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It has previously been proven that the conditional dissipation rate to transport a

Gaussian distribution is equal to the mean dissipation rate throughout the variables’

space and that only a Gaussian distribution can have a conditional dissipation rate

that is only a function of time. This article extends both proofs to a joint-normal

distribution for any number of dimensions.
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The Mapping Closure (MC)1,2 and subsequently Multiple Mapping Conditioning (MMC)31

rely on the fact that the conditional dissipation rate for a Gaussian probability density2

function (pdf) is equal to the mean dissipation rate and is not a function of the variable3

comprising the pdf. It was initially proven that if the conditional dissipation rate is modelled4

to be a constant, then a normal probability density function (pdf) preserves its shape and5

is always a normal pdf4. It was subsequently proven that if the pdf is Gaussian, then the6

conditional dissipation rate must be a function of time5–7 and that only a Gaussian pdf can7

have a constant dissipation rate5,6. It has been assumed that the same behaviour can be8

extended to joint-normal joint-pdfs (jpdfs), which underpin general applications of MMC.9

A physical basis for this assumption is the argument8 that the dissipation rate affects the10

small scales of turbulence, while the jpdf affects the large scales of turbulence, therefore these11

are uncorrelated. The benefit of this property is to simplify the modelling of the unknown12

conditional dissipation of the mapping variable in MC and MMC, making MMC an appealing13

approach. A Gaussian probability density function (pdf) and a joint-normal joint-pdf (jpdf)14

can be used to describe the marginal pdf and jpdf for the velocity components and scalar15

field in homogeneous shear flow with a uniform mean scalar gradient9, while the velocity and16

scalar fields in the core of a mixing layer resemble a Gaussian pdf10. However, it is rare in17

practical applications for a field to resemble a joint-normal jpdf. Numerous models for the18

conditional dissipation have been devised for the Flamelet Model11 and Conditional Moment19

Closure12 to account for the relevant jpdf not being joint-normal. Because the conditioning20

(“reference”) variable in MMC does not have to be a physical variable, it is possible to21

choose its distribution to be Gaussian. While most modern implementations of MMC only22

use a single conditioning variable13–18—for which the property of the pdf is proven—there23

are some implementations that use a multi-dimensional reference variable space19,20. In this24

article, the transport equation for a joint-normal jpdf is solved, thereby proving that the25

behaviour occurs for any number of dimensions.26

Since the focus is on the modelling of the term involving the conditional dissipation

rate, the passive variable ξ is considered. An important definition is the decay rate of the

2

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
1
4
2
8
7
6



Accepted to Phys. Fluids 10.1063/5.0142876

(co-)variance in homogeneous flow:

∂σ2

∂t
= −2 〈D∇ξ · ∇ξ〉 ≡ −2〈B〉 (1)

∂σ2
ij

∂t
= −2

∑

k

〈

Dij
∂ξi
∂xk

∂ξj
∂xk

〉

≡ −2〈Bij〉 , (2)

where Dij is the molecular diffusivity of variable ξi in variable ξj and 〈φ〉 =
∫

φ(~ξ)P (~ξ)d~ξ27

with P (~ξ) the jpdf of the variable space ~ξ. The variable 〈Bij〉 is commonly called the mean28

dissipation rate, and requires modelling in turbulent flows, with models developed from29

experimental measurements.30

Initially, a single dimension for ξ is considered—to follow the proof for a Gaussian pdf5–7—31

using the homogeneous transport equation for its pdf21:32

∂P (ξ;µ, σ)

∂t
= −

∂2B(ξ)P (ξ;µ, σ)

∂ξ2
. (3)

If the pdf is modelled to have a Gaussian distribution33

P (ξ;µ, σ) ≡
1

(2πσ2)1/2
exp

(

−
(ξ − µ)2

2σ2

)

, (4)

where ξ has a single dimension, then the following derivatives are useful for solving Eq. (3):

∂P

∂t
=

∂P

∂σ2

∂σ2

∂t
(5)

∂P

∂σ2
= −

π

(2πσ2)(1/2)+1
exp

(

−
(ξ − µ)2

2σ2

)

+
1

(2πσ2)1/2
(ξ − µ)2

2σ4
exp

(

−
(ξ − µ)2

2σ2

)

=
(ξ − µ)2 − σ2

2σ4
P (6)

∂P

∂ξ
= −

ξ − µ

σ2

1

(2πσ2)1/2
exp

(

−
(ξ − µ)2

2σ2

)

= −
ξ − µ

σ2
P (7)

∂2P

∂ξ2
= −

1

σ2
P +

(ξ − µ)2

σ4
P =

(ξ − µ)2 − σ2

σ4
P (8)

∂2BP

∂ξ2
=

∂2B

∂ξ2
P + 2

∂B

∂ξ

∂P

∂ξ
+B

∂2P

∂ξ2
=

[

∂2B

∂ξ2
− 2

ξ − µ

σ2

∂B

∂ξ
+

(ξ − µ)2 − σ2

σ4
B

]

P . (9)

Substituting Eqs. (5)–(6) and (9) into Eq. (3) and defining ξ′ = ξ − µ yields

ξ′2 − σ2

2σ4
P
∂σ2

∂t
= −

[

∂2B

∂ξ2
− 2

ξ′

σ2

∂B

∂ξ
+

ξ′2 − σ2

σ4
B

]

P

∂2B

∂ξ2
− 2

ξ′

σ2

∂B

∂ξ
+

[

ξ′2

σ4
−

1

σ2

]

B = −
1

2

[

ξ′2

σ4
−

1

σ2

]

∂σ2

∂t
. (10)
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Equation (10) is a linear nonhomogeneous ordinary differential equation for B. The result34

B(ξ) = 〈B〉 is the particular solution. The homogeneous solution, following5, is:35

B(ξ) = (C1 + C2ξ) exp
(

1
2
ξ2/σ2

)

. (11)

Applying the symmetry condition ∂B/∂ξ|ξ′=0 = 0, it follows that C2 = 0; to comply with36

∫

BPdξ = 〈B〉, it is necessary that C1 = 0.37

Therefore, it is proven that the only mathematically viable form of the conditional dissi-38

pation for a Gaussian distribution is the constant value of the mean dissipation.39

The general solution for multiple passive scalars is now derived by considering the homo-40

geneous transport equation for the joint probability density function (jpdf):41

∂P
(

~ξ; ~µ,Σ
)

∂t
= −

∑

i

∑

j

∂2Bij

(

~ξ
)

P
(

~ξ; ~µ,Σ
)

∂ξi∂ξj
, (12)

where ~ξ is the vector containing the n dimensions of ξk, ~µ is the vector of means and Σ is42

the covariance matrix with elements Σij = σ2
ij .43

If the pdf is modelled to have a joint-normal distribution44

P
(

~ξ; ~µ,Σ
)

≡
1

(2π)n/2|Σ|1/2
exp

(

−
1

2

[

~ξ − ~µ
]T

Σ
−1
[

~ξ − ~µ
]

)

, (13)

where |Σ| is the determinant of Σ, then the form of Eq. (12) is:45

∑

i

∑

j

∂P

∂σ2
ij

∂σ2
ij

∂t
= −

∑

i

∑

j

∂2BijP

∂ξi∂ξj
. (14)

By definition8, the conditional dissipation rate Bij only directly affects the evolution of the46

covariance σ2
ij , so, for the purposes of determining the form of Bij, Eq. (14) can be solved47

without considering the summations. A useful definition is the fluctuations of each variable:48

ξ′i = ξi − µi → dξi = dξ′i . (15)

To solve Eq. (14) using Eq. (13) for any dimension, the general form of Σ−1 is required:49

Σ
−1 ≡

1

|Σ|
Σ̃ , (16)

where Σ̃ is the adjugate matrix for Σ. Let Mij be a “minor” matrix of Σ, with Mij50

constructed by removing row i and column j from Σ. The elements of the cofactor matrix51

C are therefore:52

Cij ≡ (−1)i+j |Mij | (17)
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and the adjugate matrix is:

Σ̃ = C
T (18)

Σ̃ij = (−1)i+j |Mji| . (19)

It follows that:

[

~ξ − ~µ
]T

Σ
−1
[

~ξ − ~µ
]

=
1

|Σ|

∑

k

∑

l

Σ̃klξ
′

kξ
′

l (20)

∂|Σ|

∂σ2
ij

= (−1)i+j |Mij| (21)

∂|Mkl|

∂σ2
ij

= (−1)i+j+qik,jl|Mik,jl| (22)

|Mkl| =
∑

m

(−1)r+m+qkr,lmΣrm|Mkr,lm| (23)

qkr,lm =







0 , sign(r − k) = sign(m− l)

1 , sign(r − k) 6= sign(m− l)
(24)

|Mij,kl| ≡ |Mij,lk| ≡ |Mji,lk| ≡ |Mji,kl| , (25)

where the sub-minor matrix Mik,jl is practically missing both rows i and k from Σ as well as53

both columns j and l, but by definition is missing row i and column j from |Mkl|. If k = i54

and/or l = j, then |Mik,jl| = 0. If n = 2, k 6= i, and l 6= j; then |Mik,jl| = (−1)k+l; this55

property can be determined by direct substitution into Eq. (14) of the well-known formula56

for Σ−1 for rank 2 matrices—which takes the form of Eq. (16).57
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The general formulae for the necessary derivatives are:

∂P

∂σ2
ij

=−
1

2|Σ|

∂|Σ|

∂σ2
ij

P −
1

2|Σ|2

[

|Σ|
∑

k

∑

l

∂Σ̃kl

∂σ2
ij

ξ′kξ
′

l −
∂|Σ|

∂σ2
ij

∑

k

∑

l

Σ̃klξ
′

kξ
′

l

]

P

=−
1

2|Σ|2

[

|Σ|
∑

k

∑

l

(−1)k+l∂|Mlk|

∂σ2
ij

ξ′kξ
′

l +
∂|Σ|

∂σ2
ij

(

|Σ| −
∑

k

∑

l

Σ̃klξ
′

kξ
′

l

)]

P

=−
(−1)i+j

2|Σ|2

[

|Σ|
∑

k

∑

l

(−1)k+l+qil,jk |Mil,jk|ξ
′

kξ
′

l + |Mij |

(

|Σ| −
∑

k

∑

l

Σ̃klξ
′

kξ
′

l

)]

P

=−
(−1)i+j

2|Σ|2

{

|Σ||Mij|+
∑

k

∑

l

(−1)k+l [(−1)qil,jk |Σ||Mil,jk| − |Mij||Mlk|] ξ
′

kξ
′

l

}

P

(26)

∂P

∂ξi
=−

1

2|Σ|

[

∑

l

Σ̃ilξ
′

l +
∑

k

Σ̃kiξ
′

k

]

P (27)

∂2P

∂ξi∂ξj
=−

Σ̃ij + Σ̃ji

2|Σ|
P +

1

4|Σ|2

[

∑

l

Σ̃ilξ
′

l +
∑

k

Σ̃kiξ
′

k

][

∑

l

Σ̃jlξ
′

l +
∑

k

Σ̃kjξ
′

k

]

P

=
1

|Σ|2

{

1

4

[

∑

l

Σ̃ilξ
′

l +
∑

k

Σ̃kiξ
′

k

][

∑

l

Σ̃jlξ
′

l +
∑

k

Σ̃kjξ
′

k

]

−
(−1)i+j

2
|Σ| (|Mji|+ |Mij|)

}

P

(28)

∂2BijP

∂ξi∂ξj
=

∂2Bij

∂ξi∂ξj
P +

∂Bij

∂ξi

∂P

∂ξj
+

∂Bij

∂ξj

∂P

∂ξi
+Bij

∂2P

∂ξi∂ξj
. (29)

Substituting into Eq. (14) yields

1

2|Σ|2

{

(−1)i+j

[

|Σ||Mij|+
∑

k

∑

l

(−1)k+l [(−1)qil,jk |Σ||Mil,jk| − |Mij||Mlk|] ξ
′

kξ
′

l

]}

∂σ2
ij

∂t

=
∂2Bij

∂ξi∂ξj
−

1

2|Σ|

[

∑

l

Σ̃jlξ
′

l +
∑

k

Σ̃kjξ
′

k

]

∂Bij

∂ξi
−

1

2|Σ|

[

∑

l

Σ̃ilξ
′

l +
∑

k

Σ̃kiξ
′

k

]

∂Bij

∂ξj

−
1

|Σ|2

{

(−1)i+j

2
|Σ| (|Mji|+ |Mij |)−

1

4

[

∑

l

Σ̃ilξ
′

l +
∑

k

Σ̃kiξ
′

k

][

∑

l

Σ̃jlξ
′

l +
∑

k

Σ̃kjξ
′

k

]}

Bij .

(30)

Equation (30) has the same form as Eq. (10). To obtain the particular solution, it will

now be proven that the portion of the coefficients within {·} for the first and final terms

in Eq. (30) are identical. Due to the symmetry of Σ, |Mij| = |Mji|, which means that the

terms not involving ξ′ are identical. For the remaining terms, after applying the symmetry
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of |Σ|, it is required to prove the following:

∑

k

∑

l

(−1)i+j+k+l [|Mij||Mkl| − (−1)qil,jk |Σ||Mil,jk|] ξ
′

kξ
′

l =

[

∑

k

Σ̃kiξ
′

k

][

∑

l

Σ̃jlξ
′

l

]

=
∑

k

∑

l

Σ̃kiΣ̃jlξ
′

kξ
′

l

=
∑

k

∑

l

(−1)i+j+k+l|Mik||Mjl|ξ
′

kξ
′

l

(31)

Compiling terms, what remains is to prove:

∀k,l|Mik||Mjl| − |Mij ||Mkl|+ (−1)qil,jk |Σ||Mil,jk| = 0 . (32)

All the matrices are expanded to sub-minor matrices as a common basis (in a two-step

process because of the rank of Σ and to compile terms into a double-summation):

(

∑

r

Σlr(−1)l+r+qil,kr |Mil,kr|

)(

∑

m

Σim(−1)i+m+qil,jm |Mil,jm|

)

−

(

∑

r

Σlr(−1)l+r+qil,jr |Mil,jr|

)(

∑

m

Σim(−1)i+m+qil,km |Mil,km|

)

+ (−1)qil,jk
∑

m

(−1)i+mΣim|Mim||Mil,jk|

=
∑

m

∑

r

ΣimΣlr(−1)i+l+m+r
[

(−1)qil,jm+qil,kr |Mil,jm||Mil,kr|

−(−1)qil,jr+qil,km|Mil,jr||Mil,km|+ (−1)qil,jk+qil,mr |Mil,mr||Mil,jk|
]

. (33)

Because by definition:58

(−1)qij,kl+qij,mr |Mij,kl||Mij,mr|−(−1)qij,lr+qij,mk |Mij,lr||Mij,mk| = (−1)qij,kr+qij,lm|Mij,kr||Mij,lm| ,

(34)

all the terms in Eq. (33) cancel irrespective of the number of dimensions n, the value of ξ,59

and the choice of indices, so it is proven that the particular solution is Bij(~ξ) = 〈Bij〉. The60

homogeneous solution to Eq. (30) is:61

Bij =
(

C1 + C2ξ
′

i + C3ξ
′

j

)

exp

(

∑

k

∑

l Σ̃klξ
′

kξ
′

l

2|Σ|

)

. (35)

62
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Just like Eq. (11), the homogeneous solution must be zero. Therefore, every conditional63

(cross-)dissipation rate must be the mean (cross-)dissipation rate for joint-normal jpdfs of64

any dimension. Furthermore, because Eq. (12) yields the solution that the Fourier trans-65

form of a joint-normal jpdf is the initial value of the joint-normal jpdf’s Fourier transform66

multiplied by the exponential in Eq. (35), the proof that only a Gaussian pdf can have a67

constant dissipation rate5 can be directly used to prove that only a joint-normal jpdf can68

have a constant (cross-)dissipation rate.69
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