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a b s t r a c t

Forecasting of solar radiation (Radn) can provide an insight vision for the amount of green and friendly
energy sources. Owing to the non-linearity and non-stationarity challenges caused by meteorological
variables in forecasting Radn, a variational mode decomposition method is integrated with simulated
annealing and random forest (VMD-SA-RF) for resolving this problem. Firstly, the input parameters
are separated into training and testing phases after generating a one-day ahead significant lags at (t –
1). Secondly, the variational mode decomposition is set to factorize multivariate meteorological data
of train and test sets, independently, into their band-limited signals. Thirdly, the simulate annealing
based feature selection system is engaged to select the best band-limited signals. Finally, using the
pertinent band-limited signals, the daily Radn is forecasted via random forest (RF) model. The outcomes
are benchmarked with other comparative models. The hybrid fusion VMD-SA-RF model is tested
geographically in Australia, generates reliable performance to forecast Radn. The hybrid VMD-SA-RF
system combining the pertinent meteorological features, as the model predictors have substantial
implications for renewable and sustainable energy resource management.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

With an upsurgeance of energy demand, there is an immense
ressure on the utility suppliers to generate electricity from con-
entional coal and gas technologies (Hou et al., 2018). An alarm-
ng depletion rate of non-renewable energy generating sources
nd the subsequently increased concern about global warming
ssues have compelled the utility suppliers and the consumers to
ake up the challenge of incorporating environmentally friendly
nd renewable energy technologies into the utility grids (Hai
t al., 2020). One such common technology is the roof-top so-
ar photovoltaic (PV) systems connected via net-metring to the
espective grids also referred as small-scale renewable energy
chemes (SRES) and is common in the solar-rich Queensland
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state, Australia. Since 2016, Queensland has an unprecedented
increase in renewable energy generations with 1706 MW of elec-
tricity generated from rooftop PV alone which is the highest level
of rooftop PV systems in the country (Stock et al., 2017). Yet now
the utility companies are facing a bigger challenge of providing
a back-up whenever there is low or no energy production from
grid-connected roof-top solar PV systems during overcast condi-
tions and downtimes (Abbas and Azat, 2018). Additionally, the
beginning of smart grid machinery with incorporation of recent
electronic engineering has brought about connection of numerous
complex instruments into the electrical networks whereby any
large fluctuations from the normal power signal result in worst
performances or lead to long-lasting costs in some scenarios
(Mohmmoud, 2020; Soman et al., 2015). These issues are making
the maintenance of power quality a serious concern and the an-
alysts find SRES uneconomical (Chester et al., 2018). Unforeseen
brownouts are proving to be costly for both the suppliers and the
consumers and hence the rejection of such powerful renewable
energy technology (Mohammed, 2018). Such in dispatchability,
variability, and uncertainty of grid-connected SRES have pre-

sented unprecedented challenges to power grid operations and
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lanning (Sangrody et al., 2017). Hence, for apt planning, con-
rolling and operations of smart utility grids integrated with solar
V systems, accurate Radn forecasting is imperative (Mahmmoud
t al., 2020).
Since the machine learning (ML) algorithms are capable of

learning’ some of the entrenched features within the historical
ata in emulating future values Radn values, this could aptly be
pplied in smart grid technologies. Subsequently, Guermoui et al.
2018a) found that Gaussian process regression (GPR) method-
logy for Radn estimates provided the best results while in a
tudy to forecast daily global and direct Radn using ML-based
odels, (Khelifi et al., 2020) found that multilayer perceptron
nd Radial Basis Function based neural network models perform
ell for three-step-ahead forecasting. A weighted Gaussian pro-
ess regression (WGPR) was also developed and tested for daily
lobal and direct horizontal Radn forecasting at multi-step fore-
ast horizons (Guermoui et al., 2018b). The study revealed that
GPR Parallel Forecasting Architecture (WGPR-PFA) and WGPR
ascade Forecasting Architecture (WGPR-CFA) showed signifi-
ant improvements in precision even at 10-steps ahead forecast
orizon. Based on the reported database of Scopus for hybrid
L model for solar radiation forecasting, over 70 articles were
ppeared. Based on the generated VOSviewer algorithm, a sub-
tantial keywords presented for this research domain (Fig. 1a).
n addition, based on the time scale of the adopted research
Fig. 1b), since 2016 and onward, the major researches were
stablished and more research interest seen on the climate vari-
bility, development of new ML models such as deep learning
odel, and the insight on the energy harvesting. Fig. 1c states the
ajor regions were investigated the solar radiation forecasting
s it appears China region has the highest number of research;
hereas, Australia region only four researches were adopted.
It is worth to mention, the stochastic nature of Radn due to

he natural variability of solar irradiance compounded by envi-
onmental factors (such as cloud cover), atmospheric conditions
such as particulate matter and dust), latitude and season. Re-
ently, a comprehensive literature review conducted by Guer-
oui et al. (2020), the research outlines the hybrid models de-
eloped for Radn forecasts and found that evidently single models
ay fail to find the desired solution and there is a need for more

nnovative hybridization methods. Hence, to increase the fore-
ast precision of ML modelling approaches, data pre-processing
ia multi-resolution analysis (MRA) needs to be incorporated.
ourier spectra are one of the earliest approaches for frequency
nvestigation of a static signal, yet the method essentially fails
ith biases which are non-static such as those in Radn time
eries (Soman et al., 2015). Then came Fourier transformations,
hich only accomplishes transformation of frequency resolutions
ithout the time stamp (Prasad et al., 2019). While, in predicting
cenarios, the discrete wavelet transformation (DWT) has promis-
ngly accepted however, the basic flaw of DWT is the intrinsic
evastation influence that restrains the features and produces
nly half the wavelet coefficients, and by high and low pass filters
Rathinasamy et al., 2014), the remaining flat version is again and
gain treated at a rough resolution. With that the performance
f DWT largely depends upon the option of mother wavelet
nd the number of putrefaction levels which is selected a priori
Soman et al., 2015). DWT has also poor adaptability to signals.
o ameliorate these issues, a data-dependent demarcation tech-
ique is more suited in comparison to the conventional wavelet
echniques, which is known as Empirical Mode Decomposition
EMD) founded by Huang et al. (1998). The EMD lacks appropriate
athematical reasoning behind its structure. The variants of EMD

ogether with, Ensemble based EMD (Wu and Huang, 2009),
omplete ensemble EMD with adaptive noise (CEEMDAN) (Torres

t al., 2011) and improved complete ensemble empirical mode
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decomposition with adaptive noise (ICEEMDAN) (Ali and Prasad,
2019), have been gradually established to handle the drawback
of their respective predecessors. The EMD and its variants have
been preferred due to their self-adaptability making it completely
data-dependent in extracting salient predictive information with-
out loss of underpinning features (Alvanitopoulos et al., 2014;
Prasad et al., 2018). Further, the EMD based decomposition pre-
serves the physical configurations of the sequential predictors
(Wu et al., 2011).

Despite such progressive evolution of the remarkable MRA
tool, the EMD based decomposition techniques can only be imple-
mented to decompose a single input attribute at a time (Ali et al.,
2019; Ali and Prasad, 2019). For instance, only the important
historical lags of daily Radn could be utilized to predict the
prospective Radn values, which a major issue with EMD, since
as aforementioned, Radn is contingent upon a number of key
predictors. In such a multiple inputs case, a sequential decompo-
sition needs to be adopted following (Prasad et al., 2019), which
though is a promising approach, yet, in sequential decomposition
approach, some pertinent information may not be lucid since
each EMD demarcation is carried out in isolation. To overcome
this challenge and incorporate multiple predictor inputs with
simultaneous decomposition an advanced and versatile version
of EMD viz., variational mode decomposition (VMD) is being
designed to resolve the entrenched sub-frequency components of
respective inputs.

The VMD is able to extract the entrenched predictive infor-
mation concurrently from multiple non-stationary and non-linear
historic data series via an appropriate multi-resolution analysing
approach. As a result, only the most significant set of predictors
need to be screened out as irrelevant ones that may obscure the
model. Moreover, another important benefit of the VMD is its
adaptive and non-recursive nature which is entirely dependent
on the predictor variables and thus needing trivial human effort
during decomposition process (Dragomiretskiy and Zosso, 2014).
Unlike the EMD technique (Looney and Mandic, 2009), the VMD
demarcates and updated the input predictors into various band-
limited intrinsic mode functions (BL-IMFs) overcoming the mode
mixing difficulty and misclassification problem produced by fixed
algorithm in EMD (Li et al., 2017). The VMD is fundamentally
more robust in terms of sampling and noise reduction together
with astound accuracy in embedded frequency search and sep-
aration. Moreover, the VMD algorithm is able to aptly extract
the time–frequency signals via band limiting and optimization
(Dragomiretskiy and Zosso, 2014). These salient features ascertain
the suitability of VMD as a multichannel MRA utility, yet the
application of the algorithm in the short-term such as daily Radn
forecasting has not been piloted up to now. The VMD-based ML
algorithms have been utilized in bearing fault detection (Li et al.,
2017); air quality parameter estimation (Wang et al., 2017) to-
gether with wind power prediction (Zhang et al., 2018) and wind
modelling (Zhou et al., 2018). Recently, Majumder et al. (2018)
forecasted solar irradiance (kWh/m2) using VMD in combination
with reduced Morlet Wavelet Kernel extreme learning machine.
However, the length of the data used was very short i.e., 1 year
only, which would essentially mean that the ML model did not get
sufficient proficiency in capturing the embedded trends and data
features as many of these features may have not been introduced
to the model due to very short training data set.

This paper develops a novel hybrid model that addresses
non-stationarity issues in multiple predictor inputs using self-
adaptive approach whilst generating accurate forecasts of short-
term, i.e., daily Radn, using over 110 years of solar radiation data
in order to provide adequate and pertinent information to the ML
models. The novelty and contribution include:
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Fig. 1. (a) The major keywords reported over the literature for solar radiation using hybrid ML models, (b) time line of the adopted keywords over the literature,
(c) number of conducted researches over the literature.
i. Utilizing the variational mode decomposition (VMD)
method, being a non-iterative data decomposition proce-
dure. During VMD process, concurrent demarcation and
extraction of BL-IMFs are carried out, making it advanta-
geous over EMD and its variants which are recursive and
computationally inefficient.
6702
ii. The simulated annealing (SA) is a bio-inspired adaptive

and non-deterministic feature selection method ideal for

feature optimizations. The SA algorithm approach is im-

plemented to rank and decide the best BL-IMFs in training

phase to build the model.
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Fig. 1. (continued).
iii. The RF model is then applied to establish the VMD-SA-
RF model to forecast the daily Radn based on the selected
BL-IMFs.

An evaluation of the predicting efficiency of the novel VMD-SA-RF
model is performed with similar VMD-SA integrations of Multi-
variate adaptive regression splines (MARS), (i.e., VMD-SA-MARS),
Volterra (i.e., VMD-SA-Volterra) and the standalone RF, MARS and
Volterra models. The hybrid VMD-SA-RF with benchmark models
was developed and evaluated at three sites within sunshine-state,
Queensland, Australia. The next section of the paper presents
the theoretical framework of ML techniques, followed by this is
Section 3 Case Study Description and Data Used. Then Section 4
presents the Results, Section 5 is Discussion with Further Analysis
with Section 6 with Concluding Remarks.

2. Theoretical framework of machine learning techniques

The theoretical frameworks of variational mode decomposi-
tion (VMD), Simulated annealing (SA) feature optimization algo-
rithm, the forecasting RF model and its comparative counterpart
Multivariate Auto Regressive Spline (MARS) and Volterra models
are presented in this section.

2.1. Method of variational mode decomposition (VMD)

The VMD algorithm developed by Dragomiretskiy and Zosso
(2014), which is to ameliorate the disadvantages of recursive
EMD algorithm (Looney and Mandic, 2009). During the VMD, the
predictor variable is decomposed into several band limited sub-
signals (BL-IMFs), which essentially are amplitude-modulated-
frequency modulated (Dragomiretskiy and Zosso, 2014). Sparsity
natures of BL-IMFs are revealed when reproducing the input
signal. In mathematical terms, the ith mode can be written as:

Mi = Ai(t) cos(ϑi(t)) (1)

where Ai(t) = instantaneous amplitude, and ϑi(t) = instanta-
neous phase. While the derivative of ϑi(t) is the instantaneous
frequency.
6703
The algorithm constructs an analytical signal for each mode Mi
via Hilbert transformation and computes the unilateral frequency
spectrum. Consequently, employing the displacement property
of the Fourier transformation, the spectrum of the sub-signals is
altered to baseband and the first order H1 Gaussian smoothness
is employed to estimate the bandwidth. The minimization of the
total spectral bandwidths of the entire IMFs range is the key aim
of VMD algorithm. Since the sum of the modes is equivalent to the
actual undecomposed variable, it induces a significant constraint,
however, with the implementation of Lagrangian multiplier to-
gether with a quadratic penalty term the issue is resolved. Finally,
the Alternating Direction Method of Multipliers is working to
iteratively demarcate the undecomposed signals via VMD into the
respective BL-IMF components. For full details of the algorithm,
readers can refer to (Dragomiretskiy and Zosso, 2014).

2.2. Simulated annealing (SA) algorithm

The SA algorithm is an attribute selection based on biological
strategies to discover an appropriate solution for an optimization
problem (Elleithy and Fattah, 2012). Fundamentally, the SA is a
non-deterministic characterized based optimization system that
can be describe as following:

(a) Generate a suitable random solution in the initial phase.
(b) Using cost function to estimate the cost in above (a).
(c) Again, estimate random neighbouring solution.
(d) The cost can be calculated for above solution in (c).
(e) The cos t(a) > cos t(b), generate a new solution otherwise

step (f).
(f) Repeat (c)–(e) until an ideal solution is discovered.

The implementation of SA algorithm in real world problems
are includes: travelling salesman (Peng et al., 1996), computer-
simulated holograms (Taniguchi et al., 1997), power productivity
(Wilson, 1997) and heat transfers (Athier et al., 1997).

2.3. Random Forest (RF) model

Bootstrapping and bagging is the underpinning technique on
which the RF ensemble modelling approach is constructed upon,
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or accurate prediction in the form of decision trees (Breiman,
001, 1996). Using a random bagging technique, the RF algorithm
odel is a regression tree based ML method which develops
roups (Al-Sulttani et al., 2021). By selecting well-known predic-
ors every node is connected in a random way to proceed robust
erformance while avoiding overfitting (Bhagat et al., 2020). The
F is constructed in the following stages:

i. Using bootstrapping to generate n-number of trees (i.e.,
ntrees) by embedding the inputs.

ii. With a non-prune regression tree using a chaotic sam-
ple of inputs (mtry), pick the maximum number of split
predictors.

iii. To forecast Rdn in terms of aggregations, combine the
estimates of ntrees.

The applications of RF model have evidenced its capacity in
iverse climate, environment and hydrology domains (Ali et al.,
020; Bhagat et al., 2020; Sharafati et al., 2019; Tiyasha et al.,
021).

.4. Model of Multivariate Auto Regressive Spline (MARS)

MARS model was firstly introduced by Friedman (1991), the
ARS model essentially partitions the dataset into several splines

hat are of equal lengths. The data are further split into numerous
ubgroups at respective knots, whereby the relationships of the
redictor and the target variable are described by two of a kind
asis functions (BF) producing consistent simulations with con-
inuous spin-offs (Friedman, 1991). Mathematically at location ρ,
he output (O) of the ith subclass of the knot can be found as:

O = BFi (x) = max (0, x − ρ)
and its mirror :

O = BFi (x) = max (0, k − ρ)

}
(2)

Finally, the outputs of the series of BFs are summed that gen-
rates a large and potentially bulky model that generally overfit
he training data. Hence, those BFs that make least contributions
owards the performance of the model, calculated on the basis
f minimum Generalized Cross Validation (GCV) are pruned in a
ackwards-deletion strategy. This results in a much smaller and
ess bulky optimal model.

.5. Volterra model

The Volterra model based on Taylor series mathematical ex-
ension to emulate non-linear systems with causal dependence.
2nd-order representation has been utilized following earlier

tudies (Labat et al., 2001; Maheswaran and Khosa, 2012b,a;
athinasamy et al., 2014). For the 2nd-order Volterra algorithm,
he output [y (t)] whereby the Volterra kernels are v1 (β1) and
2 (β1, β2) can mathematically be expressed as:

(t) = Vk1[x(t)] + Vk2[x(t)] (3)

A further shortening of the above equation (Eq. (3)) gives:

(t) = Vk1[x(t)] + Vk2[x(t)] (4)

here Vk1 [x (t)] = 1st order Volterra operator and Vk2 [x (t)] =

nd order Volterra operator.
A multiple input single output (MISO) system emerges when

any input time series as used as inputs, as is the case with the
urrent forecasting of daily Radn. The 2nd order Volterra series
6704
or MISO case is:

y (t) =

A∑
α=1

B∑
β=1

v
(β)

1 (α) xβ (t − α)

+

B∑
β=1

A∑
γ=1

A∑
α=1

v
(β)

2s (γ , α) xβ (t − γ ) xβ (t − α)

+

B∑
β1

β1−1∑
β2=1

A∑
i=1

A∑
α=1

v
(β1,β2)
2× (γ , α) xβ1 (t − γ ) xβ2 (t − α)

(5)

where the number of predictor inputs is represented by B, and
A represents the length of memory of each selected input. The
v

(β)

1 = 1st order kernel self kernel, v
(β)

2s = 2nd order self kernel
and v

(β1,β2)
2× = second 2nd order cross-kernel. An orthogonal

least squares method was adopted in the estimation of Volterra
kernels.

3. Case study description and data used

3.1. Data collection and preparation

To develop a robust model, a large set of predictor variables
consisting of meteorological variables were collated that included
Potential Evapotranspiration (FAO56), evaporation (Evap), vapour
pressure (VP), Relative Humidity at maximum and minimum
temperature (RHmax.T, RHmin.T), monthly precipitation (Rain),
maximum and minimum temperature (Tmax,Tmin) as illustrated in
Table 1a. While the daily mean Radn data series were used as the
target from January 1905 to June 2018 in developing the models.
Three sites situated in Queensland, i.e., Site 1: Ipswich, Site 2:
Goldcoast, and Site 3: Darling Downs were selected (Table 1b).
The Scientific Information for Land Owners (SILO) provided the
predictor and target data sets (Jeffrey et al., 2001). Robust sta-
tistical techniques were utilized to interpolate the missing data
points (Beesley et al., 2009; Zajaczkowski et al., 2013).

The descriptive statistics (Table 1) reveals the stochastic na-
ture of daily Radn data and the respective predictor inputs. The
skewness of the predictors and the daily Radn data ranged be-
tween −1 and 1, showing symmetrical distributions, except for
RHmin.T which illustrated negative skewness (skewness ≤ −2.4)
at all three sites. A near to normal distributions with −1 ≤

kurtosis ≤ −1.0 was also evident for the data sets at all three
sites, excepting for the distribution of RHmin.T that had longer
positive tails at all sites.

3.2. Study locations

The Australian continent receives a high level of solar radi-
ation annually making Australia very conducive for electricity
generation through solar radiation (Zahedi, 2010). The study sites
are located in Queensland State, known as the sunshine state of
Australia, that receives a profusion of Radn with fewer overcast
days and the state government is committed to increase the
energy generation by renewables to up to 50% by the year 2030
(Stock et al., 2017). Fig. 2 illustrates a diagram showing the
geographical positions of the regions while Table 1 summarizes
the longitude, latitude, combined with differing elevations. The
sites were ideally selected due to their relevance to renewable
energy generations. The Darling Downs site has a 110 MW large-
scale solar generation solar PV project being committed, while
Ipswich is a booming city, a high growth in the quantity of
grid-connected rooftop solar PV systems have been noted with
installation of the largest shopping mall based solar array having
a generation capacity of 30 kWh was recently commissioned.

Additionally, Gold Coast site has very high electricity demand,
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Fig. 2. Map of Australia showing the study sites for daily solar radiation forecasting.
Table 1
Basic statistics of the meteorological predictors and target variable in addition with geographic coordinates of the locations.
Sites Ipswich Gold coast Darling Downs
Long. (◦E) 153.68 153.40 150.88
Lat. (◦N) 27.695 28.01 27.11
Elevation (m) 50 13.1 353
Meteorological
predictors

Mean Max Min Std. Skew Mean Max Min Std. Skew Mean Max Min Std. Skew

T.Max 24.3 41.5 12 3.4 0.1 25.0 42.0 10.5 3.7 0.0 26.2 44.0 7.5 5.8 −0.1
T.Min 17.4 27.5 2.5 4.1 −0.4 15.3 26.0 −0.5 4.6 −0.4 11.7 28.0 −6.0 6.3 −0.4
Evap 4.2 21.6 0.2 1.5 0.3 4.2 21.2 0.2 1.5 0.4 5.3 16.8 0.2 2.2 0.2
VP 18.7 38.0 2.0 5.3 −0.1 17.8 37.0 2.0 5.3 0.0 14.7 30.0 1.0 4.9 0.1
RHMax.T 60.2 100 7.3 12.1 −0.2 54.9 100.0 6.9 11.8 0.1 42.3 100 4.0 11.5 0.7
RHMin.T 89.6 100 10 11.0 −1.4 94.1 100.0 12.5 9.5 −2.3 94.4 100 13.2 9.6 −2.4
FAO56 3.6 8.6 0.6 1.2 0.3 3.6 8.9 0.5 1.3 0.3 4.1 8.9 0.5 1.7 0.2
Rain 18.6 35.0 0.0 6.0 −0.1 18.6 35.0 2.0 6.0 −0.1 19.4 33.0 4.0 5.9 −0.2
yet no large scale solar generation facility has been proposed for
this city. The nearest solar farm is situated at Sunshine Coast and
it would be interesting to perform studies and verify the Radn
forecasts for Gold Coast to assist the decisionmakers in planning
future renewable energy facilities.

3.3. The forecasting accuracy tools

To predict Radn via some statistical metrics, the performance
f VMD-SA-RF vs. VMD-SA-MARS, VMD-SA-Volterra, single-phase
F, single-phase MARS and single-phase Volterra models were
tudied. These metrics are denoted by the following mathematical
quations (Tiyasha and Yaseen, 2020; Tur and Yontem, 2021;
aseen, 2021):
6705
I. Coefficient of Correlation (R):

R =

⎛⎜⎜⎝
∑N

i=1

(
RadnObs,i

− RadnObs,i
)(

RadnFor,i
− RadnFor,i

)
√∑N

i=1

(
RadnObs,i − RadnObs,i

)2
√∑N

i=1

(
RadnFor,i − RadnFor,i

)2

⎞⎟⎟⎠
(6)

II. The mathematical form of Willmott’s Index (EWI ) is as
follows:

EWI = 1 −

⎡⎢⎣ ∑N
i=1

(
RadnFor,i

− RadnObs,i
)2∑N

i=1

(⏐⏐⏐RadnFor,i − RadnObs,i
⏐⏐⏐ +

⏐⏐⏐RadnObs,i − RadnObs,i
⏐⏐⏐)2

⎤⎥⎦ ,

0 ≤ EWI ≤ 1 (7)
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III. Nash–Sutcliffe efficiency (ENS) value:

NS = 1 −

⎡⎢⎣ ∑N
i=1

(
RadnObs,i

− RadnFor,i
)2∑N

i=1

(
RadnObs,i − RadnFor,i

)2

⎤⎥⎦ , 0 ≤ ENS ≤ 1 (8)

IV. The Mathematical derivation of Root mean square error
RMSE) is as:

MSE =

√ 1
N

N∑
i=1

(
RadnFor,i − RadnObs,i

)2 (9)

V. Mean absolute error (MAE):

MAE =
1
N

N∑
i=1

⏐⏐(RadnFor,i
− RadnObs,i)⏐⏐ (10)

VI. Legates and McCabe’s (ELM ):

LM = 1 −

⎡⎣∑N
i=1

⏐⏐RadnFor,i
− RadnObs,i

⏐⏐∑N
i=1

⏐⏐⏐RadnObs,i − RadnObs,i
⏐⏐⏐
⎤⎦ , 0 ≤ ELM ≤ 1 (11)

VII. Relative root mean squared percentage error (RRMSPE; %),
is expressed as

RRMSPE =
1
N

N∑
i=1

⏐⏐⏐⏐⏐
(
RadnFor,i

− RadnObs,i
)

RadnObs,i

⏐⏐⏐⏐⏐ × 100 (12)

VIII. Relative mean absolute percentage error (RMAPE; %):

RMAPE =
1
N

N∑
i=1

⏐⏐⏐⏐⏐
(
RadnFor,i

− RadnObs,i
)

RadnObs,i

⏐⏐⏐⏐⏐ × 100 (13)

n Eqs. (6)–(13), RadnObs,i, RadnFor,i are the observed and fore-
casted ith magnitudes of solar radiation, while RadnObs,i and
RadnFor,i denote the observed and forecasted mean Radn values
separately, where N is the entire value of testing data records.

3.4. Designing of the VMD-SA-RF model

The VMD-SA-RF approach is established in MATLAB R2018b
programming (The Math Works Inc. USA). Specification of the PC
(2.93 GHz dual-core Pentium 4 operating system), through which
the whole simulation results were attained. The dataset is divided
into 70% (train) and 30% (test) before designing the model. Since
a multiresolution analysis toom (VMD) was adopted in this study,
only one antecedent time lagged inputs (i.e., t – 1) of T.Max; T.Min;
vap; VP; RHMax.T; RHMin.T; and FAO56 were used in the model
evelopment to forecast daily Radn as elucidated in the following
hases.

hase 1 VMD process
The training input predictors are demarcated by applying the

MD method into precise BL-IMFs and residuals. Furthermore,
he predefined parameters contain moderate bandwidth con-
traint (α = 2000), noise-tolerance (τ = 0), modes/IMFs (k),
mega initialization (init = 0) and tolerance of convergence

condition (tol = 0). To obtain the equal number of BL-IMFs for
testing, the VMDmethod is conditioned with modes (see Table 2).
Total 49 VMD signals with residuals (Table 2) for all three sites
(i.e., Darling Downs, Ipswich, Gold Coast) is draw out with each
input has (BL-IMFs = 7).

Phase 2: The SA Scheme
The SA methodology is implemented to indicate the best and

suitable BL-IMFs in training subset for model construction. The
6706
predefined further, some constraints/parameters comprises max-
imum no. of iterations (=10) and initial temperature (=10). The
mount of designated most BL-IMFs is decided to 15 features that
ere consider earlier to execute the SA technique (see; Table 3).
or testing phase equal number of BL-IMFs were picked based on
elected BL-IMFs training session. The advantages of SA algorithm
s that it may not only prevent the population from falling into
local optimal solution, but also increase the diversity of the
opulation. Further, the optimization will be unstable due to
he randomness (Du et al., 2018). Moreover, SA can deal with
rbitrary systems and cost functions and statistically guarantees
o find an optimal solution. In fact, it has been proved that SA will
onverge to its global optimality (Yang, 2020). For more detail
n SA, we refer to the readers (Dowsland and Thompson, 2012;
irkpatrick et al., 1983; Yang, 2020).

hase 3: Normalization procedure
With the help of Eq. (13) (Salih et al., 2019), to handle large

luctuation and spikes in the data (Hsu et al., 2003), the training
nd testing sets are modified between [0, 1].

Norm =
(σ − σMin())
(σMinMax)

(14)

here σ symbolizes the data point, σMin = the least data record,
Max = the largest data point and σNorm = the desired normalized
oint.

hase 4: Applying RF model
The last modelling phase is based on employing the RF algo-

ithm to predict daily Radn to study its capability over a near-real
imescale. After incorporating the BL-IMFs lags into the RF algo-
ithm, several kinds of parameters were used to tune the model
hat includes 1000 trees and 5 predictors. To test the forecasting
ccuracy of the fused VMD-SA-RF approach, the identical BL-
MFs signals were chosen from test set following the train set.
o compare the results, the MARS and Volterra models are also
ombine with the VMD and SA to build VMD-SA-MARS and
MD-SA-Volterra models. Further, the single-phase RF, MARS and
olterra methods were also compared (Table 4). Fig. 3 explains
he graphic representation of the VMD-SA-RF system.

The RMSE, MAE and R assessment tools were implemented to
easure the VMD-SA-RF precision during training stage against
MD-SA-MARS, VMD-SA-Volterra, single-phase RF, single-phase
ARS and single-phase Volterra models.
VMD-SA-RF model generates the quantities of RMSE, MAE and

, for Radn predicting at Ipswich are seen to be: RMSE = 1.47
Jm−2, MAE = 1.06 MJm−2, R = 0.974. For comparison models,

hese matrices are: VMD-SA-MARS [RMSE = 3.62 MJm−2; MAE =

.66 MJm−2, R = 0.783], VMD-SA-Volterra [RMSE = 3.62 MJm−2;
AE = 2.67 MJm−2; R = 0.782], single-phase RF [RMSE = 2.14
Jm−2; MAE = 1.54 MJm−2; R = 0.937], single-phase MARS

RMSE = 3.71 MJm−2; MAE = 2.64 MJm−2; R = 0.769] and single-
hase Volterra single-phase RF [RMSE = 3.72 MJm−2; MAE = 2.65
Jm−2; R = 0.769].
Similarly, the proposed VMD-SA-RF approach realistically

chieves better forecasts for Gold Coast and Darling Downs in
omparison with benchmarking models (see; Table 4). Therefore,
t is apparent that the VMD-SA-RF will be accurate for testing
cenarios to Radn at all three sites.

. Applications results and analysis

To forecast Radn in Queensland, Australia, for highly three rich
olar radiation, locations were initiated the VMD-SA-RF model.
he forecasting accuracy of VMD-SA-RF is estimated with respect
o VMD-SA-MARS, VMD-SA-Volterra, single-phase RF,
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able 2
esign parameters involved in decomposing mode signals for training and testing period in each study site using VMD method.

Training period Testing period

Moderate
bandwidth
constraint α

Noise-
tolerance
τ

No. of modes
κ in each input

No. of total
modes signals

Moderate
bandwidth
constraint α

Noise-
tolerance
τ

No. of modes
κ in each input

No. of total
modes signals

Ipswich 2000 0 7 49 2000 0 7 49
Gold Coast 2000 0 7 49 2000 0 7 49
Darling Downs 2000 0 7 49 2000 0 7 49
Table 3
Number of selected VMD signals using the SA algorithm, training, and testing data points. Note that the VMDs were selected at
(t − 1) lag.
Sites No. of selected

modes signals
Max.
iteration

Initial
temperature

No. of data points
in each station

No. of training
data

No. of testing
data

Ipswich 15 10 10 47411 3200 14211
Gold Coast 15 10 10 47411 3200 14211
Darling Downs 15 10 10 47411 3200 14211
Table 4
Training performance of VMD-SA-RF vs. VMD-SA-MARS, VMD-SA-Volterra, single-phase RF, single-phase MARS and single-phase Volterra models with correlation
coefficient - R, RMSE and MAE (MJm−2).

VMD-SA-RF VMD-SA-MARS VMD-SA-Volterra
Training period Training period Training period

RMSE (MJm−2) MAE (MJm−2) R RMSE (MJm−2) MAE (MJm−2) R RMSE (MJm−2) MAE (MJm−2) R

Ipswich 1.47 1.06 0.974 3.62 2.66 0.783 3.62 2.67 0.782
Gold Coast 1.39 0.99 0.976 3.40 2.51 0.810 2.53 3.42 0.808
Darling Downs 1.324 0.944 0.978 3.22 2.44 0.829 3.22 2.43 0.829

Single-phase RF Single-phase MARS Single-phase Volterra
Training period Training period Training period

RMSE (MJm−2) MAE (MJm−2) R RMSE (MJm−2) MAE (MJm−2) R RMSE (MJm−2) MAE (MJm−2) R

Ipswich 2.14 1.54 0.937 3.71 2.64 0.769 3.72 2.65 0.769
Gold Coast 2.16 1.55 0.934 3.67 2.61 0.774 0.773 3.68 2.62
Darling Downs 1.92 1.37 0.946 3.33 2.42 0.817 0.814 3.34 2.44
Table 5
Testing performance of VMD-SA-RF vs. VMD-SA-MARS, VMD-SA-Volterra, single-phase RF,
single-phase MARS and single-phase Volterra models measured by R, RMSE, and MAE (MJm−2).
Site 1: Ipswich

R RMSE (MJm−2) MAE (MJm−2)

Single-phase MARS 0.684 4.69 3.58
Single-phase Volterra 0.694 4.69 3.54
Single-phase RF 0.933 2.47 1.83
VMD-SA-MARS 0.739 4.48 3.16
VMD-SA-Volterra 0.735 4.44 3.21
VMD-SA-RF 0.972 1.72 1.28
Site 2: Gold Coast
Single-phase MARS 0.738 4.36 3.29
Single-phase Volterra 0.739 4.37 3.26
Single-phase RF 0.945 2.24 1.66
VMD-SA-MARS 0.763 4.20 3.25
VMD-SA-Volterra 0.765 4.13 3.10
VMD-SA-RF 0.974 1.66 1.22
Site 3: Darling Downs
Single-phase MARS 0.690 4.73 3.33
Single-phase Volterra 0.696 4.76 3.28
Single-phase RF 0.934 2.46 1.82
VMD-SA-MARS 0.709 4.74 3.80
VMD-SA-Volterra 0.715 4.48 3.50
VMD-SA-RF 0.971 1.81 1.37
single-phase MARS and single-phase Volterra models based on
R, RMSE and MAE errors.

The VMD-SA-RF model established for Ipswich region accom-
lish the maximum amounts of R and lowermost RMSE and
AE magnitudes in forecasting Radn (R ≈ 0.972, RMSE ≈ 1.72
Jm−2, MAE ≈ 1.28 MJm−2) in comparison with VMD-SA-MARS
6707
(R ≈ 0.739, RMSE ≈ 4.48 MJm−2, MAE ≈ 3.16 MJm−2), VMD-SA-
Volterra (R ≈ 0.735, RMSE ≈ 4.44 MJm−2, MAE ≈ 3.21 MJm−2),
single-phase RF (R ≈ 0.933, RMSE ≈ 2.47 MJm−2, MAE ≈ 1.83
MJm−2), single-phase MARS (R ≈ 0.684, RMSE ≈ 4.69 MJm−2,
MAE ≈ 3.58 MJm−2) and single-phase Volterra (R ≈ 0.694, RMSE
≈ 4.69 MJm−2, MAE ≈ 3.54 MJm−2). Equally, the VMD-SA-RF
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Fig. 3. Schematic diagram of VMD-SA-RF model used to forecast daily solar radiation.
a
0

generates considerably healthier forecasts for the Gold Coast and
Darling Downs (Table 5) regions. This establishes that VMD-
SA-RF can be implemented a well-designed forecasting tool for
Radn forecast in contrast to VMD-SA-MARS, VMD-SA-Volterra,
single-phase RF, single-phase MARS and single-phase Volterra.

Table 6 uses other useful multiple criteria based on EWI, ENS
and ELM to examine the VMD-SA-RF vs. VMD-SA-MARS, VMD-
SA-Volterra, single-phase RF, single-phase MARS and single-phase
6708
Volterra models. According to these measures, the results pro-
duced by VMD-SA-RF for Ipswich are (EWI ≈ 0.957, ENS ≈ 0.926
and ELM ≈ 0.758), followed by single-phase RF (EWI ≈ 0.904, ENS
≈ 0.847 and ELM ≈ 0.653), VMD-SA-MARS (EWI ≈ 0.759, ENS ≈

0.499 and ELM ≈ 0.403), VMD-SA-MARS (EWI ≈ 0.753, ENS ≈ 0.509
and ELM≈ 0.394), single-phase Volterra (EWI ≈ 0.640, ENS ≈ 0.451
nd ELM ≈ 0.331) and single-phase MARS (EWI≈ 0.609, ENS ≈

.451 and ELM ≈ 0.323) models.
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Table 6
The performance of VMD-SA-RF vs. VMD-SA-MARS, VMD-SA-Volterra, single-phase RF, single-phase
MARS and single-phase Volterra models using Willmott’s index (EWI), Nash–Sutcliffe(ENS) and
Legates-McCabe’s (ELM) agreement. Note that the best model is boldfaced (blue).
Site 1: Ipswich

Models EWI ENS ELM
Single-phase MARS 0.609 0.451 0.323
Single-phase Volterra 0.640 0.451 0.331
Single-phase RF 0.904 0.847 0.653
VMD-SA-MARS 0.759 0.499 0.403
VMD-SA-Volterra 0.753 0.509 0.394
VMD-SA-RF 0.957 0.926 0.758
Site 2: Gold Coast
Single-phase MARS 0.722 0.535 0.383
Single-phase Volterra 0.733 0.533 0.387
Single-phase RF 0.927 0.877 0.689
VMD-SA-MARS 0.711 0.569 0.391
VMD-SA-Volterra 0.741 0.584 0.418
VMD-SA-RF 0.962 0.933 0.771
Site 3: Darling Downs
Single-phase MARS 0.707 0.444 0.371
Single-phase Volterra 0.733 0.435 0.380
Single-phase RF 0.905 0.849 0.656
VMD-SA-MARS 0.620 0.439 0.283
VMD-SA-Volterra 0.693 0.501 0.339
VMD-SA-RF 0.951 0.918 0.741
Fig. 4. Boxplots showing the actual error generated between the forecasted and observed Radn by the VMD-SA-RF vs. the VMD-SA-MARS, VMD-SA-Volterra,
ingle-phase RF, single-phase MARS and single-phase Volterra models in the testing phase.
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For Gold Coast and Darling Downs sites, again the VMD-SA-RF
cts as a good model exhibiting (EWI ≈ 0.962, ENS ≈ 0.933 and
LM ≈ 0.771) and (EWI ≈ 0.951, ENS≈ 0.918 and ELM ≈ 0.741)
espectively. The scores attained by benchmarking models (Ta-
le 6) backing the supremacy of the VMD-SA-RF. When applied
or Radn forecasting all sites could be pointed as ‘very satisfactory’
t these three sites in Australia for the projected hybrid VMD-SA-
F model according to the said criteria. Its highly recommended
hat models with ENS < 0.800 are ‘unsatisfactory’, those between
0.800, 0.900] are ‘fairly good’ and ENS > 0.900 is conceived to
e ‘very satisfactory’ (Shamseldin, 1997).
Furthermore, diagnostic plots were commenced using the

odel assessment. Preceding to making the box-plots, during
he testing period forecasting errors (|FE|) were calculated. When
6709
FE| ideally plotted on box plots this need to be zero, for best
erforming models the disposition of FE requires to be near to
ero as possible. For ease of understanding the absolute FE (|FE|)
uantities were mapped. Showing its better forecasting capabil-
ty, Fig. 4 displays the VMD-SA-RF model at all sites documented
maller |FE| divisions in agreement with Tables 4 and 5. To that of
he VMD-SA-RF model, the single-phase RF model looked to have
very immediate performance of relative models followed by

he normalized metrics, EWI, ENS, and ELM. On the contrary, since
or all three sites (Ipswich, Gold Coast and Darling Downs) the
istribution generated from the VMD-SA-RF model were equally
pread with a huge number of outliers points the box-plots make
clear distinction of performances. Additionally, in Fig. 5 plots
ere also plotted to get a transparent image of the forecast
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Fig. 5. ECDF of the forecasting error (FE) generated by the VMD-SA-RF vs. the VMD-SA-MARS, VMD-SA-Volterra, single-phase RF, single-phase MARS and single-phase
Volterra models applied at the three tested study sites.
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error distributions the empirical cumulative distribution function
(ECDF). For all three sites, the ECDF line plots of VMD-SA-MARS,
VMD-SA-Volterra, single-phase RF single-phase MARS and single-
phase Volterra displayed a very close profile. A notable narrow
profile restricted within the least range was displayed the ECDF
profile of VMD-SA-RF at all three sites on the other hand. There-
fore, for all three sites, the box-plots (Fig. 4) collectively with the
ECDF plots (Fig. 5) further determines the greater performance of
the VMD-SA-RF model in forecasting daily Radn analysed to the
disputing models.

To assess holistically the efficiency of model, the quantity of
correlation R is mapped in the shape of the Taylor diagram that
allows an extra thorough evaluation of the model performances.
Concerning standard deviations, the Taylor diagram (Fig. 6) re-
veals an extra tactile and conclusive reference statistically be-
tween the forecasted and observed Radn relying on R. It is demon-
strated that the single-phase MARS and Volterra with their hybrid
models are not relevant as the R to standard deviation points
were highly divided from the exemplary mentioned point. In this
study, the planned hybrid VMD-SA-RF model was lying close to
the mentioned Radn which maintains the forecasting accuracy
was pointedly higher at all 3-sites than the other 3-associating
models.

Based on R, the performance of bar graph plots (Fig. 7) was
further diagnosed. Note that, by the corresponding models (VMD-
SA-RF, VMD-SA-MARS, VMD-SA-Volterra, single-phase RF, single-
phase MARS and single-phase Volterra), the curiosity here is to
assess all models that can be successfully emulated. Entering
lower R values the single-phase MARS and Volterra models at
all sites execute not very good. Obviously, in contrast with the
competing models the VMD-SA-RF model possess greater R val-
ues at all 3-sites. Subsequently, over 95% of forecasts can be
ideally generated by this model. Explicitly, results indicated that
for the case of Ipswich (R ≈ 0.972), Gold Coast (R ≈ 0.974) and
Darling Downs (R ≈ 0.971), which coincide with the conclusion
in Tables 5 and 6.

At three remarkable positions a difference in performances
of models is apparent after the conclusions of the numerical
metrics (Tables 5 and 6). To differentiate models at dimension-
ally different positions their inability is the key limitation of
these metrics. The comparative performance (Table 7) properly
revealed that the VMD-SA-RF model show the lowermost values
6710
of RRMSPE and RMAPE in contrast through VMD-SA-MARS, VMD-
SA-Volterra, single-phase RF, single-phase MARS and single-phase
Volterra models for all three sites. More precisely, the RRMSPE
and RMAPE extents when relating VMD-SA-RF through the 2nd
best acting model single-phase RF, in the aggregation [VMD-SA-
RF: single-phase RF] were as follows: Ipswich: [9.35%, 9.68%:
13.46%, 13.84%]; Gold Coast: [8.61%, 8.61%: 13.84%, 12.13%] and
Darling Downs: [9.86%, 10.42%: 13.40%, 13.87%]. Consequently,
the RRMSPE and RMAPE revealed that the VMD-SA-RF estab-
lished the best accuracy for Site 2-Gold Coast, and after that Site
1-Ipswich and Site 3- Darling Downs.

To display precise interpretations on the predicting capac-
ity of the designed systems, Fig. 8 exhibits a comprehensive
clarification by plotting the frequency distribution of |FE| errors
generated by VMD-SA-RF vs. benchmarking models. The attained
|FE| errors of the VMD-SA-RF were inside the lowest range of
±15) for all three sites. Fig. 8 portrays the general assessment
f VMD-SA-RF was healthier in this research.
A stem plot showing the RRMSPE produced by the VMD-SA-RF

s. the VMD-SA-MARS, VMD-SA-Volterra, single-phase RF, single-
hase MARS and single-phase Volterra models is shown in Fig. 9
or the three sites under study. Based on the outcomes of the
ercentage RRMSPE error magnitudes, which are considerably
ower for the VMD-SA-RF model in comparison to other models,
he VMD-SA-RF outperforms at all sites. Most notably, the error
or the VMD-SA-RF model is less than 10% for all three sites,
onfirming a high-performance model.
Fig. 10 displays a scatterplot in terms of r2 between forecasted

nd actual Radn. The VMD-SA-RF is undoubtedly better than
enchmark counterparts in terms of r2 (VMD-SA-RF ≈ 0.945,
MD-SA-MARS ≈ 0.547, VMD-SA-Volterra ≈ 0.540, single-phase
F ≈ 0.871, single-phase MARS ≈ 0.470, single-phase Volterra ≈

.482) for Ipswich. The proposed VMD-SA-RF for Gold Coast and
arling Downs regions is also realistically good (Fig. 10).

. Discussion

The aptness of VMD-SA-RF (benchmarked with the VMD-SA-
ARS, VMD-SA-Volterra, single-phase RF, single-phase MARS and
ingle-phase Volterra models) for daily Radn predicting has been
xplored. The VMD-SA-RF was performed well against the al-
ernative counterpart models in all three study regions, thus
larifying that the VMD-SA-RF was well-designed and better in
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Fig. 6. Taylor diagram depicting the correlation coefficient for the VMD-SA-RF vs. the VMD-SA-MARS, VMD-SA-Volterra, single-phase RF, single-phase MARS and
single-phase Volterra models applied at all the three tested stations in Queensland, Australia.
Table 7
Geographic comparison of the accuracy of the VMD-SA-RF vs. VMD-SA-MARS, VMD-SA-Volterra, single-phase RF, single-phase MARS
and single-phase Volterra models in terms of (RRMSE, %) and (RMAE, %) computed within the test sites. Note that the best model
is boldfaced (blue).

Ipswich Gold Coast Darling Downs

RRMSE, % RMAE, % RRMSE, % RMAE, % RRMSE, % RMAE, %

Single-phase MARS 25.52 25.36 22.68 23.22 25.74 25.01
Single-phase Volterra 25.50 24.75 22.74 23.14 25.93 25.55
Single-phase RF 13.46 13.84 11.67 12.13 13.40 13.87
VMD-SA-MARS 24.36 26.01 21.83 22.21 25.84 25.46
VMD-SA-Volterra 24.13 25.54 21.45 22.14 24.38 25.43
VMD-SA-RF 9.35 9.68 8.61 8.90 9.86 10.42
6711
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Fig. 7. A comparison of the correlation coefficient for daily Rn forecasting generated by VMD-SA-RF vs. the VMD-SA-MARS, VMD-SA-Volterra, single-phase RF,
single-phase MARS and single-phase Volterra models.
mining features from meteorological predictors in an intelligent
way. The predicting precision of VMD-SA-RF has discovered that
the SA was advantageous in picking the pertinent topographic
features to enhance the predicting ability of RF during Radn
forecasting.

In accumulation to the overall better performance of VMD-
A-RF, the outcomes also established the suitability and aptness
f SA in extracting the pertinent attributes with the statistical
etrics for VMD-SA-RF (i.e., Tables 5–7) were extraordinarily bet-

er than the counterpart models. Since the data-drive approaches
ompletely influenced by the past historical information which
ay disturb the ‘learning’ process, the results here confirm that
suitable feature assortment should be accomplished cautiously

n advance to construct these systems. Based on the reported pre-
ious studies (Badr and Fahmy, 2004; Cordon et al., 2002; Mullen
t al., 2009; Sweetlin et al., 2017), with the monitored approaches
s an agreement. Another crucial insight is that fewer input vari-
bles require least output relations that result in an intelligent
nd computationally decent VMD-SA-RF model. Another main
chievement is the distinctive input VMD-based signals (i.e., BL-
MFs) arrangements are essential in periodically discovering Radn
Table 2).

Further to hybridization of the RF, MARS and Volterra tech-
iques with SA algorithm, an additional upgrading in model ac-
uracy was obtained by mixing of VMD to decompose the predic-
ors that result into VMD-SA-RF (and VMD-SA-MARS, VMD-SA-
olterra) models. The VMD is effectively categorized and isolate
he pertinent attributes from within the meteorological variables
o launch a more reliable physical basis for a specific ML tech-
ique. In this work the practicality of VMD for several climatic
nterpreters is engaged for real-time pre-processing data. To ob-
ain simultaneously, the VMD is capable to classify the relevant
haracteristics of the signal’s core frequency.
It is essential to note that the practicability of VMD in fore-

asting daily Radn is a prominent development in this work,
o increase the forecasting skill of the RF, MARS and Volterra
odels. The performance established that the VMD-SA-RF can
eliver healthier and improved predictions of daily Radn for the
esignated regions in contrast to benchmarking models. It was
ertainly observed that clear insights of the physical process were
rovided to the VMD-SA-RF, primarily by the VMD technique,
dditionally empowering the ML model to successfully handle the
nformation from climatological predictors modelling Radn. One
ossible aim for improved performance of VMD-SA-RF against
6712
standalone counterparts, is feasibly attributable to the additional
operational transformation of the data on deterministic processes
in weather-related predictors, decomposed into several frequency
signals, thus, causing in lower errors and enhanced accuracy.

In addition, a primitive benefit of the VMD as employed in
this work is its adaptability and non-recursive behaviour that
depends solely on input attributes with trivial human involve-
ment (Dragomiretskiy and Zosso, 2014). Unlike the EMD, the VMD
demarcates and updated the input predictors into various IMFs
(Looney and Mandic, 2009). The VMD is fundamentally more
robust in terms of sampling and noise reduction together with
astound accuracy in embedded frequency search and separa-
tion. Moreover, the VMD algorithm can aptly extract the time–
frequency signals improving the mode mixing issues via band
limiting and optimization. Thus, the VMD-SA-RF methodology
has the capacity for solar radiation and generation management
systems. With historically forecasted Radn, this improved VMD-
SA-RF model can agreeably be employed in energy structures to
predict future Radn.

For future investigation, the proposed VMD-based hybrid mod-
els could be compared to other multi-resolution analysis tools
such as the non-decimated maximum-overlap discrete wavelet
transformation (MODWT) (Cornish et al., 2006; Percival et al.,
2011); the empirical mode decomposition (EMD) (Huang et al.,
1998); the ensemble-EMD (EEMD) (Wu and Huang, 2009); the
complete ensemble empirical mode decomposition with adap-
tive noise (CEEMDAN) (Torres et al., 2011); or the improved
complete ensemble empirical mode decomposition with adaptive
noise (ICEEMDAN) which is the most advanced EMD that is
able to address the shortcomings of the predecessor EMD-based
algorithms (Colominas et al., 2014). In addition, Radn forecasts
at different time-steps should also be investigated in further
independent studies. Moreover, other casual related parameters
such as ratio between the measured global radiation and the
extra-solar radiation or clearness index can be incorporated in
the prediction matrix for enhancing the accuracy results.

The established work in the current research is an innovative
type and particularly in employing the VMD methodology to de-
compose climatological variables into their appropriate BL-IMFs
signals and then filtered the preeminent candidate features via SA
and finally predict Radn by implementing RF framework. Enhanc-
ing the opportunity and scope of VMD-SA-RF, upcoming studies
can implement this model in rainfall, drought, streamflow, flood
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Fig. 8. Frequency plot of the absolute forecasted error, |FE| generated by VMD-SA-RF vs. the VMD-SA-MARS, VMD-SA-Volterra, single-phase RF, single-phase MARS
and single-phase Volterra models in the test phase.
h
i
t
V

events and energy demand, to allow agencies and institutions to
manage the climate change calamities.

6. Conclusions

A substantial contribution towards Radn prediction scenarios
was made by constructing a robust ML model combining best and
apt predictors features extracted from a set of VMD based BL-
IMFs operating the SA approach. The demarcated input datasets
6713
were centred on the historical lags of the weather-related in-
puts in the model’s training process to predict the Radn for
three rich solar regions in Australia. Near-real-time daily datasets
over the period January 1905–23 June 2018 were demarcated
into their analogous BL-IMFs signals via VMD where the SA was
ired to screen out the best BL-IMFs. The selected BL-IMFs were
ncorporated into the RF to build the VMD-SA-RF model, and
he succeeding model’s accuracy was gauged by VMD-SA-MARS,
MD-SA-Volterra and single-phase RF, single-phase MARS and
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Fig. 8. (continued).
Fig. 9. Stem plot of the relative mean absolute error (RMSE, %) generated by VMD-SA-RF vs. the VMD-SA-MARS, VMD-SA-Volterra, single-phase RF, single-phase
MARS and single-phase Volterra models.
single-phase Volterra RF models. The statistical results indicated
that the RRMSPE and RMAPE errors were found approximately
8.61%, 8.90% for VMD-SA-RF compared with 21.83%, 22.21% for
VMD-SA-MARS, 21.45%, 22.14% for VMD-SA-Volterra models, that
contrasted a value of 11.67%, 12.13% for single-phase RF, 22.68%,
23.22% for single-phase MARS and 22.74%, 23.14% for single-
phase Volterra model in the case Gold Coast to predict Radn.
A significant number of geographical variations in the model
performances were also apparent for the VMD-SA-RF via RRM-
SPE and RMAPE, where an optimal precision was achieved for
Gold Coast against Ipswich and Darling Downs. To conclude, the
solar radiation forecasting framework designed in this research
6714
work can also agreeably allow politicians and Govt representa-
tives in renewable and sustainable energy generation comprising
decisions on infrastructural areas and, better the practical appli-
cations (e.g., smart grids, solar PV generation reliability) and other
scenarios in the present era of climate variability to utilize ML
models for intelligent and informed decisions.

Abbreviations

band-limited intrinsic mode functions (BL-IMFs), basis func-
tions (BF), Cascade Forecasting Architecture (CFA), Coefficient of
Correlation (R), complete ensemble EMD with adaptive noise
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Fig. 10. Scatterplots of forecasted vs. observed daily solar radiation Rn for the tested sites in Australia. A least square regression line and coefficient of determination
(r2) with a linear fit equation inserted in each sub-panel.
R
H

(CEEMDAN), Empirical Mode Decomposition (EMD), discrete
wavelet transformation (DWT), evaporation (Evap), ensemble-
EMD (EEMD), Gaussian process regression (GPR), Generalized
Cross Validation (GCV), improved complete ensemble empirical
mode decomposition with adaptive noise (ICEEMDAN), Legates
and McCabe’s (ELM), machine learning (ML), maximum-overlap
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discrete wavelet transformation (MODWT), Mean absolute er-
ror (MAE), maximum temperature (Tmax,), minimum tempera-
ture (Tmin), monthly precipitation (Rain), multi-resolution analy-
sis (MRA), Multivariate adaptive regression splines (MARS), Nash–
Sutcliffe efficiency (ENS), Parallel Forecasting Architecture (PFA),
andom Forest (RF), Root mean square error (RMSE), Relative
umidity at maximum temperature (RHmax.T), Relative Humidity
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t minimum temperature (RHmin.T), Relative mean absolute per-
entage error (RMAPE; %), Relative root mean squared percent-
ge error (RRMSPE; %), Scientific Information for Land Owners
SILO), simulated annealing (SA), solar photovoltaic (PV), small-
cale renewable energy schemes (SRES), solar radiation (Radn),
ariational mode decomposition (VMD), vapour pressure (VP),
eighted Gaussian process regression (WGPR), Willmott’s Index
EWI).
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