection was based on suggestion of

researchers (Hosseini et al. 2022a, b; Wang et al. 2023a; b).

The provided datasets in the normalizing step were then

used in developing the MLPNN, BRNN, GFFNN, and

XGBoost models. In fact, the model parameters were

modified at the point of prediction to obtain the highest

accuracy and performance of the models.

To improve the generalization efficiency of the ANN

models, several hyperparameters were carefully adjusted

during the model training process. For this, K-fold cross-

validation procedure was used to analyse the generalization

efficiency of trained models (Qi et al. 2018). Kohavi (1995)

proposed the ten-fold cross-validation method to provide

an optimized trained model. This method splits training

datasets into tenfolds (subsets), in which one fold is

Fig. 8 Diagram of the WAE-

DE hybrid algorithm

Fig. 9 The stacking ensemble method
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considered for the validation part, and the rest of the folds

are specified for the training part (Lin et al. 2018). Each

training dataset will be repeated ten times to train and

validate the model. Averaging the performances of ten

iterations can be used to calculate the overall performance

of the selected hyperparameters.

In this study, the various AI models were developed, and

their optimal structure was determined by employing

evaluation indices for degree of accuracy and performance.

Fig. 10 Flowchart of the SL technique

Table 1 Descriptive statistics of

effective parameters
Parameter Water per grout Curing time Peak load Displacement

Symbol W/G CT PL DP

Unit % day kN mm

Minimum 30.00 7.00 23.65 4.98

Mean 35.65 17.35 37.98 7.34

Maximum 40.00 28.00 53.67 12.24

Median 36.00 15.00 36.94 6.95

Standard deviation 4.07 7.84 7.65 1.68

Kurtosis - 1.38 - 1.29 - 0.64 1.08

Skewness - 0.39 0.00 0.20 1.18
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In the third step, three evaluation criteria, including

determination coefficient (R-squared), value account for

(VAF), and root mean square of errors (RMSE), were

determined to investigate the efficiency level of the ENN

models (Eqs. 10–12) (Dehghani et al. 2021; Hosseini et al.

2022a, b; Shamsi et al. 2021).

R2 ¼ 1�

Pn

i¼1

ðOi � PiÞ2

Pn

i¼1

ðPi � PiÞ2

0

BB@

1

CCA ð10Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðOi � PiÞ2
s

ð11Þ

VAF ¼ 100 � 1� varðOi � PiÞ
varðOiÞ

	 

ð12Þ

where Oi signify measured value, Pi indicates predicted

value, Pi denotes average of the predicted values; n stands

the number of datasets. Noteworthy, the value of one, zero,

and 100 for R2, RMSE, VAF, respectively indicate a model

with the highest performance and accuracy.

In the next step, the final rating of the model (FRM) and

color intensity system (CIS) were applied to compare and

assess the performance degree of different developed

models. In the FRM procedure, the R2, RMSE, and VAF

values were rated. The highest rate was considered a model

with the highest R2 and VAF values with the lowest RMSE

value. The highest rate depends on the number of obtained

models. For instance, the best model will have a rate of 10

if there are 10 models. To formulate the FRM rating sys-

tem, Eq. 13 was used (Hosseini 2023; Hosseini et al.

2022c).

FRM ¼
X2

i¼1

rR
2

i þ rRMSE
i þ rVAFi

� �
ð13Þ

where ri indicates the rate of evaluation criteria, i stands 1

for train rates of evaluation indicators or 2 for test rates of

evaluation indicators.

4 Results and discussions

Due to the practical applicability and relative ease of

implementation of the SAE algorithm, it was used to create

the ensemble learning structure in this paper. The SAE

method offers several advantages compared to WAE, SE,

and SL. The SAE is a straightforward approach that

quickly integrates diverse base models with minimal

complexity compared to other ensemble techniques. In

addition, its effectiveness reduces variance and improves

overall performance, especially when dealing with a lim-

ited dataset where computational resources or time con-

straints are factors to consider. Also, this technique helps

reduce the risk of overfitting by taking an unweighted

average of the predictions from multiple models. In fact,

this approach ensures that all models are equally weighted

in the ensemble, preventing any model from dominating

the final prediction. Given the constraints and scope of our

study, the SAE could provide a reasonable baseline for

comparison with more advanced ensemble methods. Four

techniques, including MLPNN, GFFNN, BRNN, and

XGBoost, were trained for constructing SAE learning, and

their prediction results were presented in the following

sections.

4.1 Developing multiple regression model

Multiple regression is a statistical model that adjusts the

relationships between the output(s) and the inputs. The

MLR model can be formulated as follows (Entezam et al.

2022; Shakeri et al. 2020) (Jodeiri Shokri et al. 2020):

Fig. 11 Box plot of effective parameters

Fig. 12 Pearson correlation between effective parameters
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Y ¼ c0 þ c1x1 þ c2x2 þ c3x3 þ � � � þ cnxn ð14Þ

Y is the response variable, x is the input variable, c0 is

constant, and c1,c2, …, cn are regression coefficients.

Unlike MLR, Multiple non-linear regression (MNLR) is

a technique to recognize the non-linear relationships

between dependent and independent variables using non-

linear and linear relationships. This paper used SPSS

software V.24 to obtain MLR and MNLR. The same

training and testing datasets were used to create regression

models for developing models. The MLR model revealed

the linear relationship between independent and dependent

variables formulated for maximum peak load and dis-

placement values as Eqs. (15) and (16), respectively.

Moreover, the MNLR model was constructed for the

maximum peak load and displacement values as Eqs. (17)

and (18), respectively. As found, the W/G and CT

parameters were used as predictors, and peak load and

displacement were considered the response parameters.

PL ¼ 88:736� 1:455�W

G

	 

þ 0:064� CTð Þ ð15Þ

DP ¼ 15:174� 0:212�W

G

	 

� 0:015� CTð Þ ð16Þ

PL ¼ �16418999:497þ 5738720:163�
ffiffiffiffiffiffiffiffi
WG

p� �

þ 69:425 � logCT10
� �

� 6:025� 10�13 � eWG
� �

þ 5:558� 10�12 � eCT
� �

� 500442:371�WGð Þ
� 2:27 � CTð Þ

ð17Þ

DP ¼ 14:51� 1:371�
ffiffiffiffiffiffiffiffi
WG

p� �
þ 0:438�

ffiffiffiffiffiffiffi
CT

p� �

� 4:309� 10�18 � eWG
� �

� 1:1794:309� 10�12 � eCT
� �

ð18Þ

4.2 Developing a hybrid MLPNN model

This paper used an ANN to solve the problem due to its

complex nature. The Levenberg–Markvart (LM) was

applied in the system for learning function and training

ANNs. The performance of ANNs was controlled by sev-

eral hyperparameters, such as the number of hidden layers,

the number of neurons in the hidden layers, the type of

transfer (activation) function, and the learning algorithm.

Indeed, the accuracy and results of each ANN depend on

the type and value of the mentioned parameters. These

parameters were set with different values to provide a

Fig. 13 Violin plot of effective parameters, including (W/G), CT, PL, DP
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network with the best possible performance and determine

an optimal ANN architecture in this paper. This process

used a trial-and-error procedure and did not follow any

particular rule. The properties of the developed networks

for predicting peak load are given in Table 2. The ‘‘pure-

lin’’, ‘‘logisg’’, ‘‘tansig’’, and ‘‘radbas’’ were considered as

transfer functions. Furthermore, the total number of hidden

nodes ranged from 12 to 40.

Ten cases were studied, and the results of the MLPNN

with various scenarios were obtained (Table 3). The

optimal structure of MLPNN were chosen based on eval-

uation criteria. The FRM method (Eq. 13) was applied to

rate each R2, RMSE, and VAF of training and testing

procedures. For instance, values of 3.527, 2.343, 2.834,

3.966, 4.638, 3.916, 2.939, 3.943, 4.075, 4.962, 5.303, and

3.808 were calculated for the RMSE indices of testing

dataset for models 1–11, respectively. Subsequently, the

ranks of 9, 12, 11, 5, 3, 7, 10, 6, 4, 2, 1, and 8 were obtained

for mentioned models, respectively. Also, the CIS was

employed to validate the chosen step of the optimal model

Fig. 14 Histogram plot of

effective parameters
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and faster visual selection. Herein, an exclusive color (for

example, red) was assigned to each row. Then, the model

with the highest rate was determined with an intensive red

color in each row. The color with less intensity (lighter

colours) receives the lower rate (weight) of indices. The

results of modeling peak load indicated that model No. 3

with a structure of 2–8–9–1, the transfer function of

‘‘logsig–logsig–tansig–tansig’’ and a total rate of 63 out

from 66 is the first-ranked MLPNN model. As seen in

Table 3, high R2 values of 0.896 and 0.819 for train and

testing proved the capability of the MLPNN model in

predicting peak load values. Figure 15 compared the actual

and predicted values of peak loads using model No. 3.

The ensemble model, a new generation of developed

models, was constructed in the next step. Therefore, the

more accurate models with the highest rates were consid-

ered between others to averaging and developing a new

model with the highest accuracy and performance. Models

2, 3, 7, 9, and 11 were selected with a cumulative rate of

51, 64, 52, 49, and 34, respectively. Furthermore, the

Table 2 Obtained MLPNN models for predicting peak load values

MLPNN Network setting

Number of

hidden

layers

Number of

input nodes

Number of

hidden

nodes

Number of

output

nodes

Network

architecture

Transfer

function of

input layer

Transfer function

of hidden layer

Transfer

function of

output layer

MLPNN1 2 2 12 1 2–5–7–1 purelin logisg–purelin radbas

MLPNN2 2 2 15 1 2–6–9–1 radbas logisg–tansig purelin

MLPNN3 2 2 17 1 2–8–9–1 logsig logsig–tansig tansig

MLPNN4 2 2 18 1 2–8–10–1 tansig radbas–logsig tansig

MLPNN5 2 2 23 1 2–8–15–1 logsig logsig–logisg purelin

MLPNN6 2 2 25 1 2–10–15–1 radbas purelin–logsig purelin

MLPNN7 2 2 27 1 2–12–15–1 logsig tansig–logsig tansig

MLPNN8 2 2 35 1 2–15–20–1 tansig radbas–logsig tansig

MLPNN9 2 2 34 1 2–16–18–1 tansig logsig–tansig tansig

MLPNN10 2 2 36 1 2–16–20–1 purelin purelin–purelin radbas

MLPNN11 2 2 40 1 2–20–20–1 radbas tansig–radbas purelin

Table 3 Obtained evaluation indices and FRM and CIS to detect the optimal topology of MLPNN for peak load prediction

MLPNN 

Model

Train Test Train Rating Test Rating
Cumulative 

Rate
Rank

R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF

MLPNN1 0.624 4.928 62.408 0.688 3.527 68.724 1 1 1 5 8 6 22 10

MLPNN2 0.851 3.509 83.332 0.698 2.343 80.023 8 7 8 6 11 10 50 3

MLPNN3 0.896 2.324 89.556 0.819 2.834 81.818 11 10 11 10 10 11 63 1

MLPNN4 0.697 4.448 69.675 0.676 3.966 52.906 4 3 4 4 5 3 23 9

MLPNN5 0.716 4.347 71.606 0.526 4.638 37.608 6 5 6 1 3 1 22 10

MLPNN6 0.664 4.356 66.36 0.756 3.916 70.766 2 4 2 7 7 7 29 6

MLPNN7 0.823 3.481 82.119 0.822 2.939 74.894 7 8 7 11 9 9 51 2

MLPNN8 0.668 4.536 66.829 0.783 3.943 66.632 3 2 3 9 6 5 28 7

MLPNN9 0.893 2.498 89.306 0.771 4.075 73.049 10 9 10 8 4 8 49 4

MLPNN10 0.704 4.168 70.437 0.567 4.962 52.953 5 6 5 3 2 4 25 8

MLPNN11 0.888 2.291 88.836 0.554 5.303 47.348 9 11 9 2 1 2 34 5
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structures of networks were ‘‘2–6–9–1’’, ‘‘2–8–9–1’’,

‘‘2–12–15–1’’, ‘‘2–16–18–1’’, and ‘‘2–20–20–1’’. The R-

squared values of this model were obtained as 0.959 and

0.939 for training and testing, respectively. It means that

the ensemble model of MLPNN (EMPLPN) could predict

peak load values better than the based models of the

MLPNN technique with higher accuracy.

The mentioned process was repeatedly performed to

predict displacement values as well. Eleven base models

were generated, and the best ones, which could accurately

predict displacement, were selected to construct EMLPNN.

The results are given in Tables 4 and 5. Model No. 10 was

the best, with a total rate of 59 out of 60 and R-squared

values of 0.940 and 0.913 for training and testing datasets.

The predicted and actual displacement values were com-

pared in Fig. 16. Eventually, the ensemble model was run

using averaging models 7, 8, 9, 10, and 11.

4.3 Developing a hybrid BRNN model

This section predicted the peak load and displacement

values using the BRNN technique. It is essential to check

the stopping criteria to obtain the best BRNN model. Since

the system complexity is determined by the number of

hidden neurons in the BRNN model, the modeling process

of BRNN is controlled by determining the number of

hidden nodes as a stopping criterion. The number of hidden

nodes was adjusted based on a range between 2 and 11 to

avoid overfitting and learning issues. Ten BRNN models

were then developed. The performance of models was

evaluated by applying system evaluation indicators

(Eqs. 10–12). The results from BRNN modeling for pre-

dicting peak load and displacement are reported in Tables 6

and 7. The FRM and CIS procedures were used to choose

the optimal architecture of BRNN models. BRNN models

Fig. 15 Correlations of peak load predicted by modeling MLPNN with measured values

Table 4 Obtained MLPNN models for displacement prediction

MLPNN Network setting

Number of

hidden

layers

Number of

input nodes

Number of

hidden

nodes

Number of

output

nodes

Network

architecture

Transfer function

of the input layer

Transfer

function of

hidden layer

Transfer

function of

output layer

MLPNN1 2 2 8 1 2–4–4–1 logisg tansig–logsig tansig

MLPNN2 2 2 11 1 2–4–7–1 tansig tansig–logsig tansig

MLPNN3 2 2 13 1 2–4–9–1 logisg logsig–tansig purelin

MLPNN4 2 2 14 1 2–6–8–1 tansig tansig–logsig logsig

MLPNN5 2 2 17 1 2–7–10–1 tansig tansig–logsig tansig

MLPNN6 2 2 20 1 2–7–13–1 logisg logisg–logsig tansig

MLPNN7 2 2 22 1 2–7–15–1 logisg radbas–logsig tansig

MLPNN8 2 2 24 1 2–9–15–1 radbas tansig–radbas radbas

MLPNN9 2 2 26 1 2–12–14–1 logisg radbas–purelin logsig

MLPNN10 2 2 31 1 2–13–18–1 logisg radbas–radbas logsig

MLPNN11 2 2 35 1 2–15–20–1 purelin logsig–logsig logsig
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nos. 2 and 5 are the best to predict peak load and dis-

placement, with a cumulative rate of 55 and 57 out of 60,

respectively. The structures of optimal models were 2–3–1

and 2–6–1, respectively.

It should be noted that the colours considered for these

models are more intense than other BRNN models. The

comparison between the measured and predicted peak load

and displacement using the best BRNN model is shown in

Figs. 17 and 18, respectively.

In this step, several BRNN models with acceptable ac-

curacy were selected among other models. Their average

was used as the input information of the ensemble model to

develop BRNN (EBRNN) model to predict output with

higher precision. In this regard, all ten-base model of peak

load prediction (Table 6) was used to average results. In

comparison, the BRNN model was averaged for con-

structing the EBRNN predictive model of displacement

using all models except models 1, 2, 6, and 9 (Table 7).

The cumulative calculated rate for models 3, 4, 5, 8, 9, and

10 were 36, 34, 57, 41, 24 and 31, respectively.

4.4 Developing a hybrid GFFNN model

After splitting the database into training and testing data-

sets and normalising, ten different GFFNN models with

various learning algorithms, number of hidden nodes, and

transfer functions were developed. As mentioned before,

the GFFNN architecture was designed through a trial-and-

error procedure. Their performance was analyzed using R2,

RMSE, and VAF. The determination of statistical indices

for each developed GFFNN model for predicting peak load

and displacement are presented in Tables 8 and 9,

respectively. Based on the results of peak load prediction

(Table 8), the GFFNN1 is the best model with optimal

Table 5 Obtained evaluation indices and FRM and CIS to detect the optimal topology of MLPNN for displacement prediction

MLPNN 

Model

Train Test Train Rating Test Rating
Cumulativ

e Rate
Rank

R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF

MLPNN1 0.728 0.948 72.762 0.711 0.872 67.789 3 3 3 3 6 4 22 8

MLPNN2 0.669 1.01 63.648 0.795 0.822 77.739 2 2 2 4 7 7 24 7

MLPNN3 0.769 0.803 75.413 0.668 1.466 55.154 4 5 4 2 1 1 17 9

MLPNN4 0.617 1.097 61.223 0.651 1.056 60.923 1 1 1 1 4 3 11 10

MLPNN6 0.811 0.806 76.602 0.876 1.206 58.094 5 4 5 7 2 2 25 6

MLPNN7 0.907 0.467 90.372 0.909 1.076 75.669 8 10 9 9 3 5 44 3

MLPNN8 0.863 0.672 86.279 0.805 0.818 76.952 6 6 7 5 8 6 38 5

MLPNN9 0.921 0.561 90.073 0.895 0.519 87.016 9 7 8 8 9 9 50 2

MLPNN10 0.94 0.47 93.974 0.913 0.276 90.538 10 9 10 10 10 10 59 1

MLPNN11 0.869 0.491 85.683 0.842 1.054 82.222 7 8 6 6 5 8 40 4

Fig. 16 Correlations of displacement predicted by modeling MLPNN with measured values
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architecture, i.e., ‘‘2–2–1’’. Notably, the optimal topology

of the best model yielded the highest R2 (0.913 and 0.924

for training and testing) and VAF (89.50 and 96.81 for

training and testing), and the lowest RMSE values (7.55

and 3.633 for training and testing). Hence, this model was

rated with the highest score, i.e., 60. In addition, the CIS

method colors the calculated values based on the best

values of color intensity from more to less. As seen from

Table 8, the best GFFNN model with high performance

and accuracy was Model No. 1, which was colored with the

highest color intensity (red). Figure 19 demonstrates the

predicted peak load using GFFNN No. 1 compared to the

measured one and these values for each laboratory test.

Ten GFFNN models with various topologies were

trained, and the best model was selected. The results

revealed that the GFFNN model No. 7 presented the

highest accuracy for determining the displacement; there-

fore, the GFFNN7 was chosen as the best model with a

topology of ‘‘2–8–1’’ and a total rate of 57 from 60

(Table 9). As seen, the color (red) of the GFFNN7 model is

Table 6 Obtained evaluation indices and FRM and CIS to detect the optimal topology of BRNN for peak load prediction

Model

BRN

N

Archit

ecture

Train Test Train Rating Test Rating
Cumula

tive 

Rate

R

a

n

k

R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF

BRNN1 2-2-1 0.928 3.668 94.911 0.921 2.143 96.283 9 8 7 6 5 2 37 5

BRNN2 2-3-1 0.923 2.215 98.507 0.982 1.4 98.074 8 10 10 10 10 7 55 1

BRNN3 2-4-1 0.914 3.865 94.373 0.94 1.827 98.72 6 6 6 8 8 9 43 3

BRNN4 2-5-1 0.933 3.954 94.344 0.699 6.304 92.957 10 5 5 1 1 1 23 7

BRNN5 2-6-1 0.901 5.296 90.084 0.909 2.198 98.03 3 4 3 4 4 6 24 6

BRNN6 2-7-1 0.874 6.556 87.268 0.876 2.777 97.288 1 2 2 2 2 4 13
1

0

BRNN7 2-8-1 0.907 2.533 97.667 0.96 1.565 99.123 4 9 9 9 9 10 50 2

BRNN8 2-9-1 0.893 7.165 85.249 0.913 2.017 97.975 2 1 1 5 7 5 21 8

BRNN9
2-10-

1
0.907 5.495 90.743 0.884 2.459 97.129 4 3 4 3 3 3 20 9

BRNN10
2-11-

1
0.918 3.719 95.761 0.936 2.137 98.62 7 7 8 7 6 8 43 3

Table 7 Obtained evaluation indices and FRM and CIS to detect the optimal topology of BRNN for displacement prediction

Model
BRNN 

Architecture

Train Test Train Rating Test Rating
Cumulative 

Rate
Rank

R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF

BRNN1 2-2-1 0.682 6.55 92.932 0.901 1.913 95.753 1 1 1 8 7 4 22 10

BRNN2 2-3-1 0.701 6.44 93.292 0.863 1.507 97.99 2 2 2 3 9 9 27 8

BRNN3 2-4-1 0.929 1.621 99.021 0.923 6.254 91.677 8 7 10 9 1 1 36 3

BRNN4 2-5-1 0.927 3.171 98.182 0.899 2.378 97.01 7 4 8 7 3 5 34 4

BRNN5 2-6-1 0.929 1.236 99.012 0.929 1.03 98.694 8 10 9 10 10 10 57 1

BRNN6 2-7-1 0.915 2.229 98.162 0.896 2.887 95.428 5 6 7 6 2 2 28 7

BRNN7 2-8-1 0.847 4.857 95.833 0.88 1.625 97.823 3 3 3 4 8 8 29 6

BRNN8 2-9-1 0.959 1.592 98.131 0.883 2.177 97.615 10 9 6 5 4 7 41 2

BRNN9 2-10-1 0.906 3.044 97.56 0.844 2.049 95.449 4 5 4 2 6 3 24 9

BRNN10 2-11-1 0.923 1.615 98.06 0.836 2.057 97.36 6 8 5 1 5 6 31 5
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Fig. 17 Correlations of peak load predicted by modeling BRNN with measured values

Fig. 18 Correlations of displacement predicted by modeling BRNN with measured values

Table 8 Obtained evaluation indices and FRM and CIS to detect the optimal topology of GFFNN for peak load prediction

Model
GFFNN 

Architecture

Train Test Train Rating Test Rating

Cumulative 

Rate

R

a

n

k

R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF

GFFNN1 2-2-1 0.913 7.55 89.501 0.924 3.633 96.807 10 10 10 10 10 10 60 1

GFFNN2 2-3-1 0.864 12.486 80.357 0.859 5.331 94.03 8 2 5 9 4 5 33 5

GFFNN3 2-4-1 0.861 8.206 85.995 0.808 4.616 95.814 7 9 8 6 6 7 43 4

GFFNN4 2-5-1 0.721 11.485 71.52 0.677 5.184 92.965 2 4 3 1 5 2 17 9

GFFNN5 2-6-1 0.844 8.434 84.383 0.853 4.346 96.513 6 8 7 8 8 9 46 3

GFFNN6 2-7-1 0.717 14.908 54.664 0.741 6.472 90.673 1 1 1 3 1 1 8
1

0

GFFNN7 2-8-1 0.762 12.089 68.168 0.78 5.787 93.256 3 3 2 5 3 3 19 8

GFFNN8 2-9-1 0.805 9.867 80.361 0.714 4.354 93.851 5 6 6 2 7 4 30 6

GFFNN9 2-10-1 0.871 8.746 86.319 0.829 3.846 96.108 9 7 9 7 9 8 49 2

GFFNN10 2-11-1 0.784 9.879 78.304 0.77 5.864 94.901 4 5 4 4 2 6 25 7
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more intense than that of other base models. Figure 20

illustrates the estimated displacement using GFFNN No. 7

compared to the measured one and these values for each

laboratory test. Similar to BRNN modeling and con-

structing EBRNN, the ensemble GFFNN (EGFFNN)

model was based on averaging GFFNN No. 1, 2, 3, 5, and 9

for peak load prediction and GFFNN No. 2, 7, and 9.

4.5 Developing hybrid XGBoost model

The XGBoost technique is also applied for peak load and

displacement prediction. The modeling process was stop-

ped using the following two factors: maximum tree depth

and rounds. These stopping criteria addressed the XGBoost

model to solve the system’s complexity. Like MLPNN,

BRNN, and GFFNN, the XGBoost also had an overfitting

issue in high numbers of tree depth and the nrounds.

Therefore, the rounds and tree depth criteria were deter-

mined in the range of [50–200] and [1–3], respectively.

The best XGBoost with the optimal number of two stop-

ping criteria was determined based on ‘‘trial-and-error’’.

The results of peak load and displacement are shown in

Tables 10 and 11, respectively. For displacement predic-

tion, adjusting two criteria was performed to yield an

optimal combination of stopping parameters. Based on

Tables 10 and 11, ten XGBoost structures were developed

and evaluated using FRM and CIS techniques. The best

XGBoost model for estimating peak load was Model No. 2,

with a cumulative rate of 60 out of 60, nrounds of 50, and a

maximum tree depth of 2. The R2 values of this model were

obtained as 0.973 and 0.961 for the train and test phases,

respectively. Besides, Model No. 7 was selected as the

optimal XGBoost model for predicting displacement val-

ues. The specifications of this XGBoost model were 100

Table 9 Obtained evaluation indices and FRM and CIS to detect the optimal topology of GFFNN for displacement prediction

Model
GFFNN 

Architecture

Train Test Train Rating Test Rating
Cumulative 

Rate
Rank

R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF

GFFNN1 2-2-1 0.782 6.826 91.009 0.641 6.202 88.733 3 1 1 2 1 1 9 10

GFFNN2 2-3-1 0.815 3.589 95.923 0.819 3.956 95.168 7 10 8 6 9 7 47 3

GFFNN3 2-4-1 0.808 5.115 95.376 0.81 5.367 92.986 6 4 6 5 4 4 29 7

GFFNN4 2-5-1 0.724 6.152 93.593 0.634 4.314 92.701 1 2 2 1 8 3 17 9

GFFNN5 2-6-1 0.787 4.964 95.353 0.853 4.396 96.997 4 6 5 10 7 9 41 4

GFFNN6 2-7-1 0.805 4.299 95.749 0.73 5.964 93.111 5 7 7 4 2 5 30 6

GFFNN7 2-8-1 0.915 3.767 96.954 0.834 3.763 97.443 10 9 10 8 10 10 57 1

GFFNN8 2-9-1 0.865 4.998 93.816 0.819 5.431 94.66 9 5 3 6 3 6 32 5

GFFNN9 2-10-1 0.842 3.971 96.54 0.838 4.606 96.384 8 8 9 9 6 8 48 2

GFFNN10 2-11-1 0.744 6.142 94.21 0.707 4.684 90.965 2 3 4 3 5 2 19 8

Fig. 19 Correlations of peak load predicted by modeling GFFNN with measured values
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Fig. 20 Correlations of displacement predicted by modeling GFFNN with measured values

Table 10 Obtained evaluation indices and FRM and CIS to detect the optimal topology of XGBoost for peak load prediction

Model nrounds
Maximum 

tree depth

Train Test Train Rating Test Rating Cumulative 

Rate
Rank

R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF

XGBoost1 50 1 0.936 0.1465 93.6 0.935 0.0685 95.862 7 9 9 6 6 6 43 4

XGBoost2 50 2 0.973 0.032 96.389 0.961 0.044 96.272 10 10 10 10 10 10 60 1

XGBoost3 50 3 0.914 0.4135 77.19 0.79 0.1955 91.897 2 2 2 1 2 1 10 10

XGBoost4 100 1 0.971 0.3405 81.647 0.838 0.1635 92.939 9 3 3 2 3 3 23 8

XGBoost5 100 2 0.913 0.2605 87.84 0.92 0.1185 95.161 1 5 5 5 4 5 25 6

XGBoost6 100 3 0.934 0.1605 92.891 0.954 0.0555 96.214 5 7 6 9 8 9 44 3

XGBoost7 100 1 0.929 0.3085 86.225 0.894 0.1145 94.626 3 4 4 4 5 4 24 7

XGBoost8 150 2 0.934 0.1605 93.273 0.946 0.0595 96.07 5 7 7 8 7 8 42 5

XGBoost9 150 3 0.931 0.4155 73.106 0.859 0.2045 91.932 4 1 1 3 1 2 12 9

XGBoost10 150 1 0.942 0.1655 93.4 0.945 0.0545 96.036 8 6 8 7 9 7 45 2

Table 11 Obtained evaluation indices and FRM and CIS to detect the optimal topology of XGBoost for displacement prediction

Model nrounds
Maximum 
tree depth

Train Test Train Rating Test Rating Cumulative 
Rate Rank

R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF

XGBoost1 50 1 0.914 0.1075 95.025 0.903 0.069 94.801 3 5 5 2 8 5 28 6

XGBoost2 50 2 0.953 0.0945 95.609 0.932 0.042 96.374 8 6 6 6 9 10 45 3

XGBoost3 50 3 0.929 0.0915 95.671 0.954 0.114 96.252 5 7 7 9 6 9 43 4

XGBoost4 100 1 0.935 0.0845 95.839 0.915 0.119 95.822 6 8 9 5 5 8 41 5

XGBoost5 100 2 0.959 0.0675 95.935 0.936 0.14 95.79 9 9 10 7 4 7 46 2

XGBoost6 100 3 0.936 0.1805 91.84 0.949 0.185 92.002 7 3 2 8 3 2 25 8

XGBoost7 100 1 0.965 0.059 95.809 0.956 0.085 95.666 10 10 8 10 7 6 51 1

XGBoost8 150 2 0.906 0.2045 91.496 0.898 0.194 93.229 2 1 1 1 2 3 10 10

XGBoost9 150 3 0.902 0.1665 93.111 0.914 0.015 94.286 1 4 4 4 10 4 27 7

XGBoost10 150 1 0.917 0.1945 92.062 0.911 0.206 91.557 4 2 3 3 1 1 14 9
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for nrounds and 1 for maximum tree depth. This model

presented the R2 values of 0.965 and 0.957 for training and

testing, respectively. The predicted peak load and dis-

placement values well corresponded to the actual values

using the XGBoost-based model (Figs. 21 and 22). It can

be concluded that the performance of the XGBoost model

was higher than that of the MLPNN, BRNN, and GFFNN

models.

This step focused on generating an ensemble XGBoost

model (EXGBoost) using averaging base models. The peak

load predictive models were analyzed. As a result, models

nos.1, 2, 6, 8, and 10 were selected among other XGBoost-

based models to develop EXGBoost. Besides the

EXGBoost model for modeling and predicting displace-

ment with higher accuracy, models nos. 2, 3, 4, 5, and 7

were averaged.

4.6 Developing hybrid ensemble models

As explained earlier, several base models of AI are aver-

aged and imported into a new system generation to develop

ensemble models. The results of the selected top base

models and their ensemble models are given in Table 12.

The models were rated and colored (purple) based on FRM

and CIS methods. The comparison of measured and pre-

dicted peak load and displacement and their correlation

plot of models are shown in Table 12 and Figs. 23 and 24.

Table 12 provides the performance of various models

used for the predictive analysis. In predicting PL, the best

MLPNN, BRNN, GFFN, XGBoost, EMLPNN, EBRNN,

EXGBoost models demonstrated robust performances,

achieving R2 values of 0.896, 0.923, 0.913, 0.973, 0.959,

0.941, 0.922, and 0.998 during the training phase and

0.819, 0.982, 0.924, 0.961, 0.931, 0.981, 0.94, and 0.989

during the testing phase. The highest values of R2 and the

lowest values of RMSE signified that EXGBoost had the

best performance, leading to its top position with a

cumulative rating of 1. Therefore, the results highlighted

the competitive performances of various models, with

XGBoost and EXGBoost emerging as the top-performing

models, closely followed by the EBRNN and EMLPNN

models. The findings emphasize the effectiveness of these

models in accurate predictive analysis and underline their

potential for practical applications in real-world scenarios.

Also, the best model in predicting DP was EXGBoost,

Fig. 21 Correlations of peak load predicted by modeling XGBoost with measured values

Fig. 22 Correlations of displacement predicted by modeling XGBoost with measured values
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Table 12 Performance indices for best models and their ensemble models

Outp

ut
Model

Structur

e

Train Test Train Rating Test Rating
Cumulati

ve Rate

Ran

kR2 RMS

E
VAF R2 RMS

E
VAF

R
2

RMS

E

VA

F

R
2

RMS

E

VA

F

P
ea

k
 L

o
ad

Best 

MLPNN

2-8-9-1, 

radbas-

logisg-

tansig-

purelin

0.89

6
2.324

89.55

6

0.81

9
2.834

81.81

8
1 3 2 1 4 1 12 7

EMLPN

N

2-7-10-

1, 

logsig-

logsig-

purelin-

tansig

0.95

9
1.609

95.92

7

0.93

1
3.808

83.86

8
6 6 4 3 1 2 22 5

Best 

BRNN
2-3-1

0.92

3
2.215

98.50

7

0.98

2
1.4

98.07

4
4 4 6 7 5 6 32 4

EBRNN 2-7-1
0.94

1
1.998

98.65

4

0.98

1
0.999

98.35

3
5 5 7 6 6 7 36 2

Best 

GFFNN
2-2-1

0.91

3
7.55

89.50

1

0.92

4
3.633

96.80

7
2 1 1 2 2 4 12 7

EGFFN

N
2-6-1

0.92

2
7.011

90.01

5
0.94 3.333

97.12

1
3 2 3 4 3 5 20 6

Best 

XGBoos

t

nrounds 

50, 

Maximu

m tree 

depth 2

0.97

3

0.031

5

96.38

9

0.96

1

0.043

5

96.27

2
7 7 5 5 7 3 34 3

EXGBoo

st

nrounds 

100, 

Maximu

m tree 

depth 3

0.99

8

0.011

9

98.98

4

0.98

9

0.020

1

99.47

3
8 8 8 8 8 8 48 1

D
is

p
la

ce
m

en
t

Best 

MLPNN

2-13-18-

1, 

logisg-

radbas-

radbas-

logsig

0.94 0.47
93.97

4

0.91

3
0.276

90.53

8
5 5 1 3 5 1 20 6

EMLPN

N

2-10-12-

1, 

radbas-

logsig-

radbas-

logsig

0.97

3
0.08

97.27

8

0.93

5
0.208

92.53

3
7 6 4 5 6 2 30 3

Best 

BRNN
2-6-1-

0.92

9
1.236

99.01

2

0.92

9
1.03

98.69

4
2 3 7 4 3 8 27 4

EBRNN 2-5-1-
0.93

5
1.001

98.12

9

0.94

1
0.897

96.99

9
4 4 5 6 4 4 27 4

Best 

GFFNN
2-8-1-

0.91

5
3.767

96.95

4

0.83

4
3.763

97.44

3
1 1 3 1 1 6 13 8

EGFFN

N
2-10-1-

0.93

1
3.654

98.15

5

0.89

9
3.544

97.01

9
3 2 6 2 2 5 20 6

Best 

XGBoos

t

nrounds 

100, 

Maximu

m tree 

depth 1

0.96

5

0.058

5

95.80

9

0.95

6

0.084

5

95.66

6
6 7 2 7 7

3

32 2

EXGBoo

st

nrounds 

150, 

Maximu

m tree 

depth 2

0.98

5

0.029

8

99.48

3

0.97

9

0.043

5

98.65

8
8 8 8 8 8 7 47 1
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which performed best among the developed models

(Figs. 25, 26, 27, 28, 29, 30).

Figure 31 shows the Taylor diagram to compare the

models better. The diagram showed that the EXGBoost

models had the best performance in predicting peak load

and displacement using the available dataset. Notably, the

MLPNN and GFFNN models had the lowest places for

predicting peak load and displacement, respectively.

The ensemble XGBoost model effectively addressed the

challenges associated with peak load and displacement

prediction resulting from pull-out tests of the fully grouted

rock bolts. XGBoost excels in capturing complex non-lin-

ear relationships between input features and the predicted

output, allowing it to effectively model the intricate inter-

actions that influence peak load and displacement. Based

on the results, XGBoost could provide more accurate

Fig. 23 Correlations of peak load predicted by modeling EMLPNN with measured values

Fig. 24 Correlations of displacement predicted by modeling EMLPNN with measured values

Fig. 25 Correlations of peak load predicted by modeling EBRNN with measured values
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predictions than the other traditional linear models. The

XGBoost model seems to enable researchers to identify

and prioritize the most influential factors affecting the

axial-bearing capacity of the fully grouted rock bolting

system. Notably, its ability to manage data with missing

values or outliers ensured that the model could provide

reliable predictions despite data imperfections, enhancing

its practical applicability and reliability in challenging

experimental conditions.

4.7 Sensitivity analysis

Sensitivity analysis techniques, such as the cosine ampli-

tude method (CAM), evaluate the impact of input

Fig. 26 Correlations of displacement predicted by modeling EBRNN with measured values

Fig. 27 Correlations of peak load predicted by modeling EGFFNN with measured values

Fig. 28 Correlations of displacement predicted by modeling EGFFNN with measured values
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parameters or assumptions on the output of a model or

system. This method involves systematically varying

individual input parameters while keeping other factors

constant and measuring the resulting changes in the mod-

el’s output. By applying this method, researchers can

quantify the model’s sensitivity to specific input variations

and identify the parameters that had the most critical

impacts on the model’s behaviors. Through this analysis,

researchers can identify critical parameters that contribute

the most to output variability, allowing for the prioritiza-

tion of resources and efforts toward addressing and opti-

mizing these influential factors. Also, this method

evaluates how sensitive the model is too small or large

fluctuations in input parameters (Jong and Lee 2004), as

follows:

sij ¼

Pm

k¼1

xik � xjk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pm

k¼1

x2ik

	 

�
Pm

k¼1

x2jk

	 
s ð19Þ

where xik and xjk are the input and output parameters,

m denotes the number of datasets.

The histogram of peak load and displacement sensitivity

analysis to inputs parameters are depicted in Fig. 32. The

performed sensitivity analysis revealed that CT has the

most sensitive parameter on both peak load and displace-

ment, whereas W/G shows the least sensitivity in the case

of each two output parameters.

5 Conclusions

This research applied soft computing methods, employing

an ensemble approach to predict the axial-bearing capacity

in fully grouted rock bolting systems. By utilizing an

ensemble model, XGBoost technique, the study suggested

an advanced methodology for improving the predictive

accuracy of the critical parameters, such as maximum pull-

out capacity and displacement values, in mining, civil, and

geotechnical projects. For this purpose, thirty-four fully

grouted rock bolting samples were cast. The required

samples were prepared based on three and four differentW/

G ratios and CT, respectively. To evaluate axial-bearing

capacity of the fully grouted rock bolts, a comprehensive

series of the pull-out tests were conducted to determine the

Fig. 29 Correlations of peak load predicted by modeling EXGBoost with measured values

Fig. 30 Correlations of displacement predicted by modeling EXGBoost with measured values
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maximum peak load capacity and the displacement values.

After conducting the required tests, a database was built

based on two inputs, including W/G ratio and CT, while the

ultimate tensile and displacement values were considered

the output data. Afterwards, different soft computing

methods, including MLPNN, BRNN, GFFNN, and

XGBoost, were applied to predict the axial-bearing

capacity of the fully grouted rock bolting system. For this,

the linear and non-linear relationships were provided by

MLR and MNLMR techniques. Along with regression

analysis, other results taken from ensemble models of

MLPNN, BRNN, GFNN, and XGBoost were compared

using three statistical criteria indexes, including R-squared,

RMSE, and VAF. The results revealed that the developed

ensemble XGBoost model could accurately predict the

peak load and displacement values better than the other

methods, such as MLPNN, BRNN, GFFNN, and multiple

regression. The statistical criteria for ensemble XGBoost in

predicting the peak load values for the training and testing

phases were with R2 = 0.998, 0.989; RMSE = 0.0119,

0.0201; and VAF = 98.984, 99.473, respectively. These

values for the displacement prediction were R2 = 0.985,

0.979, RMSE = 0.0298, 0.0435 and VAF = 99.483, 98.658

for the training and testing phase, correspondingly. Fur-

thermore, sensitivity analysis was performed using the

CAM to determine input parameters’ impact on the peak

load and displacement. Results of the sensitivity analysis

denoted that CT in days is the most impact parameter for

predicting the outputs using this data set. This study

involves some limitations that can be adopted in future

works. One of the primary limitations of this study was the

Fig. 31 Taylor’s diagram for measured and predicted values using all developed models for peak load (left) and displacement (right)

Fig. 32 The importance of effective parameters
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relatively small dataset size, comprising only 34 samples

with two inputs and two outputs. The study’s reliance on a

specific dataset might introduce constraints associated with

the specific conditions under which the data were collected.

However, it is possible to extend the database with other

influential parameters such as the mechanical behaviour of

grouts, types of grouts and confinements, and different

specifications of the bolt’s profile might be added to the

dataset. Indeed, this is the first step in applying such soft

computing methods in this field. Although this paper

includes only laboratory data, other types of data with a

broader range of geological conditions, rock bolt types, and

environmental factors collected from the in-situ measure-

ments can also be added to the database. This would allow

for a more comprehensive understanding of the predictive

capabilities of the ensemble XGBoost model and other

machine-learning techniques in various real-world scenar-

ios. Building on the success of the ensemble XGBoost

model, future studies could explore the integration of

hybrid modeling approaches that combine various ML

techniques with other computational methods, such as

finite element analysis or computational fluid dynamics.

This integration could provide a more holistic and multi-

dimensional perspective on the complex behaviour of fully

grouted rock bolt systems under varying conditions.
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