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Abstract: Accurate flood forecasts are imperative to supervise and prepare for extreme
events to assess the risks and develop proactive prevention strategies. The flood time-
series data exhibit both spatial and temporal structures and make it challenging for the
models to fully capture the embedded features due to their complex stochastic nature.
This paper proposed a new approach for the first time using variational mode decompo-
sition (VMD) hybridized with Gaussian process regression (GPR) to design the VMD-GPR
model for daily flood forecasting. First, the VMD model decomposed the (t - 1) lag into
several signals called intrinsic mode functions (IMFs). The VMD has the ability to improve
noise robustness, better mode separation, reduced mode aliasing, and end effects. Then,
the partial auto-correlation function (PACF) was applied to determine the significant lag
(t - 1). Finally, the PACF-based decomposed IMFs were sent into the GPR to forecast the
daily flood index at (t — 1) for Jeddah and Jazan stations in Saudi Arabia. The long short-
term memory (LSTM) boosted regression tree (BRT) and cascaded forward neural net-
work (CFNN) models were combined with VMD to compare along with the standalone
versions. The proposed VMD-GPR outperformed the comparing model to forecast daily
floods for both stations using a set of performance metrics. The VMD-GPR outperformed
comparing models by achieving R = 0.9825, RMSE = 0.0745, MAE = 0.0088, Ens = 0.9651,
KGE =0.9802, IA =0.9911, Uss% = 0.2065 for Jeddah station, and R =0.9891, RMSE = 0.0945,
MAE =0.0189, Ens = 0.9781, KGE = 0.9849, IA = 0.9945, Uss% = 0.2621 for Jazan station. The
proposed VMD-GPR method efficiently analyzes flood events to forecast in these two sta-
tions to facilitate flood forecasting for disaster mitigation and enable the efficient use of
water resources. The VMD-GPR model can help policymakers in strategic planning flood
management to undertake mandatory risk mitigation measures.
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1. Introduction

Rainfall and floods are increasingly severe natural catastrophes aggravated by cli-
mate change, urbanization, and environmental degradation. The intensity of heavy rain-
fall, driven by global climate warming, significantly affects several areas worldwide, caus-
ing floods, droughts, water quality degradation, and landslides. Flooding and its
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frequencies are happening more often around the globe due to climate change and impact
the greatest number of populations. Floods account for 39% of all natural disasters with
increased economic losses and affect 94 million people annually [1,2]. Saudi Arabia faces
serious challenges due to climate change and global warming, resulting in scarce water
resources and reserves [3,4]. The Saudi Arabian Kingdom has experienced prolonged pe-
riods of drought and flooding due to climate change, which affects the frequency and in-
tensity of extreme weather events such as rainfall [3,5]. Severe floods affected Saudi Ara-
bia between 2008 and 2009, with estimated economic losses of approximately $ 1300 mil-
lion USD [3]. Flood forecasting is crucial and significant to manage and prepare for ex-
treme events and scenarios to assess risks of rainfall and floods for proactive prevention
strategies.

The flood time-series data exhibit both spatial and temporal structures, and data-
driven prediction can be modeled as a sequence problem to exploit spatial and temporal
features. Machine learning models can aptly approximate the embedded nonlinear char-
acteristics of predictors within a system without any a priori knowledge or boundary con-
ditions whilst forecasting the response variable. For example, an operational framework
was designed using machine learning models for real-time flood forecasting [6], which
consists of four subsystems: data validation, stage forecasting, inundation modeling, and
alert distribution. Here, stage forecasting was carried out using the long short-term
memory (LSTM) and the linear models, whereas flood inundation was calculated with the
thresholding and the manifold models. The former determines the inundation extent, and
the latter figures out both inundation extent and depth. The LSTM displayed better per-
formance than the linear model, while the thresholding and manifold models achieved
similar accuracy for modeling inundation extent. The data includes the stream gauge
measurements of the water stage and satellite-derived precipitation utilized in this work.

Another study was conducted in Thailand to forecast flooding with machine learning
methods such as linear regression, neural network regression, Bayesian linear regression,
and boosted decision tree regression [7] with the MIKE11 (i.e., MIKE-NAM) model. The
hybrid model based on MIKE11 and a machine learning technique produced a better
forecast as compared to the single model MIKE11. The Bayesian linear regression showed
improved performance as compared to other methods for runoff forecasting and flood
water levels. Motta de Castro Neto [8] proposed a mixed approach for urban hourly flood
prediction by integrating random forest and GIS for management and resilience planning,
where a risk index was computed using scores and hot spot analysis. The proposed ap-
proach was helpful in using sensible factors and risk indices for the occurrence of floods
at the city level, which could be influential in outlining a long-term strategy for smart
cities. Random Forest with a Matthew’s Correlation Coefficient of 0.77 and an Accuracy
of 0.96 appeared to be the best. The GIS model was adopted to locate areas with a higher
likelihood of being flooded under critical weather conditions. Finally, the predictions ob-
tained from the random forest model and the hot spot analysis were then combined to
create a flood risk index. The data used in this work comprise local weather measurements
and fire department emergency records to classify flood occurrences.

Recently, Rajab, Farman [9] utilized historic climatic records of Bangladesh to fore-
cast flood with polynomial regression, random forest regression, multiple linear regres-
sion, decision tree, k-nearest neighbor, support vector machines, AdaBoost Regressor,
Stacking Regressor, artificial neural network, recurrent neural networks and long short-
term memory (LSTM). The polynomial regression, random forest, and LSTM provided
the highest performance accuracy. The data contains maximum temperature, minimum
temperature, rainfall, relative humidity, wind speed, cloud cover, and brilliant sunshine,
the weather station numbers, latitude, longitude, and altitude to forecast rainfall, flood
water levels, and velocities. Shafizadeh-Moghadam, Valavi [10] designed a novel
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forecasting approach using a combination of machine learning and statistical models for
flood susceptibility mapping in Iran. Several models” artificial neural networks, classifica-
tion and regression trees, flexible discriminant analysis, generalized linear model, gener-
alized additive model, boosted regression trees (BRT), multivariate adaptive regression
splines, and maximum entropy were implemented to construct the ensembles to reduce
the uncertainty. BRT was the most accurate individual model, while Median ensemble
forecasting was the most accurate in the group of ensemble models. Here, the data em-
ployed in this research include slope degree, curvature, elevation, topographic wetness
index (TWI), stream power index (SPI), distance to river, river density, land use, Normal-
ized Difference Vegetation Index (NDVI), rainfall, and lithology to predict flood suscepti-
bility. Flood prediction based on weather parameters using a deep learning model com-
pared with support vector machine (SVM), K-nearest neighbor (KNN), and Naive Bayes
were conducted [11] in Bihar and Orissa, India. The results showed that the deep neural
network can be proficiently used for flood forecasting by achieving the highest accuracy
based on monsoon parameters only before flood occurrence. The datasets include precip-
itation maximum and minimum temperatures for different regions to predict floods. The
flood makes it challenging for the models to fully capture the embedded features and pat-
terns due to its uncertain and complex stochastic nature. Moreover, the “black box” nature
of the machine learning and deep learning models limits their ability to provide reasona-
ble explanations and interpretations during the learning process.

The efficiency of the model in terms of precision is significantly impacted by failing
to capture all the features and information properly. To handle this problem, a multireso-
lution analysis is useful to uncover and present the embedded features within the time-
series data. To abstract the core and fundamental sub-frequencies, sequential decomposi-
tion is more suitable and advantageous [12]. Literature shows that Fourier spectra analysis
[13], discrete wavelet transformation [14-20], Empirical Mode Decomposition (EMD) [21],
Ensemble EMD (EEMD) [22], complete ensemble EMD with adaptive noise (CEEMDAN)
[23] and improved complete ensemble empirical mode decomposition with adaptive
noise (ICEEMDAN) [24] are the frequently adopted methods. However, these methods
suffer from the major issues of decomposing an individual input at a time [25,26] and
require a sequential decomposition [12] to uncover and present the embedded features
within the time-series data in terms of core and fundamental sub-frequencies. To over-
come this problem, the variational mode decomposition (VMD) method is applied as an
adaptive and non-recursive decomposition tool [13]. VMD has the capacity to simultane-
ously decompose the time-series signal and instantaneously resolve the embedded sub-
frequency components (i.e., IMFs) in input predictors without loss of any information. It
is a signal processing technique applied to decompose a complex signal (i.e., time series
data) into a set of band-limited modes, namely intrinsic mode functions (IMFs). It itera-
tively solves a constrained variational problem and aims to find the optimal solution that
minimizes the bandwidth of each mode while ensuring they collectively reproduce the
original signal.

Up until now, a VMD-based hybrid decomposition model to forecast flood scenarios
has never been proposed in Saudi Arabia. The novelty and contribution of this work cen-
tered around the implementation of the signal processing variational mode decomposi-
tion (VMD) method for flood forecasting. By utilizing a proper multiresolution analyzing
scheme, the VMD can simultaneously extract the deep “important” forecast information
from several non-stationary and nonlinear historical data. Another innovation of the cur-
rent work lies in the development of Gaussian process regression (GPR) for flood fore-
casting. This study extends the development and application of the GPR model, which is
a non-parametric probabilistic method for regression problems and offers a more flexible
framework to model flood scenarios and provides uncertainty estimates. This study aims



Water 2025, 17, 1699

4 of 24

to assess the VMD method unified into forecasting models that include GPR, long short-
term memory (LSTM), boosted regression tree (BRT), and cascaded forward neural net-
work (CENN). Incorporating VMD with GPR led to the development of the VMD-GPR
model. The newly established VMD-GPR model is compared against the hybrid versions
VMD-LSTM, VMD-BRT, VMD-CENN, and standalone GPR, LSTM, BRT, and CFNN
models. The proposed VMD-GPR, along with the benchmarking models, were developed
using the data from Jeddah and Jazan stations in Saudi Arabia. The next section of the
paper outlines the material and methods comprising the study area and data description,
followed by model performance evaluation and model development. Then, the next sec-
tions present results, further discussions, and conclusions.

Background

Moreover, the VMD is entirely data-dependent and involves minimal external par-
ticipation during the MRA process [27]. Additionally, the VMD has several other ad-
vantages, including improved noise robustness, better mode separation, and reduced
mode aliasing and end effects, making it a more reliable and versatile signal decomposi-
tion technique. Fu, Li [28] integrated the VMD method with support vector machine
(SVM) and grey wolf optimizer (GWO) to create VMD-SVM-GWO for predicting monthly
evapotranspiration in the Tengger Desert, China. The approach consisted of three sec-
tions, including data pre-processing, parameter optimization, and estimation. The results
demonstrated that the VMD-SVM-GWO method achieved superior computational per-
formance compared to the SVM and hybrid versions of discrete wavelet transform (DWT)
and ensemble empirical mode decomposition (EEMD) using only historical evapotranspi-
ration (ET) data to predict ET. Wang, Liu [29] applied wavelet transformation (WT), VMD,
and back propagation neural network (BP) optimized by differential evolution (DE) to
construct a WT-VMD-DE-BP model for day ahead PM2.5 concentration forecasting. This
approach first uses WT to decompose the PM2.5 data into frequency subsets, then applies
VMD to further decompose these subsets into variational modes. The DE-BP model is then
used to forecast each VMD-based mode, and the aggregated results are used to predict
the original PM2.5 concentrations in Wuhan and Tianjin, China. The proposed WT-VMD-
DE-BP model shows superiority in forecasting PM2.5 concentrations against the bench-
marking BP, DE-BP, WT-DE-BP, VMD-DE-BP, and WT-VMD-DE-BP models.

A new decomposition-optimization-based VMD, Backtracking Search Algorithm
(BSA), and Regularized Extreme Learning Machine (RELM) were designed to forecast
short-term wind speed [30]. Here, the wind speed time-series data is decomposed using
VMD into several modes. The BSA optimization method is employed to search the opti-
mal parameters of the RELM to forecast multi-step wind speed in Sotavento Galicia,
Spain. The results reveal that the proposed model achieves notably better performance
than its rivals (i.e., ARIMA, RBF, GRNN, RELM, VMD-RELM, and BSA-RELM) both on
single- and multi-step forecasting with at least 50% average improvement. Variational
mode decomposition-based low-rank robust kernel extreme learning machine (RMWK)
was created by [31] for solar irradiation forecasting. In this research, the VMD and EMD
methods are used to decompose the solar irradiation time series data. Moreover, to reduce
the computational overhead, the size of the kernel matrix is lowered, and a variable
weighting factor is used for each error residual to achieve robustness. A comparative
study between VMD-RMWK and EMD-RMWK for 15 min ahead prediction in different
weather conditions shows clearly that the hybrid VMD-based robust Morlet Wavelet Ker-
nel outperforms the EMD-based Morlet Wavelet Kernel.
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2. Materials and Methods
2.1. Study Area and Data Description

This research study was conducted in Saudi Arabia, where the data for the selected
stations, Jeddah and Jazan, was acquired from the Department of Meteorology. The re-
quired data includes the rainfall on a daily basis from 1 January 1978 to 30 December 2013.
Jeddah city is stationed on the western shoreline of Saudi Arabia with extremely hot de-
sert and scorched summers, frequently suffering over 40 °C of temperature, and mild win-
ters with 15 °C due to its coastal position. The city of Jeddah is experiencing extreme hu-
midity levels. Jeddah is one of the flash flood-prone cities influenced by heavy rainfall
incidents, mainly driven by rivers and small basins. This city hosts a major port and in-
dustrial zone and links the country to the international markets.

On the other hand, the city of Jazan is in the southwest region of Saudi Arabia and
features a tropical climate. Temperatures in Jazan remain consistently high throughout
the year, accompanied by moderate humidity levels. Summers in Jazan City are hot and
humid, where the temperatures repeatedly rise to 40 °C during the summer seasons. The
monsoon continues from June through September and brings substantial rainfall, causing
sudden heavy flooding in recent times. The city is diverse, comprising diverse coastal
plains, mountains, and valleys with sandy beaches and the Red Sea. Due to its geographic
and diverse position, Jazan is a strategic trading center for the Arabian Peninsula. Figure
1 demonstrates the map of the Jeddah and Jazan stations.
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Figure 1. Geographic position of the stations in Saudi Arabia.
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The acquired dataset includes rainfall at daily time intervals from 1 January 1978 to
30 December 2013. The specific descriptive summary including longitude (°E) =42.551° E,
39.237° E, latitude (°S) = 16.889° N, 21.285° N, elevation = 12 and 40 m, minimum rainfall
= 0, maximum rainfall = 777.7, mean = 0.27, 0.58, standard (Std.) deviation = 9.82, 13.90,
skewness = 75.8, 53.3, and kurtosis = 5934.0, 2962.8 of the data for both Jeddah and Jazan
stations, respectively. The maximum rainfall in both stations is approximately 777.7,
whereas the skewness is positive, indicating that the right tail of the distribution is longer
or heavier than the left tail, suggesting more extremely high values. The kurtosis of the
rainfall data represents Leptokurtic distribution with a high value, implying heavier tails
and the shape of a probability distribution by quantifying its tailedness in terms of thin or
broad. The obtained rainfall datasets have a few missing values. To overcome this issue,
these missing values were replaced with the average record of the previous and the next
data point. The flood index [32] was computed using the daily rainfall data and based on
the onset and severity of the current and antecedent day’s rainfall. Figure 2 shows the time
series graph of the daily flood trends of Jeddah and Jazan stations. There were extreme
flood events during 2013 in both Jeddah and Jazan stations because the FI values were
greater than 2.0.

Jeddah station b

| |

| 1
1984 1990 1996 2002 2008 2013

T T T T T

1

1 1 |

| 1
1984 1990 1996 2002 2008 2013
Years

Figure 2. Time series of daily flood trends in Jeddah and Jazan stations.

2.2. Variational Mode Decomposition (VMD)

The VMD is a non-recursive signal processing method designed by [27] to decom-
pose non-stationary signals adaptively in the form of discrete bandwidth-limited modes
called IMFs. Using the Wiener filtering groups, the VMD employs several filters. Each
mode u,(k=1,2, ..., k) is compacted to a central pulsation w, determined in the decom-
position process, and the bandwidth of a modal function is computed by the following
steps. Firstly, to obtain a unilateral frequency spectrum, the Hilbert transform computes
the related analytic signal of each mode uy. Then, by joining the model’s frequency spec-
trum with an exponential, modified to its own evaluated center frequency, the spectrum
was received into the “baseband”. Then, the bandwidth modal function is projected, and
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the squared L2 norm of the signal gradient is determined by the previous stage. The opti-
mization must be solved to attain the modes and their center frequencies [27] using the

el + ) o]}

(i) s.t. Z we(®) = £(b)

k

below equation.

M

where the function f(t) indicates the t-th data of the predictor variable, {u,2 :=
{uq, o ,ut and {wg} = {wq, .. ... ,wy} denote the set of modes and corresponding center
frequencies. The term §(t) is the unit pulse function; j is an imaginary unit; &, is the par-
tial derivative of a function with respect to time and * represents convolution operation.

The quadratic penalty function a and the Lagrange multiplier 1 are merged to re-
solve the constraint with the augmented Lagrangian structure as follows:
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The modal factors and the central frequencies are drawn by the alternating direction
method of multipliers (ADMM) iterative suboptimization sequence:
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where 7 is the updated parameters of Lagrange multipliers; antt, f(w), U, /T(a,) indi-
cate the Fourier transforms of ull*1(t), f(t), ul(t), and A"(¢t).
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2.3. Gaussian Process Regression (GPR)

GPR is a non-parametric Bayesian method founded on a compelling theoretical back-
ground, handling the nonlinear regression issues even for small data [33-35], and has been
successfully tested over the past years for real-world applications of supervised learning.
The GPR method precisely describes prior probability distributions over latent functions
and is completely explained by mean and covariance [36]. The model output in terms of
posterior GP is determined with a mixed Gaussian likelihood. Suppose D(X,Y) indicates
the n observations of the training data.

X = [vaxgv"'!x;{;]'r (6)
Y= [ylﬂyZI"'vyn]T @)

The observation model is expressed as
y =f(®) + &, &~N(0,07) ®)

where f(x) denotes the latent variable and ¢ is the noise variance. The distribution of
f[f = f(X)] can obtained by:
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f=N(0,C(X,X)) )

Consider f, to be the predicted value of an unobserved point x,. GP prior specifies
that the combination of f and f, follows a joint Gaussian as

C[34,35 C*
p(f.f)=N ([g][CE p ) (10)
where
C.=C(x,X) (11)
C =C(x,x,) (12)

Bayesian inference expresses the posterior distribution of the goal prediction f, con-
ditioned on the training set as

p(f. 1Y) = N(ug,, of) (13)

The mean and standard deviation provided by
up, = C.K~Y (14)
of =C—-CIK™cC, (15)

where I, is the identity matrix of n x n and K = C + dZ1,,.
The covariance function is vital for the GPR’s modeling process. Based on interpre-
tation and adaptability, the squared exponential (SE) function is chosen to define the GPR:

d 2

1 — !

C(x,x") = n’exp [_E (xkl xk) ] (16)
k=1 k

where [ is the length scale and 7? stands for the signal variance. By maximizing the like-
lihood function the hyperparameters @ = {1, [} are calculated:

1 1
£(6) = 3Y"KIY +3log IK] +%log 2m) (17)

2.4. Long Short-Term Memory (LSTM)

LSTM is a modified version of the Recurrent Neural Network (RNN) [37], equipped
with a separate storage unit and a mechanism to control the data stream within the net-
work [37]. LSTM reaches the optimal solution by optimizing the error function using gate
cells and granting neurons to interact with each other [38]. The LSTM model is designed
to capture nonlinear trends in time series data and learn from previous information over
a long time. The standard structure of the LSTM contains three gates: forget, input, and
output [38]. The LSTM learns from the information stored over a long-term period to re-
solve the vanishing gradient issue of RNN. The first layer of the memory gate is in control
of removing redundant information from the cell state, and it is defined as follows:

fe =o0(wp XX, + Y X heey +p) (18)

where f; is the forgetting threshold at time t, wy and Y; are weights, o is the sigmoid
activation function, h,_; is the output value at timet, X, is the input value, and py is the
bias term. The second input gate defines the information that should be placed in the cell
state from the current input set [39]. This comprises decision i, which altered tanh layer
and the value to create a new state value C;. It is expressed as

i =o(w; X X; +Y; X hy_y + D)) 19)
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Ci=0w, xX.+Y, Xh_1+p.) (20)

where i, is the input threshold at time f, w;, w,,Y;,Y denote to the weights, p;,p. are bi-
ased terms. The following expression is used to modify the state of the cell at time t:

Ce=fe X Ce+ i X, (21)
The third layer is defined as output data in the current time step, and it is expressed as
Oy =0(Wy XX, +Y, X hi_y +1,) (22)

where 0, refers to the output threshold at time ¢, then the output value of the cell is de-
fined as

h; = 0; X tanh(C,) (23)

where tanh represents the activation function, and h, refers to the output value of the
cell at time ¢. The data is passed through all three gates, so the important information is
output, and the invalid information is eliminated.

2.5. Boosted Regression Tree (BRT)

The BRT is another non-parametric regression model that integrates boosting and
regression trees [40] and avoids prior information between the input and target [41] to
improve the efficiency of several individual models [42]. The BRT model principally
works on (a) CART regression tree, (b) the formation and integration of a series of models
via the boosting technique. The BRT resolves the obstacle of the single decision trees to
produce the primary tree using training, and the remaining data is employed to build the
subsequent trees [43]. Boosting methods are devoted to improving the regression tree’s
prediction capability. It looks like the model averaging process, except for the boosting
operation in a step-by-step manner to fit the models to a subset of the training set [44].
The effectiveness of the BRT is greatly dependent on two regularization parameters: (i)
the number of additive terms or tress (n;) and (ii) the learning rate (LR). The LR parameter
is employed to decrease the impact of every single tree in the model, which ranges from
0.1-0.0001. The smaller LR value indicates a reduced loss function, but this needs the pres-
ence of additional tress (n;) to the model [45]. The BRT involves the ability to quickly
evaluate the larger dataset and is less susceptible to overfitting [46].

2.6. Cascaded Forward Neural Network (CFNN)

The CFNN model is introduced by [47], which is a variant of a traditional artificial
neural network (ANN) and engages a parallel information processing system containing
input, hidden, and output neuron layers. The structure of CFNN resembles FFNN, except
the input data is attached to each concealed layer behind it through a weight matrix. The
difference rests in the neurons of their hidden layer. A new hidden neuron is included in
these networks at each successive stage. Each new neuron captures information from the
input neurons and all previously hidden neurons exiting beforehand to the input of each
output neuron where the input and output neurons are connected. Apart from the first
hidden layer, all hidden layers in CENN surround at least two weight matrices to regulate
the output signal of the top layer and the input signal of the network. This scheme can
supply more degrees of freedom to the training for increasing the network’s nonlinear
mapping facility. The weight and bias matrix optimization are carried out through the BP
algorithm during training. Its intention is to produce the actual output of the network as
near to the predicted output as possible, as measured by the mean squared error. First,
the no. of hidden layers and neurons must be specified for typical neural networks, and
therefore, reliable detection of optimal design is normally difficult and normally involves
trial and error [48]. In the opening step, cascade networks are trained using input and
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output neurons. Training will finish if the error is acceptable after a predetermined num-
ber of iterations. If not, the model will be re-run at each stage by adding a new neuron
and appropriately training the network to reduce residual error [47]. This process will last
until the error rate falls below the target threshold [49]. The following is the central equa-
tion for CFNN:

N
Outcpny (k) = face <Z[HN(J') X W;(j, k) + 1) x Wi (i, k)] + b(k)> (24)
k=0
where Outcpyy (k) is the output neuron, W;(j, k) and W;(i, k) are the vectors of weights,
b(k) the bias weight, f,.. is the activation function, I(i) is the input value, and HN(j) is
the hidden neuron.

2.7. Model Performance Evaluation Criteria

Evaluating model performance is fundamental during the construction stage, which
implies comparing the forecasts of the models with their actual values employing statisti-
cal metrics to examine how well the proposed model simulates the actual output. This
research utilizes the following metrics to assess the model efficiency in terms of accuracy
along with the comparing models: r (Correlation Coefficient), RMSE (Root Mean Square
Error), MAE (Mean Absolute Error), IA (Willmott's Index of agreement) [50], Ens (Nash-
Scuttle estimator) [51], KGE (Kling-Gupta efficiency) [52], and uncertainty coefficient with
95% confidence level (Uss%). The mathematical formulation of these metrics can be ex-
pressed in the following equations:

N, (Fl_ob,; — FI_ob,) (FI_fc,; — FI_fc,)

T — — (25)
(ENA(FLoby, = FT0Byr )2 TA(FLfe o1 = FTY
1
RMSE = \[ﬁ YN ((FI_ob,; — FI_fc,;)? (26)
N (Fl_ob,; — FI_fc,;)"
JA=1— 1—1( —“%o,l —f 0,1.) > (27)
N \(|FI_ob,; — FI_ob,;| + |FI_ob,; — FI_ob,;|)
1
MAE = 3L |Floby; —FI_fc, (28)
N (FI_ob,; — FI_fcy;)
ENS =1— 1—1( —Yo,i —f 0,1)2 (29)
N ((FI_ob,; — FI_ob,;)
KGE=1—-/(r— 12+ (a— 1%+ (- 1)? (30)
Ussy, = 1.96v/Standard deviation? — RMSE? (31)

where FI_fc,; is the forecasted value of the flood index and FI_ob, is the actual value.
FI_fc,, isthe average of the forecasted results while FI_ob,, is the average of actual val-
ues. The term N indicates the total number of collected data points, and « displays the
relative variability of the forecasted and actual values, whereas f is the ratio between the
forecasted and observed mean values. The correlation coefficient r measure of the strength
and direction of a linear relationship between predicted and observed data, ranging be-
tween -1 and 1, with 1 indicating a perfect positive correlation, —1 a perfect negative cor-
relation, and 0 no correlation. A lower RMSE indicates a better model, with values closer
to 0 signifying more accurate predictions, whereas a lower MAE shows better model per-
formance, with a value of zero representing no error.
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The IA demonstrates the differences between forecasted and computed means and
variances, which reflect sensitivity to outliers in the observation data and insensitivity to
additional and proportional variances between expected and calculated values. The value
of IA ranges from 0 to + 1, with + 1 being the ideal value. The Exs is used to compare model
performance (range from —e° to +1), and its best value is 1. Regarding this metric, the per-
formance of the model is scored as follows: great (Ens> 0.75), good (0.65 < Exs< 0.75), sat-
isfactory (0.50 < Ens< 0.65), acceptable (0.40 < Exs< 0.50), and inadequate (Ens< 0.4). KGE
assesses how well a model’s simulations align with observed data, considering correla-
tion, variability, and bias. It ranges from —infinity to 1, with 1 representing perfect agree-
ment. KGE values greater than—0.41 indicate the model performs better than using the
mean as a benchmark, while the Uss% uncertainty coefficient tells that if an experiment or
study is repeated many times, Uos% of the resulting confidence intervals would contain the
true predictions.

2.8. Model Development

In this study, several new hybrid VMD-GPR, VMD-LSTM, VMD-BRT, and VMD-
CFNN models were designed to forecast the daily flood index at (t — 1) for Jeddah and
Jazan stations in Saudi Arabia. Additionally, the standalone versions of the hybrid models
GPR, LSTM, BRT, and CFNN were also constructed to compare the performance of each
model. All the models were developed and executed in the MATLAB R2023a environment
using an Intel Core i5-8400, 2.80 GHz CPU series, and 8 GB RAM. Each step and corre-
sponding details during the model development are explained below:

Step 1: Decomposition via VMD method

In this primary pre-processing step, the VMD method starts operating to concur-
rently decompose the daily flood index data of both stations to obtain IMFs and residual
factors (i.e., signals/modes). The optimal number of modes (i.e., K) was selected to be 6 for
both Jeddah and Jazan stations, and this was obtained using the trial-and-error process.
The setting of parameters of the VMD method are a = 2000,7 = 0,DC = 3,init = 1,tol =
le — 7,k = 6 for both stations.

Step 2: Determination of lagged-time components

The statistically significant lags were determined using the PACF to the decomposed
IMFs (in step 1) to examine the relation between the IMFs at t and (t — 1) for both Jeddah
and Jazan stations, as shown in Figure 3. The time-lagged input variables at (t — 1) were
used for forecasting the daily flood because these lags at (t — 1) show a high relationship
with the target variable (i.e., flood). PACF determines the correlation between observa-
tions at two time points while accounting for the influence of all shorter lags. It helps iso-
late the direct relationship between observations at different time lags, removing the in-
direct influence of intervening observations.

Step 3: Preparations of models feeding

The statistically significant decomposed IMFs were then supplied directly into the
GPR model to create the novel VMD-GPR model. Here, the rate of partitioning of data is
performed into 70% for training and the remaining 30% for testing purposes inde-
pendently [53]. As this is time series data that has a time dependency, it is important to
preserve the order to avoid the temporal disorder and cause data leakage, e.g., uninten-
tionally inferring the trend of future samples. Therefore, any randomized strategy cannot
be applied here because observations from the future must not be seen by the model. Here,
the data sequence was kept in order and used the most recent records as our valida-
tion/test set and the earlier observations as the training set.
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Figure 3. Partial auto-correlation function (PACF) of the corresponding IMFs for (a) Jeddah station
and (b) Jazan station.

The normalization and denormalization processes of the training and testing data
were also carried out within the unit interval to speed up the convergence of the models.
As the core objective of this research work is to discover how the pre-processing technique
influences precision during daily flood forecasting, it is critical to draw a comparison of
the novel VMD-GPR model with other state-of-the-art models. Therefore, the VMD
method was integrated with LSTM, BRT, and CFNN models to construct VMD-LSTM,
VMD-BRT, and VMD-CFNN models. The results of the VMD-GPR model were compared
with the hybrid versions as well as with the counterpart standalone models, GPR, LSTM,
BRT, and CENN. Figure 4 exhibits the topological structure of the proposed VMD-GPR
model along with the comparing models.

Step 4: Tuning and hyperparameter setting

One of the most fundamental stages in constructing data-driven models is the mod-
ification and adjustment of the hyperparameters called tuning, which significantly im-
pacts the accuracy. Numerous approaches can be adopted to acquire the optimal hyperpa-
rameters, and this research uses the traditional trial and error procedure. The optimum
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hyperparameters here were determined using the RMSE as the convergence criterion in
the MATLAB environment. Details on the hyperparameters are summarized in Table 1,
where the GPR model has log-likelihood, basis function, Kernel function, Beta, iteration,
etc. are important. For the LSTM model, the main hyperparameters are hidden units, op-
timizer, verbose, gradient threshold, batch size, and epochs. The BRT model possesses the
learn rate value and ensemble strategy (LSBoost) as the significant ones, whereas CFNN
model has the neuron number in the hidden layer and the best training algorithm are the
important hyperparameters.

Table 1. Parameter setting of the models forecasting flood index.

Stations Models Tuning Parameters
Hybrid and Standalone Structure
e Log Likelihood = 4.509; Basis Function = Linear
GPR e Kernel Function = Squared Exponential; Beta =0
e Active Set Size = 2000; Max. Iteration = 10,000
e Optimizer = Quasi newton; Verbose =0
e Hidden units = 10; Optimizer = Adam, Verbose =0
LSTM e Gradient Threshold = 1, Initial Learn Rate = 0.005
Jeddah Station e Learn Rate Drop period = 200; Batch Size = 32

e Learn Rate Drop Factor =0.1; Epochs = 250
e Learn rate = 0.194, Method = LSBoost,
BRT e N Learn=100, Combine Weights = Weighted Sum
e Learner name = Tree
e Hybrid Structure: 6-9-1; Standalone Structure: 1-9-1

CFNN e Epoch =18 iterations, Validation checks =6

e Mu=0.001, Training = Levenberg-Marquadt

Jazan Station

LSTM

Hybrid and Standalone Structure

e Log Likelihood = 4.509; Basis Function = Linear
GPR e Kernel Function = Squared Exponential; Beta = 0
e Active Set Size = 2000; Max. Iteration = 10,000
e  Optimizer = Quasi newton; Verbose =0
e Hidden units = 10; Optimizer = Adam, Verbose =0
e Gradient Threshold = 1, Initial Learn Rate = 0.005
e Learn Rate Drop period = 200; Batch Size = 32
e Learn Rate Drop Factor = 0.1; Epochs = 250
e Learn rate =0.194, Method = LSBoost,
BRT e N Learn=100, Combine Weights = Weighted Sum

e Learner name = Tree

e Hybrid Structure: 6-9-1; Standalone Structure: 1-9-1

CFNN e Epoch =45 iterations, Validation checks =6

e Mu=0.001, Training = Levenberg-Marquadt

The accuracy of the VMD-GPR models in training and testing periods based on MSE,
RMSE, MARE, and time-series trend plots is presented in Figure 5. The VMD-GPR model
attained consistent and stable performance accuracy over both training and testing data
for the Jeddah station to forecast daily floods. Similarly, the VMD-GPR was also better in
terms of these metrics for the Jazan station against the counterpart comparing models in
Figure 5 for the Jeddah station.
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Figure 5. Training and testing performance of the VMD-GPR model in terms of MSE, RMSE, MARE,

and time-series trend plot for Jeddah station.

3. Results and Discussion

The proposed hybrid VMD-GPR approach is assessed and benchmarked with VMD-
LSTM, VMD-BRT, VMD-CFNN, GRP, LSTM, BRT, and CFNN models using the evalua-
tion metrics r, RMSE, MAE, ENS, KGE, IA, and Uss% and analytical diagnostic plots for
daily flood index forecasting.
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Table 2 shows the performance of the models using r, RMSE, and MAE to predict the
daily flood index for Jeddah and Jazan stations. The newly designed VMD-GPR model is
superior in terms of efficiency as compared to VMD-LSTM, VMD-BRT, VMD-CFNN,
GRP, LSTM, BRT, and CFNN models by achieving the highest value of r and lowest RMSE
and MAE errors as shown in Table 2. For the Jeddah station, the recorded metrics of VMD-
GPR model are (r = 0.9825, RMSE = 0.0745, MAE = 0.0088), followed by VMD-CFNN mode
with (r =0.9788, RMSE = 0.0870, MAE = 0.0109). From the group of standalone models, the
GPR appeared to be the best in terms of (r = 0.9678, RMSE = 0.1006, MAE = 0.0051), fol-
lowed by CFNN (r=0.9674, 0.1012, 0.0062), LSTM and BRT models. Overall, it can be seen
in Table 2 that the VMD-GPR is the best model in both hybrid and standalone groups of
the models to forecast the daily flood index in Jeddah station.

Table 2. Testing performance of the VMD-GPR vs. VMD-LSTM, VMD-BRT, VMD-CENN, GPR,
LSTM, BRT, and CFNN models using , RMSE, and MAE.

Jeddah Station Jazan Station
r RMSE MAE r RMSE MAE
GPR 0.9678 0.1006 0.0051 0.9834 0.1227 0.0179
VMD-GPR 0.9825 0.0745 0.0088 0.9891 0.0945 0.0189
LSTM 0.9603 0.1902 0.0588 0.9809 0.3126 0.1140
VMD-LSTM 0.9348 0.2213 0.0655 0.9802 0.2895 0.1098
BRT 0.8661 0.2316 0.0330 0.8164 0.5311 0.1416
VMD-BRT 0.8485 0.2787 0.0700 0.7943 0.5625 0.1636
CFNN 0.9674 0.1012 0.0062 0.9827 0.1205 0.0156
VMD-CFNN 0.9788 0.0870 0.0109 0.9726 0.1349 0.0187
For Jazan station, the VMD-GPR model again received the highest accuracy by gain-
ing (r = 0.9891, RMSE = 0.0945, MAE = 0.0189) as compared to VMD-LSTM, VMD-BRT,
and VMD-CFNN models to forecast daily flood index. Similarly, the VMD-GPR model is
also outperformed against the standalone GPR, LSTM, BRT, and CFNN models in Jazan
station. Thus, Table 3 suggests that the VMD-GPR model is better for forecasting the daily
flood index for both stations as compared to the VMD-LSTM, VMD-BRT, VMD-CENN,
GRP, LSTM, BRT, and CFENN models. Table 3 also confirms that the VMD notably en-
hanced the accuracy of the models, particularly when combined with the GPR model.
Overall, the VMD-GPR model is showing better precision in forecasting daily floods in
Jeddah and Jazan stations.
Table 3. The performance of VMD-GPR, VMD-LSTM, VMD-BRT, VMD-CFNN, GPR, LSTM, BRT,
and CFNN models based on assessment metrics Ens, KGE, IA, and Ubos%. Note that the best model is
boldfaced (blue).
Jeddah Station Jazan Station
Ens KGE IA Usse Ens KGE IA Uos
GPR 0.9364  0.9646 0.9836 0.2790 0.9631 0.9003 0.9899 0.3390
VMD-GPR 0.9651  0.9802 0.9911 0.2065 0.9781 0.9849 0.9945 0.2621
LSTM 0.7731  0.5690 0.9111 0.5146 0.7608 0.3483 0.9034 0.8372
VMD-LSTM 0.6927  0.5034 0.8665 0.6043 0.7948 0.3995 0.9208 0.7753
BRT 0.6636  0.5529 0.8573 0.6393 0.3098 0.0339 0.5521 1.4471
VMD-BRT 0.5129  0.3757 0.7420 0.7677 0.2257 -0.0480 0.4559 1.5308
CFNN 0.9357  0.9598 0.9833 0.2806 0.9644 0.9285 0.9905 0.3332
VMD-CFNN 0.9525  0.9019 0.9867 0.2409 0.9455 0.9690 0.9861 0.3740
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The VMD-GPR and comparing models’” performance was further assessed and inves-
tigated in Table 3 based on Ens, KGE, IA, and Uss% for both stations. The highest accuracy
generated by the VMD-GPR model (Exs = 0.9651, KGE = 0.9802, IA = 0.9911, Uss% = 0.2065)
for Jeddah station, and (Exs = 0.9781, KGE = 0.9849, IA = 0.9945, Uss% = 0.2621) against the
comparing VMD-LSTM, VMD-BRT, VMD-CENN, GRP, LSTM, BRT, and CFNN models.
Table 3 again endorsed that the VMD-GPR is an excellent model for forecasting daily
floods as compared to the counterpart models. Based on Ens, KGE, IA, and Uss% metrics,
it is evident that the VMD-GPR model has better analytical capabilities to achieve precise
forecasts for both Jeddah and Jazan stations. This is also correct by the declaration that the
models recorded an Ens < 0.800 are determined to be ‘unsatisfactory’, while Exs between
0.800-0.900 portrays the models are ‘fairly good” and Ens = 0.900 are viewed to be ‘very
satisfactory’ [54]. Therefore, the newly established VMD-GPR model can be ranked as
‘very satisfactory” for forecasting daily floods for both Jeddah and Jazan stations.

Figure 6 demonstrates the scatter diagram between the daily forecasted and observed
flood index of the proposed VMD-GPR model vs. VMD-LSTM, VMD-BRT, VMD-CENN,
GPR, LSTM, BRT, and CFNN models for both stations. In Jeddah station, the forecasted
and observed flood index generated by VMD-GPR appeared to be the highest precise
model with (12 = 0.977) as compared to VMD-CENN (12 = 0.972), VMD-LSTM (12 = 0.942),
and VMD-BRT (r?=0.787) models. On the other hand, the standalone BRT model acquired
good accuracy for Jeddah station in terms of r? = 0.970, followed by GPR, CFNN, and
LSTM models. Similarly, for Jazan station, the VMD-GPR model again recorded better
accuracy (r2 = 0.991), with VMD-CENN in 2nd place, VMD-LSTM in 3rd position, and
VMD-BRT in 4th position for forecasting daily flood index at (t — 1) as compared to
standalone models. The outcomes in Figure 6 are also supported by Tables 2 and 3, which
prove that the VMD-GPR model is better for forecasting the daily flood index for both
stations at (t - 1).

The Swarm plots in Figure 7 display the distribution of the absolute forecasted errors
IFE| produced by the VMD-GPR vs. VMD-LSTM, VMD-BRT, VMD-CENN, GPR, LSTV,
BRT, and CENN models during the daily flood forecast at both stations. Figure 7 yielded
that the VMD-GPR model expresses lower |FE| errors between the observed and forecasted
flood index for both Jeddah and Jazan stations as compared to VMD-LSTM, VMD-BRT,
VMD-CENN, GPR, LSTM, BRT, and CENN models. Therefore, the Swarm plots approved
the forecasting accuracy was higher for the VMD-GPR model against comparing models.

Figure 8 characterizes the empirical cumulative distribution function (ECDF) of fore-
casted and observed daily flood index to draw a clear illustration of the model’s efficiency.
For both Jeddah and Jazan stations, the ECDF of VMD-GPR demonstrated a very close
profile with the observed ECDF against hybrid version VMD-LSTM, VMD-BRT, VMD-
CFNN, and standalone GPR, LSTM, BRT, and CFNN models. Overall, the ECDF in Figure
8 further confirms the accuracy of the VMD-GPR model in forecasting the daily flood in-
dex of Jeddah and Jazan stations.

A Taylor diagram specifies an organized, efficient, and thorough exam of the models’
forecasting capability on a wider scale [55]. Figure 9 depicts a more finite and compelling
connection between the forecasted and observed flood index grounded on correlation co-
efficient and standard deviation. It is amazingly established that the VMD-GPR model
was sitting close to the observed daily flood index, indicating the forecasting efficiency
was remarkably better for both Jeddah and Jazan stations. On the other hand, for the Jed-
dah station, the VMD-BRT, VMD-LSTM, and BRT models were separated far away while
VMD-BRT, VMD-CENN, and BRT in the Jazan station were positioned in a distant corner
proving poor performance. Thus, Figure 9 settles that the VMD-GPR model is realistically
accurate in forecasting the daily flood index for both stations as compared to the VMD-
LSTM, VMD-BRT, VMD-CENN, GPR, LSTM, BRT, and CFNN models.
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Figure 8. Empirical cumulative distribution function (ECDF) of the forecasted and observed Flood
index generated by the VMD-GPR vs. other benchmarking models for each station.

Figure 10 draws a comparison between the observed and forecasted Flood index (FI)
generated by the VMD-GPR model of the rainy seasons from 2008 to 2013 for Jeddah sta-
tion. It is evident that the forecasted FI closely follows the observed FI for each year from
2008 to 2012. For the year 2012-2013, the forecasted FI of the VMD-GPR model is slightly
lower than the observed FI, and this shows a sudden increase in rainfall during the season.
Overall, the VMD-GPR model is performing well during the rainy season to forecast daily
floods in Jedda station.
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Figure 10. Comparison of observed and forecasted Flood index (FI) generated by the VMD-GPR
model of the rainy seasons from 2008 to 2013 for Jeddah station.

This research study proposed a hybrid VMD-GPR model that has been designed and
assessed to forecast daily flood at (t-1) for Jeddah and Jazan stations in Saudia Arabia. The
VMD-GPR model is evaluated and benchmarked against VMD-LSTM, VMD-BRT, VMD-
CFNN, GPR, LSTM, BRT, and CFNN models and registered its dominance for daily flood
forecasting, thus establishing that the VMD-GPR has the better forecasting ability based
on several assessment metrics. The outcomes of this work proved that the VMD-GPR
model was efficient and successful in demarcating the inputs via the VMD technique,
which can later enhance the accuracy of the GPR model for daily flood forecasting.

The innovative VMD-GPR model was an effective method for daily flood forecasts
in the regions of Saudi Arabia against the comparing models, but further suggestions and
recommendations needed to be studied in the future. This work only utilized the signifi-
cant lags of the flood index based on precipitation in the VMD-GPR model for forecasting
purposes; however, several other climates, meteorological, and hydrological data as input
predictors can be employed to augment the accuracy. Additionally, the satellite-derived
data can be further used as an alternative, which can notably improve the forecasting fa-
cility of the VMD-GPR model, and thus, another method could be a prospective strategy
to bring in more physical data aspects for the daily flood forecasts. The computational
time for the VMD-GPR is slightly higher as compared to other models.

Advanced machine learning (ML) models prevail in the area of forecasting, but their
black-box properties restrict their capability and power, which makes it challenging to
comprehend and assess the complex associations of the inputs during the learning pro-
cess. Subsequently, the fusion of ML with numerical weather prediction models can be an
interesting area of research. Moreover, the VMD-GPR model can also be improved in
terms of optimization with the help of Bayesian Model Averaging [56] and bootstrapping
techniques [57] to capture the underlying model’s uncertainties.

Additionally, the VMD benefits the GPR model by improving the precision due to
concurrently attaining the non-stationary and non-linearity features within the flood data
and handling the mode mixing problems [58]. Thus, it is proven that VMD-GPR can po-
tentially be a feasible advance data-driven model for hydrological sciences to deliver
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supportive insights on water resource management to design better proactive prevention
strategies in Saudi Arabia.

4. Conclusions

Floods are becoming severely destructive, influenced by recent climate change, sig-
nificantly affecting several areas around the world and impacting the greatest number of
populations. This research work proposed a hybrid VMD-GPR model, and the novelty
centered around the fusion of variational mode decomposition and Gaussian process re-
gression integrated to forecast daily floods. The VMD decomposed the input data into
IMFs, and then the PACF determined the significant lags, which were later used in the
GPR to forecast the daily flood index for Jeddah and Jazan stations in Saudi Arabia. The
outcomes prove that the VMD-GPR model substantially improves the daily flood forecast
for both Jeddah and Jazan stations in Saudia Arabia as compared to the VMD-LSTM,
VMD-BRT, VMD-CENN, GPR, LSTM, BRT, and CFNN models using valuation scores R,
RMSE, MAE, ENS, KGE, IA, and U95%.

The VMD-GPR model designed in this research work was state-of-the-art in terms of
the VMD and GPR models, where the VMD substantially advances the forecasting accu-
racy by tackling the non-stationarity and non-linearity produced by the complicated and
complex nature of the daily flood. The results authenticate that the VMD-GPR model is
exceptionally good in daily flood forecasting against the comparing models. The proposed
VMD-GPR model can play a crucial role in municipal flood mitigation and risk reduction
by allowing for proactive measures such as evacuation and resource mobilization. It relies
on accurate flood risk assessments and forecasts and helps to identify areas at high risk
and inform decisions about infrastructure development and land use planning. Moreover,
precise forecasts by VMD-GPR can provide a lead time for preparation, allowing commu-
nities to take required safety measures. To widen the scope and potentiality, the proposed
VMD-GPR model can be implemented in areas such as atmospheric and environment re-
search such as climate change, renewable and sustainable energy, water resource man-
agement, and agriculture sectors for better decision making.
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