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Abstract

In this paper, we propose a simple but effective preconditioning technique to im-
prove the numerical stability of Integrated Radial Basis Function (IRBF) meth-
ods. The proposed preconditioner is simply the inverse of a well-conditioned
matrix that is constructed using non-flat IRBFs. Much larger values of the
free shape parameter of IRBFs can thus be employed and better accuracy for
smooth solution problems can be achieved. Furthermore, to improve the ac-
curacy of local IRBF methods, we propose a new stencil, namely Combined
Compact IRBF (CCIRBF), in which (i) the starting point is the fourth-order
derivative; and (ii) nodal values of first- and second-order derivatives at side
nodes of the stencil are included in the computation of first- and second-order
derivatives at the middle node in a natural way. The proposed stencil can be
employed in uniform/nonuniform Cartesian grids. The preconditioning tech-
nique in combination with the CCIRBF scheme employed with large values
of the shape parameter are tested with elliptic equations and then applied to
simulate several fluid flow problems governed by Poisson, Burgers, convection-
diffusion, and Navier-Stokes equations. Highly accurate and stable solutions are
obtained. In some cases, the preconditioned schemes are shown to be several
orders of magnitude more accurate than those without preconditioning.
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1. Introduction

During the last three decades, Radial Basis Function (RBFs) have found in-
creasingly widespread use for numerical solution to the Partial Differential Equa-
tion (PDE) systems. Hardy [1, 2] devised Multi-Quadric (MQ) RBF schemes for
scattered data fitting and general multi-dimensional data interpolation problems5

in geo-physical engineering. Buhmann [3] and Madych and Nelson [4] showed
that MQ-RBF approximation methods converge exponentially as the density of
RBFs and their shape parameters increase. Kansa first implemented MQ-RBFs
(here referred to as Direct/Differential RBF or DRBF methods) for solving
PDEs [5, 6]. Since then, DRBF methods have been increasingly used for the10

solution of elliptic, parabolic and hyperbolic PDEs which govern many engineer-
ing problems. In [7, 8, 9, 10, 11], practitioners demonstrated that the elliptic
PDE solutions using DRBFs converge much faster than those based on poly-
nomial approximations. Mai-Duy and Tran-Cong proposed the idea of using
Indirect/Integrated RBFs (IRBFs) for the solution of PDEs [12, 13]. Numeri-15

cal results in [12, 13, 14, 15, 16, 17, 18, 19] showed that the integral approach
is more accurate than the differential approach. In these works, the authors
claimed that because the integration is a smoothing operation and the inte-
grated basis functions are of higher orders, the integral approach has the ability
to yield a faster converging solution. In DRBF and IRBF methods, the original20

unknowns are the RBF coefficients. However, like the Differential Quadrature
(DQ) method, these unknowns can be expressed in terms of nodal values of the
dependent variable and the calculation is then conducted in the physical space
[15].

However, despite the success of RBF methods in many scientific and engi-25

neering applications, their accuracy is dependent on a user defined parameter,
namely the RBF width or the shape parameter. In this work, it is denoted
by β. Numerical experiments indicated that the optimal value of β depends
on the function to be interpolated, the configuration of nodal points, the RBF
type, and the machine precision [3, 4, 9, 20, 21, 22, 23]. The matrix condi-30

tion of the RBF method grows exponentially with the RBF width. For many
problems, e.g. those having smooth solutions, the optimal value of the RBF
width is known to be normally large however the corresponding coefficient ma-
trix becomes ill-conditioned. An on-going problem involving the use of RBFs
is how to choose the optimal value or even a consistently “good” value of β,35

which has received a great deal of attention of many researchers. Rippa [21]
presented a leave-one-out cross-validation scheme for optimising the shape pa-
rameter. For smooth functions, it was shown that without round-off error the
highest accuracy for a given number of nodal points is regularly achieved when
the RBFs become increasingly flat [8]. Theoretical and computational aspects40

of increasingly flat RBF interpolations were discussed in [24]. Fornberg and
Wright [11] proposed the Contour-Padé algorithm which can stably compute
the whole region of the shape parameter on the complex plane. Many different
approaches to enhance the stability of DRBF methods have been proposed, for
example [23, 25, 26, 27, 28, 29, 30, 31, 32] and their references therein. For45
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IRBF approaches, Sarra [16] studied the case of global flat IRBFs. It was ob-
served that the even-order IRBFs are generally most accurate and most poorly
conditioned for large values of the shape parameter β. Additionally, numerical
results in [15, 16] showed that the use of higher-order IRBFs can lead to bet-
ter accuracy. Further discussions about RBF can be found in [33, 34, 35] and50

references therein.
Motivated by the aforementioned works, this paper proposes (i) an easy-to-

implement but effective preconditioning technique for Compact IRBF (CIRBF)
schemes to alleviate ill-condition problems arising from using large values of β;
and (ii) a Combined Compact IRBF (CCIRBF) approximation scheme using55

high-order IRBFs to enhance the solution accuracy, especially in the large value
range of β. Unlike compact schemes previously proposed in [19, 36, 37, 38], a pre-
conditioning technique is employed here. The present preconditioned CCIRBF
scheme is able to stably compute second-order PDE problems with much larger
values of β. We derive expressions for evaluation of first- and second-order60

derivative operators for solving PDE problems and demonstrate the stability
and accuracy of the new scheme through various numerical experiments. It
should be emphasised that a mesh-free property of RBFs allows lengths be-
tween nodes in the stencil to be different. It will be shown that a high level of
accuracy is still achieved when CCIRBF stencils are applied to problems with65

curved boundaries. The strength of RBF methods lies in their ability to deal
with scattered data. In the present work, this strength is exploited in the con-
text of Cartesian grid discretisations. It is noted that creating a Cartesian grid
is generally much more efficient than creating a finite-element mesh, particularly
for domains of non-rectangular shapes. Unlike RBF-DQ methods, our proposed70

approximations are compact, which helps achieve a high level of accuracy (e.g.
avoid the loss of information in the approximation near the curved boundary).

The structure of this paper is organised as follows. Section 2 numerically
discusses the condition number of IRBFs over a wide range of β. To enhance
the accuracy, a new approximation scheme, CCIRBF, is proposed in Section 3.75

Following this, a simple preconditioning technique is proposed in Section 4 to
retain the accuracy of the CCIRBF when working in the large value range of
β. Numerical examples in which the CCIRBF results are compared with some
other solutions, where appropriate, are presented in Section 5. Finally, some
concluding remarks are given in Section 6.80

2. Numerical observations on condition numbers of IRBFs

Several IRBF approximation schemes were previously reported in [12, 19,
37, 38] and they are summarised here for convenience. In IRBF approaches, the
MQ function is usually chosen as the basis function

Gi(x) =
√

(x− ci)2 + a2i , (1)

where ci and ai are the centre and the width of the i-th MQ, respectively. On85

a stencil, the set of nodal points is taken to be the same as the set of MQ
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centres. The MQ width is defined as ai = βhi, where β is a positive scalar (the
shape parameter) and hi is the distance between the i-th node and its closest
neighbour.

For second-order PDEs, the integral approach normally starts with the de-90

composition of the second-order derivatives of a variable, u, into RBFs

d2u(η)

dη2
=

m∑

i=1

wiGi(η), (2)

where {Gi(η)}
m
i=1 is the set of RBFs; and {wi}

m
i=1 is the set of weights/coefficients

to be found. Approximate representations for the first-order derivatives and the
functions itself are then obtained through the integration processes

du(η)

dη
=

m∑

i=1

wiI1i(η) + c1, (3)

95

u(η) =
m∑

i=1

wiI2i(η) + c1η + c2, (4)

where I1i(η) =
∫
Gi(η)dη, I2i(η) =

∫
I1i(η)dη, and c1 and c2 are the constants

of integration. If basis functions are further integrated, the similar notation will
be used, e.g. I3i(η) =

∫
I2i(η)dη and I4i(η) =

∫
I3i(η)dη. Their analytic forms

up to fourth-order are given in Appendix.
In general, the starting point in the integration process can be different.100

The IRBF scheme is said to be of order k if the starting point is the kth-order
derivative. In the literature, numerical examples of [16, 39] showed that the
higher the order of the IRBF, the higher the matrix condition number will be. To
illustrate this trend, Figure 1 shows a comparison of condition numbers among
the IRBFs against the shape parameter β with a fixed number of grid points105

of 31 on a domain of [0, 1]. However, when the number of RBFs is reduced
to 3 and larger values of β are used, as shown in Figure 2, the observation
just mentioned is reversed. It can be seen that the conditions of G are the
highest while those of I4 are the lowest. The higher the order of the IRBF, the
smaller the matrix condition number will be. This is a very interesting behavior110

for which, unfortunately, a theoretical explanation cannot be offered at this
stage. This can be seen as another advantage of using integrated RBFs over
differentiated ones when local RBF methods are employed with large values
of β. It is noted that global IRBFs, where all RBFs are employed (i.e. the
observation in Figure 1), are fully populated and tend to be ill-conditioned as β115

increases while local IRBFs using 3 RBFs (i.e. the observation in Figure 2) have
more relaxed condition numbers and can be well-behaved up to a certain large
value of β. It is shown shortly that three-point stencils have the advantage that
the approximation at the interior nodes near the boundary does not involve the
nodal values outside the domain.120
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Figure 1: The effect of β on condition num-
bers of the IRBFs: the number of RBFs used
is 31.
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Figure 2: The effect of β on condition num-
bers of the IRBFs: the number of RBFs used
is 3.

3. Combined compact integrated RBF scheme

From the above mentioned observations, we propose a new approximation
method using the fourth-order derivative as the starting point in the process of
integration in order to achieve better accuracy.

Consider a two-dimensional domain Ω, which is represented by a uniform125

Cartesian grid. The nodes are indexed in the x-direction by the subscript
i (i ∈ {1, 2, ..., nx}) and in the y-direction by j (j ∈ {1, 2, ..., ny}). For rect-
angular domains, let N be the total number of nodes (N = nx × ny) and
Nip be the number of interior nodes (Nip = (nx − 2)× (ny − 2)). At an in-
terior grid point xi,j = (x(i,j), y(i,j))

T where i ∈ {2, 3, ..., nx − 1} and j ∈130

{2, 3, ..., ny−1}, the associated stencils to be considered here are two local sten-
cils: {x(i−1,j), x(i,j), x(i+1,j)} in the x-direction and {y(i,j−1), y(i,j), y(i,j+1)} in
the y-direction. Hereafter, for brevity, η denotes either x or y in a generic local
stencil {η1, η2, η3}, where η1 < η2 < η3 and η2 ≡ η(i,j), are illustrated in Figure
3.

Figure 3: Compact three-point 1D-IRBF stencil for interior nodes.

135

The integral process of the present CCIRBF starts with the decomposition
of fourth-order derivatives of a variable, u, into RBFs

d4u(η)

dη4
=

m∑

i=1

wiGi(η). (5)

Approximate representations for the third- to first-order derivatives and the
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functions itself are then obtained through the integration processes

d3u(η)

dη3
=

m∑

i=1

wiI1i(η) + c1, (6)

140

d2u(η)

dη2
=

m∑

i=1

wiI2i(η) + c1η + c2, (7)

du(η)

dη
=

m∑

i=1

wiI3i(η) +
1

2
c1η

2 + c2η + c3, (8)

u(η) =

m∑

i=1

wiI4i(η) +
1

6
c1η

3 +
1

2
c2η

2 + c3η + c4, (9)

where I1i(η) =
∫
Gi(η)dη, I2i(η) =

∫
I1i(η)dη, I3i(η) =

∫
I2i(η)dη, I4i(η) =

∫
I3i(η)dη, and c1, c2, c3 and c4 are the constants of integration. However, for

the solution of second-order PDEs, only (7)-(9) are needed. It is noted that145

it is possible to implement integrated RBFs in higher dimensions to construct
CIRBF. However, with the proposed compact approximation approach, the use
of IRBFs in one dimension leads to conversion matrices of much smaller size
and a relatively sparse system matrix.

3.1. First-order derivative approximations150

For the combined compact approximation of the first-order derivatives at

interior nodes, extra information is chosen as not only
{

du1

dη
; du3

dη

}

but also
{

d2u1

dη2 ; d
2u3

dη2

}

. We construct the conversion system over a 3-point stencil as

follows. 












u1

u2

u3
du1

dη
du3

dη
d2u1

dη2

d2u3

dη2














=





I4
I3
I2





︸ ︷︷ ︸

C













w1

w2

w3

c1
c2
c3
c4













, (10)

where dui

dη
= du

dη
(ηi) with i ∈ {1, 2, 3}; C is the conversion matrix; and I2, I3,155

and I4 are defined as

I2 =

[
I21(η1) I22(η1) I23(η1) η1 1 0 0
I21(η3) I22(η3) I23(η3) η3 1 0 0

]

. (11)

I3 =

[
I31(η1) I32(η1) I33(η1)

1
2η

2
1 η1 1 0

I31(η3) I32(η3) I33(η3)
1
2η

2
3 η3 1 0

]

. (12)
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I4 =





I41(η1) I42(η1) I43(η1)
1
6η

3
1

1
2η

2
1 η1 1

I41(η2) I42(η2) I43(η2)
1
6η

3
2

1
2η

2
2 η2 1

I41(η3) I42(η3) I43(η3)
1
6η

3
3

1
2η

2
3 η3 1



 . (13)

Solving (10) yields













w1

w2

w3

c1
c2
c3
c4













= C−1














u1

u2

u3
du1

dη
du3

dη
d2u1

dη2

d2u3

dη2














, (14)

which maps the vector of nodal values of the function and its first- and second-160

order derivatives to the vector of RBF coefficients including the four integration
constants. The first-order derivative at the middle point is computed by substi-
tuting (14) into (8) and taking η = η2

du2

dη
= I3mC−1

︸ ︷︷ ︸

D1










u
du1

dη
du3

dη
d2u1

dη2

d2u3

dη2










, (15)

or
du2

dη
= D1(1 : 3)u+D1(4 : 5)

[
du1

dη
du3

dη

]

+D1(6 : 7)

[
d2u1

dη2

d2u3

dη2

]

, (16)

where D1 is a row vector of length 7, the associated notation “a : b” is used to165

indicate the vector entries from the the column a to b; u = [u1, u2, u3]
T ; and

I3m =
[
I31(η2) I32(η2) I33(η2)

1
2η

2
2 η2 1 0

]
. (17)

By taking derivative terms to the left side and nodal variable values to the
right side, (16) reduces to

[
−D1(4) 1 −D1(5)

]
u′+

[
−D1(6) 0 −D1(7)

]
u′′ = D1(1 : 3)u, (18)

where u′ =
[
du1

dη
, du2

dη
, du3

dη

]T

and u′′ =
[
d2u1

dη2 , d2u2

dη2 , d2u3

dη2

]T

.

At the boundary nodes, the first-order derivatives are approximated in spe-170

cial compact stencils. Consider the boundary node η1. Its associated stencil is
{η1, η2, η3, η4} as shown in Figure 4 and extra information is chosen as du2

dη
and

d2u2

dη2 .

7



Figure 4: Special compact four-point 1D-IRBF stencil for boundary nodes.

The conversion system over this special stencil is presented as the following
matrix-vector multiplication175











u1

u2

u3

u4
du2

dη
d2u2

dη2











=





I4sp
I3sp
I2sp





︸ ︷︷ ︸

Csp















w1

w2

w3

w4

c1
c2
c3
c4















, (19)

where Csp is the conversion matrix; and I2sp, I3sp, and I4sp are defined as

I2sp =
[
I21(η2) I22(η2) I23(η2) I24(η2) η2 1 0 0

]
. (20)

I3sp =
[
I31(η2) I32(η2) I33(η2) I34(η2)

1
2η

2
2 η2 1 0

]
. (21)

I4sp =







I41(η1) I42(η1) I43(η1) I44(η1)
1
6η

3
1

1
2η

2
1 η1 1

I41(η2) I42(η2) I43(η2) I44(η2)
1
6η

3
2

1
2η

2
2 η2 1

I41(η3) I42(η3) I43(η3) I44(η3)
1
6η

3
3

1
2η

2
3 η3 1

I41(η4) I42(η4) I43(η4) I44(η4)
1
6η

3
4

1
2η

2
4 η4 1






. (22)

Solving (19) yields















w1

w2

w3

w4

c1
c2
c3
c4















= C−1
sp











u1

u2

u3

u4
du2

dη
d2u2

dη2











. (23)

The boundary value of the first-order derivative of u is thus obtained by180

substituting (23) into (8) and taking η = η1

du1

dη
= I3bC

−1
sp

︸ ︷︷ ︸

D1sp






u
du2

dη
d2u2

dη2




 , (24)
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or
du1

dη
= D1sp(1 : 4)u+D1sp(5)

du2

dη
+D1sp(6)

d2u2

dη2
, (25)

where u = [u1, u2, u3, u4]
T and

I3b =
[
I31(η1) I32(η1) I33(η1) I34(η1)

1
2η

2
1 η1 1 0

]
. (26)

By taking derivative terms to the left side and nodal variable values to the
right side, (25) reduces to185

[
1 −D1sp(5) 0 0

]
u′ +

[
0 −D1sp(6) 0 0

]
u′′ = D1sp(1 : 4)u, (27)

where u′ =
[
du1

dη
, du2

dη
, du3

dη
, du4

dη

]T

and u′′ =
[
d2u1

dη2 , d2u2

dη2 , d2u3

dη2 , d2u4

dη2

]T

.

3.2. Second-order derivative approximations

For the combined compact approximation of the second-order derivatives at
interior nodes, we employ the same extra information used in the approximation

of the first-order derivative, involving
{

du1

dη
; du3

dη

}

and
{

d2u1

dη2 ; d2u3

dη2

}

. Therefore,190

the second-order derivative at the middle point is computed by simply substi-
tuting (14) into (7) and taking η = η2

d2u2

dη2
= I2mC−1

︸ ︷︷ ︸

D2










u
du1

dη
du3

dη
d2u1

dη2

d2u3

dη2










, (28)

where u = [u1, u2, u3]
T and

I2m =
[
I21(η2) I22(η2) I23(η2) η2 1 0 0

]
. (29)

In a similar manner to the first-order derivative approximation, one can
derive the second-order derivative approximation at the interior node195

[
−D2(4) 0 −D2(5)

]
u′+

[
−D2(6) 1 −D2(7)

]
u′′ = D2(1 : 3)u, (30)

where u′ =
[
du1

dη
, du2

dη
, du3

dη

]T

and u′′ =
[
d2u1

dη2 , d2u2

dη2 , d2u3

dη2

]T

.

At the boundary nodes, e.g. η = η1, we employ the same special stencil,

e.g. {η1, η2, η3, η4}, and extra information, e.g. du2

dη
and d2u2

dη2 , used in the
approximation of the first-order derivatives. Therefore, approximate expression
for the second-order derivative at the boundary point in the physical space is200

obtained by simply substituting (23) into (7) and taking η = η1

d2u1

dη2
= I2bC

−1
sp

︸ ︷︷ ︸

D2sp






u
du2

dη
d2u2

dη2




 , (31)

9



where u = [u1, u2, u3, u4]
T and

I2b =
[
I21(η1) I22(η1) I23(η1) I24(η1) η1 1 0 0

]
. (32)

In a similar manner, one can derive the second-order derivative approxima-
tion at the boundary node
[
0 −D2sp(5) 0 0

]
u′ +

[
1 −D2sp(6) 0 0

]
u′′ = D2sp(1 : 4)u, (33)

where u′ =
[
du1

dη
, du2

dη
, du3

dη
, du4

dη

]T

and u′′ =
[
d2u1

dη2 , d2u2

dη2 , d2u3

dη2 , d2u4

dη2

]T

.205

3.3. Matrix assembly for first- and second-order derivative approximations

The IRBF system on a grid line for the first-order derivative is obtained
by letting the interior node take values from 2 to (nη − 1) in (18) and making
use of (27) for the boundary nodes 1 and nη. In a similar manner, the IRBF
system on a grid line for the second-order derivative is obtained by letting the210

interior node take values from 2 to (nη − 1) in (30) and making use of (33) for
the boundary nodes 1 and nη. The resultant matrix assembly is expressed as

[
A1 B1

A2 B2

]

︸ ︷︷ ︸

Coefficient matrix

[
u′n

u′′n

]

=

[
R1

R2

]

un , (34)

whereA1,A2,B1, B2,R1, andR2 are nη×nη matrices; u′n =
[

u′

1
n
, u′

2
n
, ..., u′

nη

n
]T

;

u′′n =
[

u′′

1
n
, u′′

2
n
, ..., u′′

nη

n
]T

; and un =
[
u1

n, u2
n, ..., unη

n
]T

. The coefficient

matrix is sparse with diagonal sub-matrices. Solving (34) yields215

u′n = Dηu
n, (35)

u′′n = Dηηu
n, (36)

where Dη and Dηη are first- and second-order differential matrices, respectively.
It can be seen that the derivative at a grid point is computed using all

nodal variable values on the two grid lines intersecting at that point. Unlike
the spectral method, the present scheme can be directly applied to problems of220

irregular shapes, where the Cartesian grid used can be uniform or non-uniform.
In the case of the Dirichlet boundary conditions, by collocating the PDE at
the interior grid nodes and making use of (35) and (36), a determined system
of algebraic equations is obtained, which can be solved for the field variable at
the interior grid nodes. It is noted that with derivatives depending on nodal225

variable values on a grid line, the sparseness level of the global system matrix
is reduced in comparison with that of the coefficient matrix in equation (34).

We note that the use of fourth-order IRBFs here (i.e. CCIRBF) is more
straightforward to include first- and second-order derivative values than the use
of second-order IRBFs [19, 37]. The former involves only one conversion matrix230

while there are two conversion matrices required for the latter: one taking extra
first-order derivative values and the other taking second-order derivative values.
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4. Preconditioning technique for the CCIRBF

To improve the stability of the CCIRBF in the large value range of β, we
construct a new equivalent conversion system by multiplying a preconditioning235

matrix C*
−1

to both sides of the original conversion system (10) as follows.

C*
−1














u1

u2

u3
du1

dη
du3

dη
d2u1

dη2

d2u3

dη2














= C*
−1

C
︸ ︷︷ ︸

Cp













w1

w2

w3

c1
c2
c3
c4













, (37)

where C is the original conversion matrix in (10); C*
−1 is the preconditioning

matrix which has exactly the same form as the original conversion matrix C

but uses a different value of β. Usually, β used in C*
−1

is taken to be small,
for example β = 10, so that its corresponding condition number is in a well-240

behaved range; and Cp is a new conversion matrix. This numerical treatment is
expected to bypass the ill-condition problems when β in the original conversion
matrix C becomes large (but not go to infinity as the information in C is lost
in this limit due to the current use of finite (double) precision).

Solving (37) yields245













w1

w2

w3

c1
c2
c3
c4













= C−1
p C*

−1














u1

u2

u3
du1

dη
du3

dη
d2u1

dη2

d2u3

dη2














. (38)

In a similar manner detailed in Section 3, one is able to derive the first-
and second-order derivative approximations with the new conversion system.
It is noted that the proposed preconditioning technique is only needed when
one implements the CCIRBF in the large range of β where the ill-condition
problems occur. In the small range of β, for example β = {1, 2, ..., 100}, the250

“pure” CCIRBF normally works fine.

5. Numerical examples

Various kinds of differential problems, including ODEs, Poisson, Burgers,
convection-diffusion and Navier-Stokes equations, are employed to verify the
proposed preconditioning technique which is developed to enhance the working255
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range of the RBF width and the proposed combined compact scheme which is
developed to enhance the quality of the IRBF approximations.

We evaluate the performance of the present schemes through the following
measures

i. The root mean square error (RMS) is defined as260

RMS =

√
∑N

i=1 (ui − ui)
2

N
, (39)

where ui and ui are the computed and exact values of the solution u at
the i-th node, respectively; and N is the number of nodes over the whole
domain.

ii. The global convergence rate, α, with respect to the grid refinement is
defined through265

Error(h) ≈ γhα = O(hα). (40)

where h is the grid size; and γ and α are exponential model’s parameters.

For comparison purposes, in Sections 5.1 and 5.2, we also implement the
global DRBF scheme of [5, 6], the CIRBF scheme of [37], and the standard
central Finite Difference Method (FDM) for numerical solutions. It is noted that
the proposed preconditioning technique described in Section 4 is also applied270

for the CIRBF-Precond version.
For fluid flow examples in Sections 5.1 to 5.5 and 5.8, we choose a large

shape parameter, β = 1000, for the original conversion matrix C and a small
shape parameter, β = 10, for the preconditioning matrix C*

−1
; and in the

examples of Taylor-Green vortex flows, i.e. Sections 5.6 and 5.7, we choose a275

large shape parameter, β = 500, for the original conversion matrixC and a small
shape parameter, β = 10, for the preconditioning matrix C*

−1. We employ the
fully coupled procedure which was detailed in [18] to calculate Navier-Stokes
equations in Sections 5.6 to 5.8.

In this work, calculations are done with a Dell computer Optiplex 9010280

version 2013. Its specifications are intel(R) core(TM) i7-3770 CPU 3.40 GHz
3.40 GHz, memory(RAM) of 8GB(7.89 usable) and 64-bit operating system.
The Matlab(R) version 2014 is utilised.

5.1. Second-order ODE

In order to study the 1D spatial accuracy of the present CCIRBF approxi-285

mation schemes, we consider the following equations

d2u

dx2
= −π2sin(πx), (41)

du

dx
= πcos(πx), (42)

on a domain [0, 1], subjected to the Dirichlet boundary condition derived from
the following exact solution

u = sin(πx). (43)
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Nodal values of both first- and second-order derivatives of u are computed.290

The calculations are carried out on uniform grids of {11, 51, 101}. We employ
a wide range of β, {1, 101, 201, ..., 2001}. Figures 5, 8, and 11 illustrate the
effect of β on the condition number of the conversion matrix, where we can
see that the present CCIRBF-Precond has much lower condition numbers than
the “pure” CCIRBF. Figures 6, 7, 9, 10, 12, and 13 show that the present295

CCIRBF-Precond scheme is more accurate than the DRBF, CIRBF and CIRBF-

Precond schemes for computing du
dx

and d2u
dx2 in the large value range of β. The

improvement of several orders of magnitude can be observed, e.g. Figure 13.
These Figures also show that the present preconditioning technique leads to a
significant improvement in the matrix condition number of the CCIRBF and300

the CIRBF over the large value range of β.
To study the computational efficiency of the CCIRBF and the CIRBF, we

employ different sets of grid points with an increment of 10 (i.e. {11, 21, ...})
and carry out the simulation until the solution accuracy achieves a target RMS
level of 5× 10−6. Results obtained are shown in Figure 14, indicating that the305

present scheme CCIRBF uses smaller numbers of grids and takes much less time
to reach the target accuracy than the CIRBF. The ratio of the elapsed time of
the CCIRBF to that of the CIRBF is about 1/20 as the grid required is 41 for
the former and 661 for the latter.
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Figure 5: Second-order ODE, nx = 11: The
effect of β on the condition number of the
conversion matrix.
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Figure 6: Second-order ODE, nx = 11: The
effect of β on the solution accuracy RMS of
first-order derivative approximations.
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Figure 7: Second-order ODE, nx = 11: The
effect of β on the solution accuracy RMS of
second-order derivative approximations.
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Figure 8: Second-order ODE, nx = 51: The
effect of β on the condition number of the
conversion matrix.
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Figure 9: Second-order ODE, nx = 51: The
effect of β on the solution accuracy RMS of
first-order derivative approximations.
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Figure 10: Second-order ODE, nx = 51: The
effect of β on the solution accuracy RMS of
second-order derivative approximations.
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Figure 11: Second-order ODE, nx = 101:
The effect of β on the condition number of
the conversion matrix.
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Figure 12: Second-order ODE, nx = 101:
The effect of β on the solution accuracy RMS

of first-order derivative approximations.
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Figure 13: Second-order ODE, nx = 101:
The effect of β on the solution accuracy RMS

of second-order derivative approximations.
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Figure 14: Second-order ODE, {11, 21, ...}:
The computational cost to achieve the target
accuracy of 5×10−6. The final grid is 661 for
the CIRBF and 41 for the CCIRBF.
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5.2. Poisson equation310

In order to study the 2D spatial accuracy of the present CCIRBF approxi-
mation schemes, we consider the following Poisson equation

d2u

dx2
1

+
d2u

dx2
2

= −2π2 cos(πx1) cos(πx2), (44)

on a square domain [0, 1]2, subjected to the Dirichlet boundary condition derived
from the following exact solution

u = cos(πx1) cos(πx2). (45)

The calculations are carried out on uniform grids of {11× 11, 51× 51, 101× 101}.315

A set of β of {1, 101, 201, ..., 2001} is chosen. As in the case of the second-order
ODE (i.e. Section 5.1), the present CCIRBF-Precond scheme outperforms the
DRBF, CIRBF and CIRBF-Precond schemes in terms of the solution accuracy
and stability (Figures 15 to 17). These Figures also indicate that the stability of
the CCIRBF and the CIRBF is much improved with the present preconditioning320

technique.
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Figure 15: Poisson equation, 11×11: The effect of β on the condition number of the conversion
matrix (left) and on the solution accuracy RMS (right).

To study the computational efficiency of the CCIRBF and the CIRBF, we
increase the density of grids as {11× 11, 21× 21, ...} until the solution accuracy
achieves a target RMS level of 5 × 10−5. Figure 18 shows that the present
scheme CCIRBF uses much smaller numbers of grids and takes much less time325

to reach the target accuracy than the CIRBF. Finally, Figure 19 shows the
spy-plot of a typical coefficient matrix.
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Figure 16: Poisson equation, 51×51: The effect of β on the condition number of the conversion
matrix (left) and on the solution accuracy RMS (right).
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Figure 17: Poisson equation, 101 × 101: The effect of β on the condition number of the
conversion matrix (left) and on the solution accuracy RMS (right).
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Figure 18: Poisson equation,
{11× 11, 21× 21, ...}: The computa-
tional cost to achieve the target accuracy of
5 × 10−5. The final grid is 91 × 91 for the
CIRBF and 21× 21 for the CCIRBF.
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Figure 19: Poisson equation, 11 × 11, β =
1000 (11 × 11 = 121 unknowns): The spy-
plot of the 121 × 121 coefficient matrix with
2541 non-zero entries (approximately 17.4%
of 121× 121 = 14641 entries).
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5.3. Heat equation

By selecting the following heat equation, the performance of the present
CCIRBF scheme can be studied for the diffusive term only330

∂u

∂t
=

∂2u

∂x2
, a ≤ x ≤ b, t ≥ 0, (46)

u(x, 0) = u0(x), a ≤ x ≤ b, (47)

u(a, t) = uΓ1
(t) and u(b, t) = uΓ2

(t), t ≥ 0, (48)

where u and t are the temperature and time, respectively; and u0(x), uΓ1
(t),

and uΓ2
(t) are prescribed functions. The temporal discretisation of (46) with

the Crank-Nicolson scheme gives335

un − un−1

∆t
=

1

2

{
∂2un

∂x2
+

∂2un−1

∂x2

}

, (49)

where the superscript n denotes the current time level. (49) can be rewritten as

{

1−
∆t

2

∂2

∂x2

}

un =

{

1 +
∆t

2

∂2

∂x2

}

un−1. (50)

Consider (46) on a segment [0, π] with the initial and boundary conditions

u(x, 0) = sin(2x), 0 < x < π. (51)

u(0, t) = u(π, t) = 0, t ≥ 0. (52)

The exact solution of this problem is

u(x, t) = sin(2x)e−4t. (53)

The spatial accuracy of the proposed scheme is tested on various uniform340

grids {11, 21, ..., 101}. We employ here a small time step, ∆t = 10−6, to min-
imise the effect of the approximation error in time. The solution is computed
at t = 0.0125. Figure 20 shows that the CCIRBF-Precond using β = 1000 out-
performs the FDM in terms of both the solution accuracy and the convergence
rate.345
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Figure 20: Heat equation, {11, 21, ...,101}, Re = 100, ∆t = 10−6, t = 0.0125: The effect of
the grid size h on the solution accuracy RMS. The solution converges as O(h1.98) for the
FDM and O(h4.21) for the CCIRBF-Precond scheme.
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5.4. Burgers equation

With Burgers equation, the performance of the present CCIRBF scheme can
be investigated for both the convective and diffusive terms

∂u

∂t
+ u

∂u

∂x
=

1

Re

∂2u

∂x2
, a ≤ x ≤ b, t ≥ 0, (54)

u(x, 0) = u0(x), a ≤ x ≤ b, (55)
350

u(a, t) = uΓ1
(t) and u(b, t) = uΓ2

(t), t ≥ 0, (56)

where Re > 0 is the Reynolds number; and u0(x), uΓ1
(t), and uΓ2

(t) are pre-
scribed functions.

The temporal discretisations of (54) using the Adams-Bashforth scheme for
the convective term and Crank-Nicolson scheme for the diffusive term, result in

un − un−1

∆t
+

{

3

2

(

u
∂u

∂x

)n−1

−
1

2

(

u
∂u

∂x

)n−2
}

=
1

2Re

{
∂2un

∂x2
+

∂2un−1

∂x2

}

,

(57)
or355

{

1−
∆t

2Re

∂2

∂x2

}

un =

{

1 +
∆t

2Re

∂2

∂x2

}

un−1−∆t

{

3

2

(

u
∂u

∂x

)n−1

−
1

2

(

u
∂u

∂x

)n−2
}

.

(58)
The problem is considered on a segment 0 ≤ x ≤ 1, t ≥ 0 in the form [40]

u(x, t) =
α0 + µ0 + (µ0 − α0) exp(λ)

1 + exp(λ)
, (59)

where λ = α0Re(x− µ0t− β0), α0 = 0.4, β0 = 0.125, µ0 = 0.6, and Re = 100.
The initial and boundary conditions can be derived from the analytic solution

(59). The calculations are carried out on a set of uniform grids {11, 21, ..., 101}.
The time step ∆t = 10−6 is chosen. The errors of the solution are calculated360

at the time t = 0.0125. Figure 21 displays that the present CCIRBF-Precond
using β = 1000 has much lower errors than the FDM. Also, its convergence rate
is much better than that of the FDM.
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Figure 21: Burgers equation, {11, 21, ...,101}, Re = 100, ∆t = 10−6, t = 0.0125: The effect
of the grid size h on the solution accuracy RMS. The solution converges as O(h1.48) for the
FDM and O(h2.47) for the CCIRBF-Precond scheme.
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5.5. Convection-diffusion equations

To study the performance of the present CCIRBF approximation in simu-365

lating convection diffusion problems, we employ the Alternating Direction Im-
plicit (ADI) procedure which was detailed in [19]. A two-dimensional unsteady
convection-diffusion equation for a variable u is expressed as follows.

∂u

∂t
+ cx

∂u

∂x
+ cy

∂u

∂y
= dx

∂2u

∂x2
+ dy

∂2u

∂y2
+ fb, (x, y, t) ∈ Ω× [0, T ] , (60)

subject to the initial condition

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω, (61)

and the Dirichlet boundary condition370

u(x, y, t) = uΓ(x, y, t), (x, y) ∈ Γ, (62)

where Ω is a two-dimensional rectangular domain; Γ is the boundary of Ω;
[0, T ] is the time interval; fb is the driving function; u0 and uΓ are some given
functions; cx and cy are the convective velocities; and dx and dy are the diffusive
coefficients.

In this work, we consider fb = 0, in a square Ω = [0, 2]
2
with the following375

analytic solution [41]

u(x, y, t) =
1

4t+ 1
exp

[

−
(x− cxt− 0.5)2

dx(4t+ 1)
−

(y − cyt− 0.5)2

dy(4t+ 1)

]

. (63)

From (63), one can derive the initial and boundary conditions. We consider
two sets of parameters [42]

Case I: cx = cy = 0.8, dx = dy = 0.01, t = 1.25, ∆t = 2.5E − 4.
Case II: cx = cy = 80, dx = dy = 0.01, t = 0.0125, ∆t = 2.5E − 6.380

The corresponding Peclet number is thus Pe = 2 for case I and Pe = 200
for case II. To study the accuracy of the solution with the grid refinement, we
employ sets of uniform grids as shown in Figures 22 and 23. The results in
these Figures show that the accuracy and the convergence rate of the proposed
CCIRBF-Precond using β = 1000 are much better than those of the FDM. For385

case I, the convergence rates are O(h3.38) and O(h1.55) for the CCIRBF and the
FDM, respectively. For case II, the convergence rates are O(h2.71) and O(h0.85)
for the CCIRBF and the FDM, respectively.

22



h

10-1

R
M

S

10-4

10-2

FDM
present CCIRBF-Precond using β=1000

Figure 22: Convection-diffusion equation,
{11× 11, 21× 21, ...,91× 91}, case I: The ef-
fect of the grid size h on the solution accuracy
RMS. The solution converges as O(h1.55)
for the FDM and O(h3.38) for the CCIRBF-
Precond scheme.
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Figure 23: Convection-diffusion equation,
{21× 21, 31 × 31, ...,101 × 101}, case II: The
effect of the grid size h on the solution ac-
curacy RMS. The solution converges as
O(h0.85) for the FDM and O(h2.71) for the
CCIRBF-Precond scheme.
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5.6. Taylor-Green vortex in rectangular domain

To study the performance of the present CCIRBF approximation in simu-390

lating viscous flows in a rectangular domain, we consider a transient viscous
flow problem, namely Taylor-Green vortex which is governed by Navier-Stokes
equations. The problem has the analytical solutions as follows [43].

u(x1, x2, t) = − cos(kx1) sin(kx2) exp(−2k2t/Re), (64)

v(x1, x2, t) = sin(kx1) cos(kx2) exp(−2k2t/Re), (65)
395

p(x1, x2, t) = −1/4 {cos(2kx1) + cos(2kx2)} exp(−4k2t/Re), (66)

where 0 ≤ x1, x2 ≤ 2π. Calculations are carried out for k = 2 on a set of
uniform grid, {11× 11, 21× 21, ..., 51× 51}. A fixed time step ∆t = 0.002 and
Re = 100 are employed. Numerical solutions are computed at t = 2. The exact
solution, i.e. equations (64)-(66), provides the initial field at t = 0 and the
time-dependent boundary conditions. Table 1 shows the accuracy comparison400

between the present scheme and the High-Order Compact (HOC) finite differ-
ence scheme of [43] (fourth-order). It is seen that the present scheme is superior
to the HOC in terms of both the level of accuracy and the convergence rate. The
solutions for the u- and v-velocities and for pressure converge, respectively, as
O(h3.91) and O(h3.81) for the present method, and only O(h2.92) and O(h3.28)405

for the HOC.

Table 1: Taylor-Green vortex, rectangular domain: RMS errors and convergence rates.

present CCIRBF using β = 500

Grid u-error v-error p-error

11× 11 9.0757315E-02 9.0757322E-02 2.3542625E-01
21× 21 3.8338024E-03 3.8338114E-03 1.3288235E-02
31× 31 1.0201809E-03 1.0201870E-03 3.3851835E-03
41× 41 3.6194151E-04 3.6194102E-04 1.4603595E-03
51× 51 1.5492043E-04 1.5482812E-04 4.1378984E-04
Rate O(h3.91) O(h3.91) O(h3.81)

HOC [43]
Grid u-error v-error p-error

11× 11 7.0070489E-02 7.0070489E-02 1.0764149E-01
21× 21 9.0692193E-03 9.0692193E-03 1.0567607E-02
31× 31 2.8851487E-03 2.8851487E-03 2.9103288E-03
41× 41 1.2238736E-03 1.2238736E-03 1.1356134E-03
51× 51 6.3063026E-04 6.3063026E-04 5.3933641E-04

Rate O(h2.92) O(h2.92) O(h3.28)
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5.7. Taylor-Green vortex in non-rectangular domain

In order to analyse the performance of the present CCIRBF approximation
scheme in solving the transient viscous flow in a non-rectangular domain, we
consider the case of an array of decaying vortices with the analytical solutions410

[18] described by

u(x1, x2, t) = sin(πx1) cos(πx2) exp(−2π2t/Re), (67)

v(x1, x2, t) = − sin(πx2) cos(πx1) exp(−2π2t/Re), (68)

p(x1, x2, t) = 1/2
{
cos2(πx2)− sin2(πx1)

}
exp(−4π2t/Re). (69)

The flow is computed in a circular domain with radius of unity and centred
at the origin of the coordinate system. The problem domain is embedded in415

a uniform Cartesian grid on Ω = [−1.5, 1.5]2 and the grid nodes exterior to
the domain are removed. The interior nodes falling within a small distance
δ = h/8, where h is the grid size, to the boundary will also be discarded [44].
The boundary nodes are generated through the intersection of the grid lines and
the boundary as demonstrated in Figure 24.

Figure 24: Taylor-Green vortex, non-rectangular domain, spatial discretisation: + represents
interior nodes; and ◦ represents boundary nodes.

420

The calculations are carried out using several uniform grids, {10× 10, 20× 20, ..., 50× 50}.
The Reynolds number is set to be Re = 5 and numerical solutions are computed
at t = 0.3 using a fixed time step ∆t = 0.001. The initial field at t = 0 and
time-dependent boundary conditions are given by (67)-(69). Table 2 illustrates
the accuracy comparison between the present scheme and the CIRBF approach425

of [18]. It is observed that errors produced by the present scheme are much
lower than those generated by the CIRBF.
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Table 2: Taylor Green vortex, non-rectangular domain: RMS errors and convergence rates.

present CCIRBF using β = 500

Grid u-error v-error p-error

10× 10 6.7854399E-03 7.3789723E-03 1.5666056E-02
20× 20 7.3935223E-04 5.3269646E-04 7.4691913E-03
30× 30 1.3671917E-04 1.1479088E-04 2.5417428E-04
40× 40 4.5332629E-05 3.4903187E-05 3.1245155E-04
50× 50 1.7119756E-05 1.6100433E-05 8.5671434E-05

Rate O(h3.53) O(h3.63) O(h3.20)
CIRBF using β = 40 [18]

Grid u-error v-error p-error

10× 10 5.0940713E-02 3.9890094E-02 9.5986185E-02
20× 20 1.1003665E-03 7.9266552E-04 2.2013746E-03
30× 30 9.7670238E-05 8.1362620E-05 5.1711179E-04
40× 40 5.8426984E-05 2.8665169E-05 2.1616129E-04
50× 50 3.3759336E-05 2.3569385E-05 1.4680716E-04

Rate O(h4.44) O(h4.59) O(h3.88)
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5.8. Irregular bottom lid driven cavity

The lid driven cavity with a deformed base presented in [18, 45, 46, 47]
is chosen to validate the performance of the present approximation scheme in430

simulating fluid flow problems in an irregular domain. The base is deformed
sinusoidally with an amplitude of 10 percent of the base. The computational
domain and boundary conditions are illustrated in Figure 25.

Figure 25: Irregular bottom lid driven cavity: problem configuration and boundary conditions.

The interior and boundary nodes are generated in a similar manner described
in Section 5.7. The spatial discretisation is shown in Figure 26.

Figure 26: Irregular bottom lid driven cavity, spatial discretisation: + represents interior
nodes; ◦ represents boundary nodes.

435

A range of uniform grids, {53× 53, 63× 63, 83× 83, 93× 93} is employed in
the simulation. A fixed time step and Reynolds number are chosen to be ∆t =
0.001 and Re = 1000, respectively. The results obtained by the present method
are compared with those reported in [18, 46, 47], where appropriate. From the
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literature, the Finite Volume Method (FVM) results using the well-tested body-440

fitted coordinate formulation and the dense grid of 121× 121 presented in [46]
have been considered as “Benchmark” results for comparison purposes.

Table 3 shows the present results for the extrema of the vertical and horizon-
tal velocity profiles along the vertical centreline of the cavity. With relatively
coarse grids, the results obtained by the present scheme are very comparable445

with other schemes using much denser grids. Although good numerical results
are acquired, the effects of irregular boundaries on the solution accuracy and
stability are still not theoretically explained, and further studies are needed.

Figure 27 displays horizontal and vertical velocity profiles along the verti-
cal centreline for different grid sizes, where a grid convergence of the present450

scheme is obviously observed (i.e. the present solution approaches the bench-
mark solution with a fast rate as the grid density is increased). The present
scheme effectively achieves the benchmark results with a grid of only 83 × 83
in comparison with the grid of 121× 121 used to obtain the benchmark results
in [46]. In addition, the present results with a grid of only 53× 53 outperform455

those of [47] using the grid of 100× 100.
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Figure 27: Irregular bottom lid driven cavity, β = 1000, Re = 1000: Profiles of the u-velocity
(left) and v-velocity (right) along the vertical centreline as the grid density increases. It is
noted that the curves for the last two grids are indistinguishable and in good agreement with
the benchmark results of [46].

To exhibit contour plots of the flow, we employ the grid of 83× 83. Figures
28 and 29 show streamlines (which are derived from the velocity) and pressure
deviation contours, respectively. These plots are in close agreement with those
reported in the literature. Additionally, Figure 30 shows the iso-vorticity lines460

of the present simulation.
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Table 3: Irregular bottom lid driven cavity, β = 1000, Re = 1000: Extrema of the vertical and horizontal velocity profiles along the vertical centreline
of the cavity.

Method Grid umin ymin vmax ymax

Present CCIRBF 53 × 53 -0.3781442 0.4975 0.2180640 0.5601
Present CCIRBF 63 × 63 -0.3924106 0.4959 0.2214069 0.5563
Present CCIRBF 83 × 83 -0.3958749 0.4951 0.2274348 0.5547
Present CCIRBF 93 × 93 -0.3979039 0.4949 0.2292693 0.5549
CIRBF (u, v, p) [18] 53 × 53 -0.3695975 0.4989 0.2165344 0.5638
CIRBF (u, v, p) [18] 63 × 63 -0.3847773 0.4967 0.2239138 0.5589
CIRBF (u, v, p) [18] 83 × 83 -0.3950552 0.4953 0.2282167 0.5555
CIRBF (u, v, p) [18] 93 × 93 -0.3972010 0.4950 0.2286893 0.5548
FVMa (u, v, p) [47] 100 × 100 ≈ -0.3524 ≈ 0.4929 — —
Benchmark FVMa (u, v, p) [46] 121 × 121 ≈ -0.3808 ≈ 0.5017 ≈ 0.2362 ≈ 0.5610
a FVM results extracted from Figures in [46, 47]
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Figure 28: Irregular bottom lid driven cavity,
β = 1000, Re = 1000: Streamlines of the flow
with the grid of 83×83. The plot contains 30
contour lines whose levels vary linearly from
the minimum to maximum values; and it is in
good agreement with that of [46].

Figure 29: Irregular bottom lid driven cavity,
β = 1000, Re = 1000: Static pressure con-
tours of the flow with the grid of 83×83. The
plot contains 160 contour lines whose levels
vary linearly from the minimum to maximum
values.

Figure 30: Irregular bottom lid driven cavity, β = 1000, Re = 1000: Iso-vorticity lines of the
flow with the grid of 83 × 83. The plot contains 160 contour lines whose levels vary linearly
from the minimum to maximum values.
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6. Concluding remarks

The main purpose of this work is to provide a scheme that allows for stable
calculation of IRBF approximations at large values of the shape parameter,
where the ill-condition problem becomes severe. The increasing flat region of465

RBF is of particular interest since it often corresponds to the most accurate
RBF approximations as shown in recent works [31, 32]. In the paper, we have
proposed an idea of using high-order IRBFs to construct combined compact
approximations, which allows a more straightforward incorporation of nodal
values of first- and second-order derivatives, and yields better accuracy over470

compact approximations. Then, we have proposed a preconditioning technique
to circumvent the ill-condition problems of compact IRBF approaches associated
with large values of the shape parameter β and the stability is shown to be
significantly improved. In elliptic equation tests, we have found that in the
large value range of β the proposed CCIRBF-Precond solutions are many orders475

of magnitude better than those of the DRBF, CIRBF, and CIRBF-Precond
schemes. In the simulation of several fluid flow problems, the new method
performs significantly better than the standard central FDM, the HOC and the
CIRBF. This study provides an effective tool for the numerical exploration of
IRBFs in the large value range of the shape parameter.480
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Appendix485

The following analytic forms of IRBFs are obtained using Mathematica.
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