Proof that All Dissipation Rates are only Functions of Time for Transported

Joint-Normal Distributions

Andrew P. Wandel ${ }^{\text {a }}$
School of Engineering, University of Southern Queensland, Toowoomba, Qld, 4350,
Australia

(Dated: 21 March 2023)
It has previously been proven that the conditional dissipation rate to transport a Gaussian distribution is equal to the mean dissipation rate throughout the variables' space and that only a Gaussian distribution can have a conditional dissipation rate that is only a function of time. This article extends both proofs to a joint-normal distribution for any number of dimensions.

[^0] can be used to describe the marginal pdf and jpdf for the velocity components and scalar field in homogeneous shear flow with a uniform mean scalar gradient ${ }^{9}$, while the velocity and scalar fields in the core of a mixing layer resemble a Gaussian pdf ${ }^{10}$. However, it is rare in practical applications for a field to resemble a joint-normal jpdf. Numerous models for the conditional dissipation have been devised for the Flamelet Model ${ }^{11}$ and Conditional Moment Closure ${ }^{12}$ to account for the relevant jpdf not being joint-normal. Because the conditioning ("reference") variable in MMC does not have to be a physical variable, it is possible to choose its distribution to be Gaussian. While most modern implementations of MMC only use a single conditioning variable ${ }^{13-18}$ —for which the property of the pdf is proven-there are some implementations that use a multi-dimensional reference variable space ${ }^{19,20}$. In this article, the transport equation for a joint-normal jpdf is solved, thereby proving that the behaviour occurs for any number of dimensions.

Since the focus is on the modelling of the term involving the conditional dissipation rate, the passive variable ξ is considered. An important definition is the decay rate of the

Accepted to Phys. Fluids 10.1063/5.0142876

(co-)variance in homogeneous flow:

$$
\begin{align*}
\frac{\partial \sigma^{2}}{\partial t} & =-2\langle D \nabla \xi \cdot \nabla \xi\rangle \equiv-2\langle B\rangle \tag{1}\\
\frac{\partial \sigma_{i j}^{2}}{\partial t} & =-2 \sum_{k}\left\langle D_{i j} \frac{\partial \xi_{i}}{\partial x_{k}} \frac{\partial \xi_{j}}{\partial x_{k}}\right\rangle \equiv-2\left\langle B_{i j}\right\rangle \tag{2}
\end{align*}
$$

${ }_{27}$ where $D_{i j}$ is the molecular diffusivity of variable ξ_{i} in variable ξ_{j} and $\langle\phi\rangle=\int \phi(\vec{\xi}) P(\vec{\xi}) d \vec{\xi}$ ${ }_{28}$ with $P(\vec{\xi})$ the jpdf of the variable space $\vec{\xi}$. The variable $\left\langle B_{i j}\right\rangle$ is commonly called the mean
29 dissipation rate, and requires modelling in turbulent flows, with models developed from ${ }_{30}$ experimental measurements.
${ }_{31}$ Initially, a single dimension for ξ is considered-to follow the proof for a Gaussian pdf ${ }^{5-7}$ 32 using the homogeneous transport equation for its pdf^{21} :

$$
\begin{equation*}
\frac{\partial P(\xi ; \mu, \sigma)}{\partial t}=-\frac{\partial^{2} B(\xi) P(\xi ; \mu, \sigma)}{\partial \xi^{2}} \tag{3}
\end{equation*}
$$

${ }_{33}$ If the pdf is modelled to have a Gaussian distribution

$$
\begin{equation*}
P(\xi ; \mu, \sigma) \equiv \frac{1}{\left(2 \pi \sigma^{2}\right)^{1 / 2}} \exp \left(-\frac{(\xi-\mu)^{2}}{2 \sigma^{2}}\right) \tag{4}
\end{equation*}
$$

where ξ has a single dimension, then the following derivatives are useful for solving Eq. (3):

$$
\begin{align*}
\frac{\partial P}{\partial t} & =\frac{\partial P}{\partial \sigma^{2}} \frac{\partial \sigma^{2}}{\partial t} \tag{5}\\
\frac{\partial P}{\partial \sigma^{2}} & =-\frac{\pi}{\left(2 \pi \sigma^{2}\right)^{(1 / 2)+1}} \exp \left(-\frac{(\xi-\mu)^{2}}{2 \sigma^{2}}\right)+\frac{1}{\left(2 \pi \sigma^{2}\right)^{1 / 2}} \frac{(\xi-\mu)^{2}}{2 \sigma^{4}} \exp \left(-\frac{(\xi-\mu)^{2}}{2 \sigma^{2}}\right) \\
& =\frac{(\xi-\mu)^{2}-\sigma^{2}}{2 \sigma^{4}} P \tag{6}\\
\frac{\partial P}{\partial \xi} & =-\frac{\xi-\mu}{\sigma^{2}} \frac{1}{\left(2 \pi \sigma^{2}\right)^{1 / 2}} \exp \left(-\frac{(\xi-\mu)^{2}}{2 \sigma^{2}}\right)=-\frac{\xi-\mu}{\sigma^{2}} P \tag{7}\\
\frac{\partial^{2} P}{\partial \xi^{2}} & =-\frac{1}{\sigma^{2}} P+\frac{(\xi-\mu)^{2}}{\sigma^{4}} P=\frac{(\xi-\mu)^{2}-\sigma^{2}}{\sigma^{4}} P \tag{8}\\
\frac{\partial^{2} B P}{\partial \xi^{2}} & =\frac{\partial^{2} B}{\partial \xi^{2}} P+2 \frac{\partial B}{\partial \xi} \frac{\partial P}{\partial \xi}+B \frac{\partial^{2} P}{\partial \xi^{2}}=\left[\frac{\partial^{2} B}{\partial \xi^{2}}-2 \frac{\xi-\mu}{\sigma^{2}} \frac{\partial B}{\partial \xi}+\frac{(\xi-\mu)^{2}-\sigma^{2}}{\sigma^{4}} B\right] P . \tag{9}
\end{align*}
$$

Substituting Eqs. (5)-(6) and (9) into Eq. (3) and defining $\xi^{\prime}=\xi-\mu$ yields

$$
\begin{align*}
\frac{\xi^{\prime 2}-\sigma^{2}}{2 \sigma^{4}} P \frac{\partial \sigma^{2}}{\partial t} & =-\left[\frac{\partial^{2} B}{\partial \xi^{2}}-2 \frac{\xi^{\prime}}{\sigma^{2}} \frac{\partial B}{\partial \xi}+\frac{\xi^{\prime 2}-\sigma^{2}}{\sigma^{4}} B\right] P \\
\frac{\partial^{2} B}{\partial \xi^{2}}-2 \frac{\xi^{\prime}}{\sigma^{2}} \frac{\partial B}{\partial \xi}+\left[\frac{\xi^{\prime 2}}{\sigma^{4}}-\frac{1}{\sigma^{2}}\right] B & =-\frac{1}{2}\left[\frac{\xi^{\prime 2}}{\sigma^{4}}-\frac{1}{\sigma^{2}}\right] \frac{\partial \sigma^{2}}{\partial t} \tag{10}
\end{align*}
$$

${ }_{34} \quad$ Equation (10) is a linear nonhomogeneous ordinary differential equation for B. The result ${ }_{35} B(\xi)=\langle B\rangle$ is the particular solution. The homogeneous solution, following ${ }^{5}$, is:

$$
\begin{equation*}
B(\xi)=\left(C_{1}+C_{2} \xi\right) \exp \left(\frac{1}{2} \xi^{2} / \sigma^{2}\right) \tag{11}
\end{equation*}
$$

36 Applying the symmetry condition $\partial B /\left.\partial \xi\right|_{\xi^{\prime}=0}=0$, it follows that $C_{2}=0$; to comply with
${ }_{37} \int B P d \xi=\langle B\rangle$, it is necessary that $C_{1}=0$.
${ }_{38}$ Therefore, it is proven that the only mathematically viable form of the conditional dissi${ }_{39}$ pation for a Gaussian distribution is the constant value of the mean dissipation.
${ }_{40} \quad$ The general solution for multiple passive scalars is now derived by considering the homo${ }_{41}$ geneous transport equation for the joint probability density function (jpdf):

$$
\begin{equation*}
\frac{\partial P(\vec{\xi} ; \vec{\mu}, \boldsymbol{\Sigma})}{\partial t}=-\sum_{i} \sum_{j} \frac{\partial^{2} B_{i j}(\vec{\xi}) P(\vec{\xi} ; \vec{\mu}, \boldsymbol{\Sigma})}{\partial \xi_{i} \partial \xi_{j}} \tag{12}
\end{equation*}
$$

${ }_{42}$ where $\vec{\xi}$ is the vector containing the n dimensions of $\xi_{k}, \vec{\mu}$ is the vector of means and $\boldsymbol{\Sigma}$ is
${ }_{43}$ the covariance matrix with elements $\Sigma_{i j}=\sigma_{i j}^{2}$.
44 If the pdf is modelled to have a joint-normal distribution

$$
\begin{equation*}
P(\vec{\xi} ; \vec{\mu}, \boldsymbol{\Sigma}) \equiv \frac{1}{(2 \pi)^{n / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left(-\frac{1}{2}[\vec{\xi}-\vec{\mu}]^{T} \boldsymbol{\Sigma}^{-1}[\vec{\xi}-\vec{\mu}]\right), \tag{13}
\end{equation*}
$$

${ }_{45}$ where $|\boldsymbol{\Sigma}|$ is the determinant of $\boldsymbol{\Sigma}$, then the form of Eq. (12) is:

$$
\begin{equation*}
\sum_{i} \sum_{j} \frac{\partial P}{\partial \sigma_{i j}^{2}} \frac{\partial \sigma_{i j}^{2}}{\partial t}=-\sum_{i} \sum_{j} \frac{\partial^{2} B_{i j} P}{\partial \xi_{i} \partial \xi_{j}} . \tag{14}
\end{equation*}
$$

${ }_{46}$ By definition ${ }^{8}$, the conditional dissipation rate $B_{i j}$ only directly affects the evolution of the
${ }_{47}$ covariance $\sigma_{i j}^{2}$, so, for the purposes of determining the form of $B_{i j}$, Eq. (14) can be solved
${ }_{48}$ without considering the summations. A useful definition is the fluctuations of each variable:

$$
\begin{equation*}
\xi_{i}^{\prime}=\xi_{i}-\mu_{i} \rightarrow d \xi_{i}=d \xi_{i}^{\prime} . \tag{15}
\end{equation*}
$$

49 To solve Eq. (14) using Eq. (13) for any dimension, the general form of $\boldsymbol{\Sigma}^{-1}$ is required:

$$
\begin{equation*}
\Sigma^{-1} \equiv \frac{1}{|\boldsymbol{\Sigma}|} \tilde{\Sigma} \tag{16}
\end{equation*}
$$

${ }_{50}$ where $\tilde{\boldsymbol{\Sigma}}$ is the adjugate matrix for $\boldsymbol{\Sigma}$. Let $\mathbf{M}_{i j}$ be a "minor" matrix of $\boldsymbol{\Sigma}$, with $\mathbf{M}_{i j}$ ${ }_{51}$ constructed by removing row i and column j from $\boldsymbol{\Sigma}$. The elements of the cofactor matrix
${ }_{52} \mathrm{C}$ are therefore:

$$
\begin{equation*}
C_{i j} \equiv(-1)^{i+j}\left|\mathbf{M}_{i j}\right| \tag{17}
\end{equation*}
$$

$$
\begin{align*}
\tilde{\boldsymbol{\Sigma}} & =\mathbf{C}^{T} \tag{18}\\
\tilde{\Sigma}_{i j} & =(-1)^{i+j}\left|\mathbf{M}_{j i}\right| . \tag{19}
\end{align*}
$$

It follows that:

${ }_{53}$ where the sub-minor matrix $\mathbf{M}_{i k, j l}$ is practically missing both rows i and k from $\boldsymbol{\Sigma}$ as well as ${ }_{54}$ both columns j and l, but by definition is missing row i and column j from $\left|\mathbf{M}_{k l}\right|$. If $k=i$ ${ }_{55}$ and/or $l=j$, then $\left|\mathbf{M}_{i k, j l}\right|=0$. If $n=2, k \neq i$, and $l \neq j$; then $\left|\mathbf{M}_{i k, j l}\right|=(-1)^{k+l}$; this ${ }_{56}$ property can be determined by direct substitution into Eq. (14) of the well-known formula ${ }_{57}$ for $\boldsymbol{\Sigma}^{-1}$ for rank 2 matrices - which takes the form of Eq. (16).

The general formulae for the necessary derivatives are:

$$
\begin{align*}
\frac{\partial P}{\partial \sigma_{i j}^{2}} & =-\frac{1}{2|\boldsymbol{\Sigma}|} \frac{\partial|\boldsymbol{\Sigma}|}{\partial \sigma_{i j}^{2}} P-\frac{1}{2|\boldsymbol{\Sigma}|^{2}}\left[|\boldsymbol{\Sigma}| \sum_{k} \sum_{l} \frac{\partial \tilde{\Sigma}_{k l}}{\partial \sigma_{i j}^{2}} \xi_{k}^{\prime} \xi_{l}^{\prime}-\frac{\partial|\boldsymbol{\Sigma}|}{\partial \sigma_{i j}^{2}} \sum_{k} \sum_{l} \tilde{\Sigma}_{k l} \xi_{k}^{\prime} \xi_{l}\right] P \\
& =-\frac{1}{2|\boldsymbol{\Sigma}|^{2}}\left[|\boldsymbol{\Sigma}| \sum_{k} \sum_{l}(-1)^{k+l} \frac{\partial\left|\mathbf{M}_{l k}\right|}{\partial \sigma_{i j}^{2}} \xi_{k}^{\prime} \xi_{l}^{\prime}+\frac{\partial|\boldsymbol{\Sigma}|}{\partial \sigma_{i j}^{2}}\left(|\boldsymbol{\Sigma}|-\sum_{k} \sum_{l} \tilde{\Sigma}_{k l} \xi_{k}^{\prime} \xi_{l}^{\prime}\right)\right] P \\
& =-\frac{(-1)^{i+j}}{2|\boldsymbol{\Sigma}|^{2}}\left[|\boldsymbol{\Sigma}| \sum_{k} \sum_{l}(-1)^{k+l+q_{i l, j k}}\left|\mathbf{M}_{i l, j k}\right| \xi_{k}^{\prime} \xi_{l}^{\prime}+\left|\mathbf{M}_{i j}\right|\left(|\boldsymbol{\Sigma}|-\sum_{k} \sum_{l} \tilde{\Sigma}_{k l} \xi_{k}^{\prime} \xi_{l}^{\prime}\right)\right] P \\
& =-\frac{(-1)^{i+j}}{2|\boldsymbol{\Sigma}|^{2}}\left\{|\boldsymbol{\Sigma}|\left|\mathbf{M}_{i j}\right|+\sum_{k} \sum_{l}(-1)^{k+l}\left[(-1)^{q_{i l j} \mid}|\boldsymbol{\Sigma}|\left|\mathbf{M}_{i l, j k}\right|-\left|\mathbf{M}_{i j}\right|\left|\mathbf{M}_{l k}\right| \mid \xi_{k}^{\prime} \xi_{l}^{\prime}\right\} P\right. \tag{26}\\
\frac{\partial P}{\partial \xi_{i}} & =-\frac{1}{2|\boldsymbol{\Sigma}|}\left[\sum_{l} \tilde{\Sigma}_{i l} \xi_{l}^{\prime}+\sum_{k} \tilde{\Sigma}_{k i} \xi_{k}^{\prime}\right] P \tag{27}\\
\frac{\partial^{2} P}{\partial \xi_{i} \partial \xi_{j}} & =-\frac{\tilde{\Sigma}_{i j}+\tilde{\Sigma}_{j i}}{2|\boldsymbol{\Sigma}|} P+\frac{1}{4|\boldsymbol{\Sigma}|^{2}}\left[\sum_{l} \tilde{\Sigma}_{i l} \xi_{l}^{\prime}+\sum_{k} \tilde{\Sigma}_{k i} \xi_{k}^{\prime}\right]\left[\sum_{l} \tilde{\Sigma}_{j l} \xi_{l}^{\prime}+\sum_{k} \tilde{\Sigma}_{k j} \xi_{k}^{\prime}\right] P \\
& =\frac{1}{|\boldsymbol{\Sigma}|^{2}}\left\{\frac{1}{4}\left[\sum_{l} \tilde{\Sigma}_{i l} \xi_{l}^{\prime}+\sum_{k} \tilde{\Sigma}_{k i} \xi_{k}^{\prime}\right]\left[\sum_{l} \tilde{\Sigma}_{j l} \xi_{l}^{\prime}+\sum_{k} \tilde{\Sigma}_{k j} \xi_{k}^{\prime}\right]-\frac{(-1)^{i+j}}{2}|\boldsymbol{\Sigma}|\left(\left|\mathbf{M}_{j i}\right|+\left|\mathbf{M}_{i j}\right|\right)\right\} P \tag{28}
\end{align*}
$$

$$
\begin{equation*}
\frac{\partial^{2} B_{i j} P}{\partial \xi_{i} \partial \xi_{j}}=\frac{\partial^{2} B_{i j}}{\partial \xi_{i} \partial \xi_{j}} P+\frac{\partial B_{i j}}{\partial \xi_{i}} \frac{\partial P}{\partial \xi_{j}}+\frac{\partial B_{i j}}{\partial \xi_{j}} \frac{\partial P}{\partial \xi_{i}}+B_{i j} \frac{\partial^{2} P}{\partial \xi_{i} \partial \xi_{j}} . \tag{29}
\end{equation*}
$$

Substituting into Eq. (14) yields

$$
\begin{align*}
& \frac{1}{2|\boldsymbol{\Sigma}|^{2}}\left\{(-1)^{i+j}\left[|\boldsymbol{\Sigma}|\left|\mathbf{M}_{i j}\right|+\sum_{k} \sum_{l}(-1)^{k+l}\left[(-1)^{q_{i l, j k}}|\boldsymbol{\Sigma}|\left|\mathbf{M}_{i l, j k}\right|-\left|\mathbf{M}_{i j}\right|\left|\mathbf{M}_{l k}\right|\right] \xi_{k}^{\prime} \xi_{l}^{\prime}\right]\right\} \frac{\partial \sigma_{i j}^{2}}{\partial t} \\
& =\frac{\partial^{2} B_{i j}}{\partial \xi_{i} \partial \xi_{j}}-\frac{1}{2|\boldsymbol{\Sigma}|}\left[\sum_{l} \tilde{\Sigma}_{j l} \xi_{l}^{\prime}+\sum_{k} \tilde{\Sigma}_{k j} \xi_{k}^{\prime}\right] \frac{\partial B_{i j}}{\partial \xi_{i}}-\frac{1}{2|\boldsymbol{\Sigma}|}\left[\sum_{l} \tilde{\Sigma}_{i l} \xi_{l}^{\prime}+\sum_{k} \tilde{\Sigma}_{k i} \xi_{k}^{\prime}\right] \frac{\partial B_{i j}}{\partial \xi_{j}} \\
& \quad-\frac{1}{|\boldsymbol{\Sigma}|^{2}}\left\{\frac{(-1)^{i+j}}{2}|\boldsymbol{\Sigma}|\left(\left|\mathbf{M}_{j i}\right|+\left|\mathbf{M}_{i j}\right|\right)-\frac{1}{4}\left[\sum_{l} \tilde{\Sigma}_{i l} \xi_{l}^{\prime}+\sum_{k} \tilde{\Sigma}_{k i} \xi_{k}^{\prime}\right]\left[\sum_{l} \tilde{\Sigma}_{j l} \xi_{l}^{\prime}+\sum_{k} \tilde{\Sigma}_{k j} \xi_{k}^{\prime}\right]\right\} B_{i j} \tag{30}
\end{align*}
$$

Equation (30) has the same form as Eq. (10). To obtain the particular solution, it will now be proven that the portion of the coefficients within $\{\cdot\}$ for the first and final terms in Eq. (30) are identical. Due to the symmetry of $\boldsymbol{\Sigma},\left|\mathbf{M}_{i j}\right|=\left|\mathbf{M}_{j i}\right|$, which means that the terms not involving ξ^{\prime} are identical. For the remaining terms, after applying the symmetry
of $|\boldsymbol{\Sigma}|$, it is required to prove the following:

$$
\begin{align*}
\sum_{k} \sum_{l}(-1)^{i+j+k+l}\left[\left|\mathbf{M}_{i j}\right|\left|\mathbf{M}_{k l}\right|-(-1)^{q_{l, j k}}|\boldsymbol{\Sigma}|\left|\mathbf{M}_{i l, j k}\right|\right] \xi_{k}^{\prime} \xi_{l}^{\prime} & =\left[\sum_{k} \tilde{\Sigma}_{k i} \xi_{k}^{\prime}\right]\left[\sum_{l} \tilde{\Sigma}_{j l} \xi_{l}^{\prime}\right] \\
& =\sum_{k} \sum_{l} \tilde{\Sigma}_{k i} \tilde{\Sigma}_{j l} \xi_{k}^{\prime} \xi_{l}^{\prime} \\
& =\sum_{k} \sum_{l}(-1)^{i+j+k+l}\left|\mathbf{M}_{i k}\right|\left|\mathbf{M}_{j l}\right| \xi_{k}^{\prime} \xi_{l}^{\prime} \tag{31}
\end{align*}
$$

Compiling terms, what remains is to prove:

$$
\begin{equation*}
\forall_{k, l}\left|\mathbf{M}_{i k}\right|\left|\mathbf{M}_{j l}\right|-\left|\mathbf{M}_{i j}\right|\left|\mathbf{M}_{k l}\right|+(-1)^{q_{i l, j k}}|\boldsymbol{\Sigma}|\left|\mathbf{M}_{i l, j k}\right|=0 \tag{32}
\end{equation*}
$$

All the matrices are expanded to sub-minor matrices as a common basis (in a two-step process because of the rank of $\boldsymbol{\Sigma}$ and to compile terms into a double-summation):

$$
\begin{align*}
& \left(\sum_{r} \Sigma_{l r}(-1)^{l+r+q_{i l, k r}}\left|\mathbf{M}_{i l, k r}\right|\right)\left(\sum_{m} \Sigma_{i m}(-1)^{i+m+q_{i l, j m}}\left|\mathbf{M}_{i l, j m}\right|\right) \\
& \quad-\left(\sum_{r} \Sigma_{l r}(-1)^{l+r+q_{i l, j r}}\left|\mathbf{M}_{i l, j r}\right|\right)\left(\sum_{m} \Sigma_{i m}(-1)^{i+m+q_{i l, k m}}\left|\mathbf{M}_{i l, k m}\right|\right) \\
& \quad+(-1)^{q_{i l, j k}} \sum_{m}(-1)^{i+m} \Sigma_{i m}\left|\mathbf{M}_{i m}\right|\left|\mathbf{M}_{i l, j k}\right| \\
& =\sum_{m} \sum_{r} \Sigma_{i m} \Sigma_{l r}(-1)^{i+l+m+r}\left[(-1)^{q_{i l, j m}+q_{i l, k r}}\left|\mathbf{M}_{i l, j m}\right|\left|\mathbf{M}_{i l, k r}\right|\right. \\
& \left.\quad-(-1)^{q_{i l, j r}+q_{i l, k m}}\left|\mathbf{M}_{i l, j r}\right|\left|\mathbf{M}_{i l, k m}\right|+(-1)^{q_{i l, j k}+q_{i l, m r}}\left|\mathbf{M}_{i l, m r}\right|\left|\mathbf{M}_{i l, j k}\right|\right] \tag{33}
\end{align*}
$$

${ }_{58}$ Because by definition:

$$
\begin{equation*}
(-1)^{q_{i j, k l}+q_{i j, m r}}\left|\mathbf{M}_{i j, k l}\right|\left|\mathbf{M}_{i j, m r}\right|-(-1)^{q_{i j, l r}+q_{i j, m k}}\left|\mathbf{M}_{i j, l r}\right|\left|\mathbf{M}_{i j, m k}\right|=(-1)^{q_{i j, k r}+q_{i j, l m}}\left|\mathbf{M}_{i j, k r}\right|\left|\mathbf{M}_{i j, l m}\right|, \boldsymbol{\|} \tag{34}
\end{equation*}
$$

${ }_{59}$ all the terms in Eq. (33) cancel irrespective of the number of dimensions n, the value of ξ, ${ }_{60}$ and the choice of indices, so it is proven that the particular solution is $B_{i j}(\vec{\xi})=\left\langle B_{i j}\right\rangle$. The ${ }_{61}$ homogeneous solution to Eq. (30) is:

$$
\begin{equation*}
B_{i j}=\left(C_{1}+C_{2} \xi_{i}^{\prime}+C_{3} \xi_{j}^{\prime}\right) \exp \left(\frac{\sum_{k} \sum_{l} \tilde{\Sigma}_{k k} \xi_{k}^{\prime} \xi_{l}^{\prime}}{2|\boldsymbol{\Sigma}|}\right) \tag{35}
\end{equation*}
$$

62
${ }_{63}$ Just like Eq. (11), the homogeneous solution must be zero. Therefore, every conditional ${ }_{64}$ (cross-)dissipation rate must be the mean (cross-)dissipation rate for joint-normal jpdfs of ${ }_{65}$ any dimension. Furthermore, because Eq. (12) yields the solution that the Fourier trans${ }_{66}$ form of a joint-normal jpdf is the initial value of the joint-normal jpdf's Fourier transform ${ }_{67}$ multiplied by the exponential in Eq. (35), the proof that only a Gaussian pdf can have a ${ }_{68}$ constant dissipation rate ${ }^{5}$ can be directly used to prove that only a joint-normal jpdf can ${ }_{69}$ have a constant (cross-)dissipation rate.

70 REFERENCES

${ }^{71}{ }^{1}$ H. Chen, S. Chen, and R. Kraichnan, "Probability Distribution of a Stochastically Ad72 vected Scalar Field," Physical Review Letters 63, 2657 (1989).
${ }_{73}{ }^{2}$ S. B. Pope, "Mapping Closures for Turbulent Mixing and Reaction," Theoretical and 74 Computational Fluid Dynamics 2, 255 (1991).
$75 \quad{ }^{3}$ A. Y. Klimenko and S. B. Pope, "A Model for Turbulent Reactive Flows Based on Multiple 76 Mapping Conditioning," Physics of Fluids 15, 1907 (2003).
${ }^{77}{ }^{4}$ C. Dopazo and E. E. O'Brien, "An Approach to the Autoignition of a Turbulent Mixture," 78 Acta Astronautica 1, 1239 (1974).
${ }^{79} \quad{ }^{5}$ F. Gao, "Mapping closure and non-Gaussianity of the scalar probability density functions ${ }_{80} \quad$ in isotropic turbulence," Physics of Fluids A 3, 2438 (1991).
${ }_{81}{ }^{6}$ E. E. O'Brien and T.-L. Jiang, "The conditional dissipation rate of an initially binary ${ }_{82}$ scalar in homogeneous turbulence," Physics of Fluids A 3, 3121 (1991).
${ }_{83}{ }^{7}$ R. Miller, S. Frankel, C. Madnia, and P. Givi, "Johnson-Edgeworth Translation for Prob${ }_{84}$ ability Modeling of Binary Scalar Mixing in Turbulent Flows," Combustion Science and
${ }_{85}$ Technology 91, 21 (1993).
${ }_{86}{ }^{8}$ S. B. Pope, "The Probability Approach to the Modelling of Turbulent Reacting Flows,"
${ }_{87}$ Combustion and Flame 27, 299 (1976).
${ }_{88}{ }^{9}$ S. Tavoularis and S. Corrsin, "Experiments in nearly homogeneous turbulent shear flow
${ }_{89}$ with a uniform mean temperature gradient. Part 1," Journal of Fluid Mechanics 104, 311
90 (1981).
${ }^{91}{ }^{10}$ M. M. Rogers and R. D. Moser, "Direct simulation of a self-similar turbulent mixing layer,"
92 Physics of Fluids 6, 903 (1994).
${ }^{11}$ N. Peters, Turbulent Combustion (Cambridge University Press, 2000).
${ }^{12}$ A. Y. Klimenko and R. W. Bilger, "Conditional Moment Closure for Turbulent Combustion," Progress in Energy and Combustion Science 25, 595 (1999).
${ }^{13}$ A. P. Wandel and R. P. Lindstedt, "Hybrid Binomial Langevin-MMC Modeling of a Reacting Mixing Layer," Physics of Fluids 21, 015103 (2009).
${ }^{14}$ A. P. Wandel and R. P. Lindstedt, "Hybrid Multiple Mapping Conditioning Modeling of Local Extinction," Proceedings of the Combustion Institute 34, 1365 (2013).
${ }^{15}$ A. P. Wandel, "Conditional Dissipation of Scalars in Homogeneous Turbulence: Closure for MMC Modelling," Combustion Theory and Modelling 17, 707 (2013).
${ }^{16}$ A. Varna, A. Wehrfritz, E. R. Hawkes, M. J. Cleary, T. Lucchini, G. D'Errico, S. Kook, and Q. N. Chan, "Application of a Multiple Mapping Conditioning mixing model to ECN Spray A," Proceedings of the Combustion Institute 37, 3263 (2019).
${ }^{17}$ S. K. Ghai and S. De, "Numerical investigation of auto-igniting turbulent lifted $\mathrm{CH}_{4} /$ air jet diffusion flames in a vitiated co-flow using a RANS based stochastic multiple mapping conditioning approach," Combustion and Flame 203, 362 (2019).
${ }^{18}$ E. Sharma, S. De, and M. J. Cleary, "A fully dynamic mixing time-scale model for the sparse Lagrangian Multiple Mapping Conditioning approach," Combustion and Flame 238, 111872 (2022).
${ }^{19}$ M. J. Cleary and A. Kronenburg, "Multiple Mapping Conditioning for Extinction and Reignition in Turbulent Diffusion Flames," Proceedings of the Combustion Institute 31, 1497 (2007).
${ }^{20} \mathrm{C}$. Yu, P. Breda, M. Pfitzner, and U. Maas, "The hierarchy of low-dimensional manifolds in the context of multiple mapping conditioning mixing model," Proceedings of the Combustion Institute (2022), https://doi.org/10.1016/j.proci.2022.10.008.
${ }^{21}$ S. B. Pope, Turbulent Flows (Cambridge University Press, 2000).

DATA AVAILABILITY STATEMENT

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

[^0]: ${ }^{\text {a) }}$ andrew.wandel@usq.edu.au

