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Abstract  

Compact Local Integrated Radial Basis Function (CLIRBF) methods based on Cartesian grids can 

be effective numerical methods for solving Elliptic Partial Differential Equations (EPDEs) for fluid 

flow problems. The combination of the domain decomposition technique and function 

approximation using CLIRBF methods yields an effective coarse-grained parallel processing 

approach. This feature has enabled not only each sub-domain in the original analysis domain to be 

discretised by a separate CLIRBF Network but also Compact Local stencils to be independently 

treated. The present algorithm, namely parallel CLIRBF, achieves higher throughput in solving 

large scale problems by, firstly, parallel processing of sub-regions which comprise the original 

domain and, secondly, accelerating the convergence rate within each sub-region using groups of 

CLIRBF stencils in which function approximations are carried out by parallel processes. The 

procedure is illustrated with several numerical examples of EPDEs using Message Passing Interface 

(MPI) supported by MATLAB. 
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1. Introduction 

Radial Basis Functions (RBFs) have traditionally been used to provide a continuous interpolation of 

scattered data sets (Franke, 1982; Kansa, 1990). The Differential RBF (DRBF) based methods have 

been successfully used to solve a wide variety of differential equations. For this approach, once the 

field variables are known, its derivatives can be calculated through differentiation. Another 

approach namely the Integrated RBF (IRBF) method, which was proposed by Mai-Duy and 

Tran-Cong (2001, 2003), is based on the approximation of the highest-order derivatives of the 

ODE/PDE using RBF at the first step, and subsequently its lower-order derivatives and the 

dependent variable itself are obtained by integration. The IRBF based methods can outperform 

other approximation methods based on the DRBF technique owing to its ability to produce very 

accurate solutions using relatively small number of data nodes. 

 

Although full-domain IRBF methods are highly flexible and exhibit high order convergence rates in 

their basic implementation, the associated fully-populated matrix systems can lead to poor 

numerical conditioning as the scale of a problem increases (Mai-Duy and Tran-Cong, 2008). The 

problem becomes critical with increasingly large data sets. Many techniques have also been 



developed to reduce the effect of the problem, including domain decompositions (Ingber et al., 

2004; Tran et al., 2009), adaptive selection of data-centres (Ling et al., 2006), RBF preconditioners 

(Brown, 2005) and RBF based compact local stencil methods (Mai-Duy and Tran-Cong, 2011; 

Hoang-Trieu et al., 2012; Thai-Quang et al., 2012). While a reliable method of controlling 

numerical ill-conditioning and particularly computational cost, as problem scale increases, can be 

based on domain decomposition (DD) (Ingber et al., 2004; Tran et al., 2009), the use of compact 

local approximations facilitates the solution of differential equations without having to deal with 

large systems of global equations. In this work, a parallel algorithm based on Compact Local 

Integrated RBF (CLIRBF) and DD techniques is developed for the solution of Boundary Value 

Problems (BVP). A large problem is firstly decomposed into many smaller manageable problems 

each of which is analysed in parallel and secondly the acceleration of the convergence rate within 

each sub-region using groups of CLIRBF stencils is carried out by parallel processes. 

 

This paper is organized as follows. In section 2, a brief review of a CLIRBF method and the domain 

decomposition technique is described. Section 3 presents a parallel algorithm with domain 

decomposition and local stencils. Numerical examples are then discussed in section 4 with a 

conclusion in section 5.  

2. Review of domain decomposition technique and compact local IRBF methods 

For the ease of presentation, consider a second-order ordinary differential equation (ODE) with 

Dirichlet boundary condition as follows.  

 

                      (1) 

           (2) 

 

where   and      are continuous and prescribed functions, respectively;   a second order 

differential operator;   an known quantity;   and    the domain under consideration and its 

boundary.  

Domain decomposition 

Domain decomposition is a general method for solution of systems of equations. In a BVP 

governed by differential equations, DD aims to split the whole domain into smaller subdomains of 

analysis while guaranteeing the continuity at the splitting boundary. DD algorithms can be grouped 

into two classes: (i) non-overlapping methods and (ii) overlapping methods (Smith et al., 1996). In 

this paper, the additive overlapping method is implemented on the domain under consideration.  

 

 

Figure 1. 1D Domain Decomposition 



For illustrative purposes, the domain   is divided into two subdomains    and   . Let     

and     be boundaries of    and    respectively and               the artificial boundaries 

between    and    (Figure 1). Here the boundary condition imposed on the interface is of 

Dirichlet type. The DD algorithm for n-   step can be written as  
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where     

    (             ) is the value of   in    obtained from the solution in    at a 

step     (see Figure 1). The right most and left most sides of the overlapping zone are the 

artificial boundaries   ,    of   ,    respectively. While the middle part of it is for the purpose 

of continuity check. The BVPs (3) and (4) are solved separately using the CLIRBF method which is 

presented in the next section. 

Compact local IRBF methods 

The idea of using local RBF collocation approaches to solve DEs can be seen as a generalization of 

the compact finite difference scheme in terms of scattered nodes (Wright and Fornberg, 2006). In 

this work, the compact local  –point stencil technique which described in (Hoang-Trieu et al., 

2012) is employed to discretise BVPs.   

 

Consider three consecutive points                associated with grid point    (       ) in 

a typical global 1D Cartesian grid line.            is used to represent a stencil in local 1D 

Cartesian grid line (node      ). The second-order derivative of the function   in Eq. (1) is 

decomposed into a set of RBFs as 
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where        
  are the set of RBF weights, and    

   
       

  the set of RBFs. The superscript (.) is 

used to indicate the associated derivative order. In this work, the multiquadric (MQ) RBF is used 

and given by  
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where    and    are the MQ center and width of RBFs, respectively. Integrating expression (5) 

over the stencil yields the expression for lower order derivatives and the function itself as  
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where    and    are constants of integration. Expression (5), (7) and (8) can be rewritten into the 

matrix form as follows. 
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where                    
 . The conversion matrix   is formed as 
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where              
 ,           is a set of three equations representing nodal values of   

over the stencil,        is employed to represent values of (1) at    and   . 

 

As a result, values of function   and its derivatives at an arbitrary point   on the stencil are 

calculated in the physical space as 

 

 
   

   
            

  
  
   (13) 

 
  

  
            

  
  
   (14) 

              
  
  
   (15) 

3. Implementation 

The parallelization is carried out using the   node CLIRBF scheme and based on the domain 

decomposition technique as detailed in section 2 above. In this work, the overlapping DD scheme is 

employed. It is noted that each stencil does not needthe data from other stencils to start its 

calculation. This data independency allows stencils calculation to run on parallel CPU cores. The 

flowchart of the algorithm is shown in Figure 2. It can be seen that the algorithm is divided into 

three main parts. The first one is initialization, which allocates the memory and calculates initial 

values. The second part is the parallel part of algorithm where stencils are assigned equally to CPU 

cores. As all cores share the same memory, they can store the results of calculation in a predefined 

matrix. The final part of the algorithm is to solve the final system of equations to obtain the 

approximated result. Parallel implementation of the algorithm is based on the single program, 

multiple data (SPMD) paradigm with message passing interface (MPI) for parallel communication. 

In this paper, we use the MPI parallel programming within the MATLAB environment.  



4. Numerical examples 

Consider the following second-order ODE. 

 

   

   
 
  

  
                                                   (16) 

 

with an analytic solution                      . The problem is solved using the present 

method for two different types of boundary condition. The domain is partitioned into   

sub-domains and a wide range of grids                 is considered. 

 

Dirichlet boundary condition 

 

The Dirichlet conditions are        and                       . Figure 3 depicts a 

comparison of the results obtained by the present method, the CLIRBF and the analytic ones. The 

results show that the present method achieves almost the same accuracy level as the CLIRBF 

method. In fact, convergence rate       of the present method is     , and the CLIRBF is     .   

 

 

 

 

Figure 2. Parallel algorithm: Flow-chart of CLIRBF with parallel stencils (left figure); 

flowchart of domain decomposition with   sub-domains (right figure) 

 



 

Figure 3. Second order problem with Dirichlet boundary condition: Solutions obtained by the 

    nodes CLIRBF method and the present method (left figure); Relative    errors of the 

solution   against the grid size by the     nodes CLIRBF method and the present method 

(right figure). 

 

 

Dirichlet and Neumann Boundary conditions  

 

The Dirichlet condition is imposed on the left end        and the Neumann condition on the 

right end 
     

  
                                       .  

 

While the result, described in the figure 4 by the present method, is in very good agreement with the 

analytic solution, the convergence rate displayed in the right figure shows that the present method 

yields a higher accuracy in comparison with the   node CLIRBF method. 

 

 

Figure 4. Second order problem with Dirichlet-Neuman boundary conditions: Solutions 

obtained by the     nodes CLIRBF method and the present method (left figure); Relative 

   errors of the solution   against the grid size by the     nodes CLIRBF method and 

the present method (right figure). 

 



5. Conclusion 

In this paper, we have developed a parallel algorithm based on the combination of domain 

decomposition technique and function approximation using 3 point compact local IRBF method. 

The proposed algorithm allows not only a large scale problem to be discretised by parallel CLIRBF 

networks but also compact local stencils to be independently treated in multiple-core CPUs. 

Advantages of the new approach include (i) to alleviate the ill-conditioned problem associated with 

global IRBF methods; (ii) to avoid the reduction in convergence rate caused by differentiation and 

(iii) to achieve higher throughput in solving large scale problems. The method is verified with 

several numerical examples using MPI supported Matlab. 
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