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Abstract

Purpose: This paper aims to develop a three-dimensional (3D) Alzheimer’s disease (AD) prediction method,
thereby bettering current predictive methods, which struggle to fully harness the potential of structural magnetic
resonance imaging (sMRI) data.
Methods: Traditional convolutional neural networks encounter pressing difficulties in accurately focusing on
the AD lesion structure. To address this issue, a 3D decoupling, self-attention network for AD prediction is
proposed. Firstly, a multi-scale decoupling block is designed to enhance the network’s ability to extract fine-
grained features by segregating convolutional channels. Subsequently, a self-attention block is constructed to
extract and adaptively fuse features from three directions (sagittal, coronal and axial), so that more attention is
geared towards brain lesion areas. Finally, a clustering loss function is introduced and combined with the cross-
entropy loss to form a joint loss function for enhancing the network’s ability to discriminate between different
sample types.
Results: The accuracy of our model is 0.985 for the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset
and 0.963 for the Australian Imaging, Biomarker & Lifestyle (AIBL) dataset, both of which are higher than
the classification accuracy of similar tasks in this category. This demonstrates that our model can accurately
distinguish between normal control (NC) and Alzheimer’s Disease (AD), as well as between stable mild cognitive
impairment (sMCI) and progressive mild cognitive impairment (pMCI).
Conclusion: The proposed AD prediction network exhibits competitive performance when compared with
state-of-the-art methods. The proposed model successfully addresses the challenges of dealing with 3D sMRI
image data and the limitations stemming from inadequate information in 2D sections, advancing the utility of
predictive methods for AD diagnosis and treatment.
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1 Introduction

Alzheimer’s disease (AD) is a progressive irre-
versible neurodegenerative disorder [1]. Initial symp-
toms include short-term memory loss, and as the
condition advances, individuals may experience lan-
guage difficulties, confusion, and various behavioral
issues. Over time, a patient’s physical abilities decline,
ultimately resulting in death. In contrast to a nor-
mal control (NC) population, patients with cognitive
impairment can be broadly categorized into different

stages: stable mild cognitive impairment (sMCI), pro-
gressive mild cognitive impairment (pMCI), and AD.
Currently, there are no effective therapies or treat-
ments to halt or reverse the progression of the disease.
However, if AD is diagnosed at an early stage, doctors
can intervene to slow down its progression. Nowa-
days, many technological methods are widely applied
to assist in the clinical diagnosis of complex diseases
using magnetic resonance imaging (fMRI), structural
magnetic resonance imaging (sMRI), electroencephalo-
gram (EEG) [2–4], polyethylene terephthalate (PET)
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and so on. Studies [5–9] show that structural mag-
netic resonance imaging (sMRI) can be a powerful tool
for clinicians to clarify the diagnosis for patients with
suspected sMCI, pMCI, and AD, as sMRI data can
provide vital information regarding structural changes
in the brain that can be correlated with clinical find-
ings. Various deep learning [10, 11] methods were
employed for predicting AD using sMRI data [12–
15]. The utilization of sMRI data is generally divided
into two-dimensional (2D) and three-dimensional (3D)
forms. Hoang et al. [16] proposed to employ a vision
transformer to extract feature maps highlighting spe-
cific features in the data from three 2D sagittal slices,
enabling the classification of mild cognitive impair-
ment (MCI) and AD. Xing et al. [17] introduced a
technique that combines the fusion attention and a
residual network which extracts feature information
from 2D sMRI data using the residual network, leading
to effective classification outcomes.

However, contextual information along the depth
dimension is lost when 3D images are sliced into 2D.
To address this issue, researchers explored the uti-
lization of entire 3D sMRI data. Zhang et al. [18]
incorporated a self-attention mechanism and a residual
learning method into a 3D convolutional neural net-
work (CNN). This method makes use of both global
and local information to prevent the loss of crucial
contextual information. Bakkouri et al. [19] improved
traditional 3D convolution using multiple scales. This
approach allows for the extraction of brain atrophy
features across various scales with convolution blocks
of different sizes, ultimately enhancing the overall
prediction effectiveness. Chen et al. [20] proposed a
multi-view slicing attention mechanism integrated into
a 3D CNN. 2D slicing is employed to remove redun-
dant information, followed by the use of a 3D network
for the feature extraction, thus mitigating the risk of
overfitting. Liu et al. [21] leveraged 3D sMRI data to
extract feature maps from three distinct angles. Using
multi-scale convolutions to extract features, which are
later combined in the channel dimension, the proposed
network is able to acquire more information from a
pathological perspective.

Most existing 3D-based methods either overlook
the convolution of 3D data in different directions or
struggle to encompass feature maps acquired from
all three dimensions adequately. As a result, these
methods are unable to exploit the intrinsic feature
information embedded within the 3D sMRI data. To
address these issues, this study, serving as a substan-
tial extension of our previous work [22], develops a
backbone network that excels at extracting focal infor-
mation from 3D sMRI scans across axial, sagittal, and
coronal directions. Specifically, we design a multi-scale
decoupling (MSD) block to isolate information from
different groups so that a complete fusion of local
information is achieved. Moreover, we introduce a self-
attention (SA) block to extract feature maps from
sagittal, coronal, and axial planes. Furthermore, we
integrate the clustering loss with the cross-entropy loss

to form a joint loss function, giving rise to enhanced
prediction performance.

The key contributions of this work are summarised
as follows.

1. Augmentation of information extraction capacity:
The designed MSD block augments the ability of
the proposed method to extract detailed informa-
tion through a comprehensive integration of local
features.

2. Improved image analysis and AD diagnosis: By
simultaneously taking into account the features
from all three directions (i.e., sagittal, coronal and
axial), the SA block effectively directs attention
towards critical atrophic lesions, thereby improving
the overall ability of the model to analyze structural
sMRI images.

3. Enhancement of identification outcomes: The joint
loss function strengthens grouping and clustering
within the same category, thereby enhancing the
identification of specific brain regions or patterns
that are highly indicative of AD.

4. Formal analysis: Beyond examining the overall per-
formance of our model, we delve into its perfor-
mance on individual subject basis. This analysis,
focusing on variations in model efficacy across differ-
ent subjects, is aimed at uncovering characteristics
specific to Alzheimer’s disease and understanding
their influence on the model’s predictions. Conse-
quently, our approach offers fresh insights that could
be instrumental for future studies in related fields.

This paper is organized as follows. The Introduc-
tion section is followed by the Methodology section,
which includes an outline of the datasets used in the
experiments and a detailed description of the proposed
method. Section 3 presents the experiment setup and
results. Section 4 discusses and analyzes the proposed
method and provides visual representations of the fea-
ture maps extracted by our model. The concluding
remarks are made in Section 5.

2 Methodology

2.1 Datasets

Large datasets from Australian Imaging, Biomarker &
Lifestyle (AIBL) and Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI), namely ADNI-1 and ADNI-
2 [23], which are publicly available, are used in our
experiments. For the ADNI dataset, data collection
for ADNI-1 started in 2004 and concluded in 2009,
while the data collection of ADNI-2 commenced in
2011 and continued until 2016. ADNI-2 is consid-
ered a continuation or extension of ADNI-1. Given
that databases ADNI-1 and ADNI-2 have issues such
as duplication, missing data, and poor data quality,
a selection process is implemented to exclude such
records. As a result, the selected dataset comprises 170
AD, 156 pMCI, 202 sMCI, and 206 NC records from
ADNI-1, plus 102 AD, 101 pMCI, 329 sMCI, and 147
NC records from ADNI-2. The AIBL dataset contains
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Table 1: Demographic information of subjects included in this study.

Dataset Category
Gender

(Male/Female)
Patient Age
(Mean±SD1)

Education2

(Mean±SD)
CDR3

(Mean±SD)
MMSE4

(Mean±SD)

ADNI-1

AD 88/82 75.37±7.48 14.61±3.18 0.74±0.24 23.22±2.03

pMCI 94/62 74.57±7.11 15.74±2.90 0.5±0.0 26.53±1.70

sMCI 131/71 74.55±7.59 15.54±3.11 0.49±0.03 27.37±1.76

NC 103/103 75.85±5.10 15.92±2.86 0.0±0.0 29.14±0.98

ADNI-2

AD 58/44 74.44±7.89 15.99±2.51 0.77±0.27 22.99±2.16

pMCI 55/46 72.54±6.96 15.99±2.58 0.50±0.04 27.55±1.78

sMCI 174/155 71.11±7.51 16.16±2.67 0.49±0.02 28.18±1.64

NC 72/75 73.72±6.39 16.68±2.42 0.0±0.0 29.06±1.21

AIBL

AD 30/44 73.35±7.93 - 0.93±0.55 20.18±5.44

pMCI 7/4 74.90±5.97 - 0.50±0.00 26.27±1.60

sMCI 33/36 75.36±7.54 - 0.47±0.13 27.04±2.13

NC 30/55 75.52±6.63 - 0.029±0.117 28.71±1.35

1. SD refers to standard deviation. 2. Number of years of education. 3. CDR is a scale used to
assess the severity of cognitive impairment in individuals diagnosed with AD or other forms of
dementia. 4.MMSE is calculated based on the subject’s performance on a series of questions and
tasks that evaluate cognitive ability.

211 AD, 133 MCI, and 768 NC patients. However, due
to image quality and completeness requirements, only
74 AD, 80 MCI, and 85 NC records are selected.

Table 1 summarizes relevant clinical data regarding
the participants of this study, including their gender,
age, education level, clinical dementia rating (CDR),
and Mini-Mental State Examination (MMSE) scores.
Notably, there are sizable differences in MMSE scores
observed among the AD, MCI, and NC groups. For
instance, in the AD group of ADNI-1, there are 88
male and 82 female participants. Their average age is
75.37 years old, with a standard deviation of 7.48. On
average, they have completed 14.61 years of education,
with a standard deviation of 3.18. The mean CDR for
this group is 0.74, with a standard deviation of 0.24.
Additionally, the mean MMSE score is 23.22, with a
standard deviation of 2.03.

2.2 Data Preprocessing

The sMRI images from the selected datasets in this
study undergo initial processing with the Statistical
Parametric Mapping (SPM) tool in MATLAB. SPM
is a comprehensive tool used for the preprocessing of
sMRI images. The process begins with the conversion
of images to the NIFTI format, followed by reorien-
tation and cropping to standardize orientation and
removal of non-brain elements. Segmentation is then
performed to classify voxels into different tissue types,
incorporating bias field correction. The images are spa-
tially normalized to a standard template, typically the
MNI space, for comparability across subjects. SPM’s
GUI facilitates the selection and parameterization of
these steps, and it also supports batch processing via

MATLAB scripting. Once preprocessing is completed,
the images are down-sampled to be used as inputs to
the proposed CNN.

Before the training phase, a preconditioning pro-
cess is applied, which includes addressing cranial
anatomy, correcting for signal strength variations, and
performing spatial registration. Data from the AD,
MCI, and NC categories used in the experiments are
evenly distributed to ensure unbiased training results.
This allocation guarantees an equal representation of
each category in the training phase.

2.3 The Proposed Method

We propose a 3D decoupling, self-attention network,
which is composed of three main components: the MSD
Block, SA Block and Classification Block, as shown
in Fig. 1. Specifically, the input to the MSD block
is preprocessed through downsampling and data aug-
mentation. The downsampling process involves two
convolutional layers of 32 and 64 channels, respec-
tively, to reduce the image size and computational
load. The data augmentation process transforms an
original image into three distinct dimensional views:
axial, coronal, and sagittal, for the convolution opera-
tion. Subsequently, sMRI data from the axial, sagittal,
and coronal directions are used as the input to the
MSD block. This block is responsible for extracting
essential information and discarding extraneous data
irrelevant to AD. After combining feature maps from
all three directions, the resultant feature map is fed
into the SA block. The SA block integrates the fea-
ture information derived from the three-dimensional
views (axial, coronal, and sagittal), identifying areas
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Fig. 1: Framework of the proposed network.

of interest relevant to AD. Finally, after operations
like flattening and linear projection, the feature map is
classified into one of three categories: NC, MCI, or AD.
In the Classification part, the proposed clustering loss
function is integrated into the overall loss to enhance
discrimination between different classes, while mini-
mizing variations within the same class, thus improving
prediction accuracy. Details regarding each of the three
main components in the proposed methodology are
delineated below.

2.3.1 The MSD Block

It is widely known that increasing the depth and width
of CNNs can boost their performance. As a classical
model, the Visual Geometry Group(VGG) network [24]
employed a strategy of stacking blocks of the same
shape to increase the network depth, and was later
adopted by deep CNN models. However, as network
size grows, so does the number of parameters, causing
the issue of overfitting when training data are insuffi-
cient. Therefore, how to extract feature maps from 3D
sMRI images without a huge number of parameters is
of significance in this research.

Since AD-related biomarkers are likely to manifest
differently across scales, through multi-scale convolu-
tions, the designed network is able to understand these
biomarkers more accurately. Moreover, as pathologi-
cal changes in AD may present differently at differ-
ent scales, multi-scale convolutions can capture these
changes more comprehensively, aiding the detection
and accurate classification of the disease. Further-
more, conventional single-scale convolution might miss
critical information due to the fixed size of the convo-
lutional kernel. Multi-scale convolutions alleviate these
issues by capturing important features from multiple
scales, thus preventing information loss.

Han et al. [25] introduced a multi-scale CNN for AD
prediction, utilizing distinct kernel sizes across layers
to extract features. However, this approach only uses
two average pooling and max pooling layers to extract
multi-scale features, and it likely results in the loss of
crucial information pertaining to AD within the orig-
inal sMRI data. Information loss is inherent in each
convolution layer, an inevitable aspect of the training
process. To mitigate the information loss, we conduct
multi-scale convolutions whose kernels are of different
sizes based on 3D sMRI data from all three direc-
tions (i.e., axial, sagittal, and coronal). In this way,
comprehensive features are captured at various scales.
The obtained feature maps are combined after the
multi-scale convolutions. The combined feature map is
represented by Fms, expressed as

Fms = Fa ∗K1(x1, y1, z1)⊕ Fs ∗K3(x2, y2, z2)

⊕ Fc ∗K5(x3, y3, z3)
(1)

where Fa, Fs, and Fc denote the feature maps obtained
in the axial, sagittal and coronal planes, respectively;
K1, K3, and K5 denote the convolution kernels of sizes
1×1×1, 3×3×3, and 5×5×5, respectively. Symbol ⊕
represents the concatenation operation; and (xi, yi, zi)
are spatial coordinates, for i ∈ {1, 2, 3}.

While the multi-scale convolution benefits feature
extraction, given the wealth of information contained
in 3D sMRI data [26], a simple concatenation oper-
ation cannot fully establish the relationship between
features, limiting both local and global feature learn-
ing. To address this issue, we propose the idea of
“decoupling”. That is, we introduce multi-channel-
based group convolution [27] to decouple channels in
different groups, which significantly reduces the num-
ber of parameters and computational load. Typically,
when applying two convolution kernels to a feature
map, each kernel is used on every channel of the fea-
ture map, as shown in (a) of Fig. 2. By contrast, when
channels of a feature map are grouped, each kernel only
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(a) Conventional Convolution (b) Group Convolution

Fig. 2: Comparison between conventional convolution and group convolution.

Fig. 3: The proposed decoupling process.

needs to be applied to the corresponding channel of
the feature map, as shown in (b) of Fig. 2. Motivated
by this, we apply the group convolution separately to
the feature maps obtained after the concatenation.

The proposed decoupling process is depicted in
Fig. 3. In the decoupling phase, there are sets of group
convolution kernels with each set having a different
number of groups. In each set, there are a channels with
a = C/G, where C is the total number of channels and
G the total number of groups in the set. During the
3D convolution, kernels in group g are only convolved
with the feature maps in channel [(g−1)a, g×a), where
g = 1, 2, . . . , G. Let O(x, y, z, c) represent the value at
position (x, y, z, c) in the output tensor and we get

O(x, y, z, c) =

Hf∑
i=1

Wf∑
j=1

Df∑
k=1

g×a∑
m=(g−1)a

Fms(x+ i−
Hf

2
, y + j −

Wf

2
,

z + k −
Df

2
, c+m− a

2
) · Fg(i, j, k,m)

(2)

where Hf , Wf , Df denote the height, width, and
depth of the convolutional filter, respectively. Fms(x+

i − Hf

2 , y + j − Wf

2 , z + k − Df

2 , c + m − a
2 ) repre-

sents the feature map Fms obtained in (1) at position

(x+i−Hf

2 , y+j−Wf

2 , z+k−Df

2 , c+m− a
2 ) in the input

tensor upon shifting the filter along the spatial dimen-
sions and across groups; and Fg(i, j, k,m) represents
the filter weight at position (i, j, k,m) for group g.

As illustrated in Fig. 3, the first set consists of one
group with 128 channels, each of size 1 × 1 × 1. The

second set comprises two groups, each having 64 chan-
nels of size 1 × 1 × 1. Finally, the third set contains
four groups, each with 32 channels of size 1 × 1 × 1.
This, in turn, addresses the issue of overfitting that
can arise from increasing the network’s depth. The fea-
ture map is then convolved with these 3 sets of group
convolutions.

By learning features independently within each
group, the group convolutions in the decoupling pro-
cess can enhance the robustness of our model. This
independent feature learning enables the proposed net-
work to focus on diverse aspects of the input data,
potentially improving generalization performance over
different subjects or under different imaging condi-
tions. This approach also improves the collaboration
among local information within the feature maps,
allowing for more precise identification of intricate
lesion areas while simultaneously extracting compre-
hensive and information-rich features.

2.3.2 The SA Block

Two attention mechanisms are incorporated in the pro-
posed network. They are spatial attention and channel
attention, enabling the model to reduce computa-
tional complexity while excluding redundant image
information. Specifically, after the convolutions on 3D
sMRI data are performed, the spatial attention mech-
anism is introduced to allocate reasonable weights
to the obtained multiple feature maps. Additionally,
the inclusion of channel attention following multi-scale
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Fig. 4: Structure of the Self-Attention Block.

convolution ensures that the model can capture infor-
mation from structural changes in brain regions but
also differentiate the weight changes across various
channels. After the concatenation of the three 3D fea-
ture maps along the channel dimension, they are fed
into the SA [28] block to facilitate a rational fusion of
the combined feature map.

Once features are extracted from 3D sMRI images
in each of the three directions (sagittal, coronal and
axial) from the MSD block, it is important to inte-
grate these features across the three directions. Due to
variations in observation angles and relative positions
of the features from different directions, concatenating
feature maps directly would not integrate the features
well. This would, in return, hinder the model’s ability
to capture the accurate information about the features’
position and structure. To harness the complementary
nature of features from different directions, we incor-
porate a self-attention strategy in the design of the
SA block. The design of this block is geared towards
promoting synergistic relationships among features,
ensuring that they mutually enhance one another.

Fig. 4 shows the structure of the SA block. Feature
flattening and spatial position encoding are applied to
the 3D feature map obtained after the concatenation
so as to convert it into a one-dimensional representa-
tion, while preserving the original spatial information.
This not only makes the proposed model more robust
but also streamlines the input of features into a fusion
module, responsible for merging the features from dif-
ferent directions and positions, achieved by the steps
outlined below.

First, a number of volumetric patches are obtained
from the combined feature representations of 3D sMRI
images. Next, each patch is flattened into a vector (e.g.,
xi, where subscript i denotes the ith vector). Then, the
flattened patches are linearly embedded to allow the
network to learn the most suitable encoding matrices,
such that xi is projected into Query (Q), Key (K), and

Value (V) as follows.

Q = xiWq, K = xiWk, V = xiWv (3)

where Wq,Wk,Wv are the learnable encoding matri-
ces. After the linear projection in (3), a layer normal-
ization (LN) is applied to Q, K, and V, respectively.
The LN operation helps stabilize and normalize feature
vectors.

Because the attention scores influence the attention
assigned to each element in the input sequence, they
are calculated by assessing the similarities between
Q and K. This is done through the multi-head self-
attention mechanism, described by

Attention(Q,K,V) = SoftMax

(
QKT

√
d

)
V (4)

where d is the encoding dimension of Q, K, and V;
and KT is the transpose of K.

The outputs Attention(Q,K,V) from self-
attention layers go through a normalization layer,
followed by a linear transformation applied in the
dense connection layer. Finally, the outputs of multi-
ple self-attention layers are combined with xi using
residual connections, thus alleviating performance
degradation caused by excessive stacking of the fusion
blocks [29]. Adaptive fusion of features is achieved by
stacking multiple fusion blocks in different directions
and positions.

With the multi-head self-attention mechanism
expressed by (4), the SA block can prevent the pro-
posed model from over-focusing on its position during
encoding and attention score calculation. The oper-
ation in (4) differs from single-head self-attention in
that it simultaneously projects Q, K, and V into
multiple encoding spaces for individual self-attention
calculations. The resulting outputs are projected back
to the original dimensions, enhancing the model’s
representation capacity.
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High-level details and contextual understanding
provided by the SA block can reduce false positives
and false negatives in AD prediction. This minimizes
the risk of providing unnecessary treatment to normal
subjects, or missing early intervention opportunities
for AD patients. Also, by processing individual sMRI
data with attention to unique brain features, the SA
block can assist in developing personalized profiles of
AD progression, which is particularly useful in tai-
loring treatment plans and monitoring the efficacy of
interventions.

2.3.3 The Classification Block

A popular strategy in image classification is to mini-
mize the cross-entropy loss, a process that effectively
maximizes the logarithm of the probability associated
with the target labels. However, only applying the soft-
max function [30] tends to over-emphasize the loss
associated with the accurate label whilst struggling
to consider losses of alternative label positions, thus
decreasing the priority of reducing the probability of
predicting incorrect labels. Consequently, issues such
as overfitting and poor generalization occur.

To overcome the limitations of depending on Soft-
max alone, we introduce a clustering loss function [31],
expressed as

LSC =
1

2

m∑
i=1

||Si − SCyi
||2 (5)

where m is the total amount of training data in one
batch; Si is the score vector of the ith sample; and
SCyi

is the score center of Class yi. The dimension of
Si and SCyi

is equal to the number of categories. By
minimizing the distance between the sample score and
score center of their respective category, the classifi-
cation stage facilitates the automatic learning of score
centers for each category within the image data.

The clustering loss function (5) effectively controls
the growth of predicted scores. In the context of tag
position scores, it is usually desirable for the score
to accurately represent the importance of the tag. By
introducing the clustering loss function, the network
is pushed to attain the label prediction outcome in a
more steady manner. In other words, if the tag score
grows rapidly, the clustering loss function (5) would
intervene, regulating the network to allow a gradual
score increase [32]. This enables the network to adopt
a more cautious approach to its predictions, ultimately
increasing the network’s generalizability.

In the training process, SCyi
is initialized as an all-

zero vector, and constantly updated during training.
The updates of SCyi

are depicted below:

∆SCyi
=

∑m
i=1 δ(yi = j) · (SCyi

− Si)

1 +
∑m

i=1 δ(yi = j)
(6)

where yi denotes the label of the ith point; j is the class
number; and δ(·) is an indicator function that equals 1

if the ith data is assigned to the jth cluster (i.e., when
yi = j), and 0 otherwise.

In the proposed method, we combine the cross-
entropy loss LCE determined by the Softmax function
and the clustering loss LSC to train the network. The
overall loss function is given by

LTotal = LCE + λ · LSC (7)

LSC is expressed in (5); and LCE is written as

LCE = −
m∑
i=1

eSyi∑m
j=1 e

Syi

(8)

where Syi is the score of class yi in the ith sample; m
is the total number of classes over which Softmax dis-
tributes probabilities; and λ is the coefficient adjusting
the contribution of LSC .

The overall loss LTotal is calculated in each iter-
ation, and the weight parameter is updated using
the gradient descent method. The updated weight
parameter W+ is obtained by

W+ = W − η
∂LTotal

∂W
(9)

where η is the learning rate adjusted by the early stop
strategy; and W is the weight parameter from the pre-
vious iteration. This iterative training process imposes
a constraint on the scores of each category, guiding
them to remain close to their respective score centers.
As a result, it curbs overfitting by preventing scores for
the correct tag positions from growing infinitely.

3 Results

3.1 The Experimental Settings

The proposed model is implemented based on Python
3.9 and Pytorch-GPU (3090) and run with the PyTorch
framework. All experiments are carried out under the
Windows 10 operating system. Other hardware con-
figurations include CPU (Intel i7-12700K@3.6GHz),
64GB memory, and 1TB hard disk.

To achieve optimal performance with minimal com-
putation load, the MSD block is designed to repeat a
number of times across four stages. In the first stage,
rather than the multi-scale convolution, two 3D convo-
lutions are conducted, and the MSD block repeats four
times with 64 input channels and 128 output channels.
In the second stage, the MSD block runs four times
with 128 input channels and 256 output channels. Dur-
ing this stage, the multi-scale convolution runs with
kernels of sizes 1×1×1, 3×3×3 and 5×5×5. However,
during the second half of Stage 2, the kernel sizes are
reduced to 1 × 1 × 1 and 3 × 3 × 3. The process in the
third stage is the same as in Stage 2 except that the
repetition of the MSD block is six times with 256 input
channels and 512 output channels. In the fourth stage,
the process mirrors that of Stage 1, with 512 input
channels and 1024 output channels. The decoupling
operation remains consistent across all four stages.
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To guarantee a smooth operation of the pro-
posed network, we employ the data augmentation
method [33] to address overfitting, and incorporate
deep learning approaches like the addition of batch
normalization, and utilization of the early stop tech-
nique [34] to continually optimize the model’s hyper-
parameters. Images from different planes are randomly
rotated in small increments, and images are randomly
masked as part of these strategies. It is worth noting
that with the early stop technique, our model can auto-
matically stop running if the loss is not reduced for
five consecutive iterations, thereby saving time in the
search for hyperparameters close to the trough of the
gradient descent curve.

In the proposed network, the adjustment of hyper-
parameters (e.g., batch size, number of epochs, learn-
ing rate, and weight decay) is contingent upon the
early stop strategy. Should the overall loss fail to
decrease within the margin of 0.01, the execution would
stop. Upon cessation, the hyperparameters undergo
further refinement in a predefined range using the con-
trol variable method [35]. This approach expedites the
discovery of optimal parameters and facilitates the con-
vergence of the loss function to its minimum value. As
part of the specified range, each hyperparamter adjust-
ment must not change its original value by more than
one order of magnitude.

3.2 The Performance Evaluation
Metrics

To evaluate the performance of the proposed AD pre-
diction model, we adopt the performance measures of
accuracy (ACC), sensitivity (SEN), specificity (SPE),
and the area under the ROC curve (AUC) [45]. ACC
refers to the proportion of all test results that are cor-
rectly identified. SEN represents the ability of a test
to correctly identify individuals who have a given dis-
ease or condition (true positives). SPE is defined as the
ability of a test to correctly identify individuals who
do not have the disease (true negatives). AUC is a sin-
gle measurement that summarizes the performance of
a test across all possible classification thresholds. The
calculation formulas [46] for ACC, SEN and SPE are:

ACC =
TP + TN

TP + TN + FP + FN
(10)

SEN =
TP

TP + FN
(11)

SPE =
TN

TN + FP
(12)

where TP, TN, FP, and FN stand for true positives,
true negatives, false positives, and false negatives,
respectively.

3.3 Existing Related Methods

We compare the proposed model with other related
state-of-the-art methods and provide a brief descrip-
tion of each method below.

Slice+SVM: The system proposed in [36] is a com-
bination of a support vector machine (SVM) trained
with various texture descriptors derived from MRI slice
data and a SVM trained with markers constructed
from MRI voxels. The two sets of SVMs are tuned
according to a weighted-sum rule to yield a final
decision.

Slice+CNN: The network in [17] uses a simple CNN
with several convolution layers, pooling layers, and a
fully connected layer to extract features from 2D sMRI
images. The pooling operation is for reconstructing
feature maps to save computational resources.

Slice+WholeBrain+CNN: The model in [20] is
characterized by two primary branches comprising a
2D convolutional network and a 3D convolutional net-
work. Features from both networks are subsequently
combined through the fully connected layer, and clas-
sification is conducted through a Softmax function.

WholeBrain CNN+Self ATT: Zhang et al. [18] pro-
posed a 3D convolution followed by a self-attention
block with a residual block to capture both local and
global features from sMRI images.

WholeBrain CNN+Global ATT: In [21], 3D images
are initially subjected to a 3D convolution from three
distinct angles, generating a feature map formed by
the concatenation of three individual feature maps.
This allows for the observation of a broader range of
information. The feature map is subsequently directed
to a multi-scale convolution block, facilitating the
extraction of features that span from local to global
areas.

ATT: The network in [15] employs an attention-
based framework to extract multi-level discriminative
information from sMRI data, supporting the diagnosis
of AD.

Self ATT: Gao et al. [37] proposed a task-induced
pyramid and an attention generative adversarial net-
work for the imputation and classification of multi-
modal brain images. This helps generate better image
details by focusing on relevant features across an entire
image.

Spatial Disease ATT: The attention network in [38]
utilizes an average pooling layer for attention extrac-
tion and employs weakly supervised discriminative
localization to aid classification.

Spatial+Channel ATT: The network in [39] has two
phases in its attention mechanism. In the initial atten-
tion phase, global representations are meticulously
aggregated through second-order attention pooling.
Following this, the second attention stage judiciously
disperses these global features to each individual spa-
tial location. This precise distribution ensures that
every point within the feature map is infused with tai-
lored global information. Multiple pooling layers are
then added to obtain a comprehensive global image
representation.

MIL: The model in [40] employs a dual-attention
multi-instance deep learning network for diagnosing
patients with early AD and MCI. The multiple instance
learning (MIL) technique aids the model in balancing
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Table 2: Performance comparison on the ADNI dataset.

Reference Method
AD vs. NC pMCI vs. sMCI

ACC AUC SEN SPE ACC AUC SEN SPE

Nanni et al. [36] Slice+SVM 0.876 0.903 0.841 - 0.671 0.865 0.345 -

Xing et al. [17] Slice+CNN 0.953 - 0.889 0.974 - - - -

Chen et al. [20]
Slice+

WholeBrain CNN
0.911 0.950 0.914 0.888 0.801 0.789 0.520 0.856

Zhang et al. [18]
WholeBrain CNN+

Self ATT
0.910 - 0.910 0.920 0.820 - 0.810 0.810

Liu et al. [21]
WholeBrain CNN+

Global ATT
0.977 0.977 0.968 0.985 0.883 0.892 0.840 0.944

Gao et al. [37] Self ATT 0.920 0.956 0.891 0.940 0.753 0.786 0.773 0.741

Lian et al. [38] Spatial Disease ATT 0.919 0.965 0.887 0.945 0.827 0.793 0.579 0.866

Guan et al. [39]
Spatial+

Channel ATT
0.872 0.927 0.890 0.856 0.793 0.776 0.546 0.841

Our model
WholeBrain CNN+

Global ATT
0.985 0.946 0.962 0.983 0.894 0.887 0.796 0.880

Note: Results of [18, 21, 36, 38] in this table are cited from [21], while other results are cited from corresponding papers.
ATT refers to the attention mechanism.
The best performance is highlighted in bold, while the second best performance is underlined.

Table 3: Performance Comparison on the AIBL dataset.

Reference Method
AD vs. NC

ACC AUC SEN SPE

Guan et al. [15] ATT 0.903 0.953 0.873 0.908

Lian et al. [38] Spatial Disease ATT 0.898 0.974 0.873 0.908

Zhu et al. [40] MIL 0.911 0.950 0.914 0.888

Liu et al. [21] WholeBrain CNN+Global ATT 0.949 0.951 0.929 0.972

Our model WholeBrain CNN+Global ATT 0.963 0.955 0.933 0.980

Note: The best performance is highlighted in bold, while the second best performance is underlined.

Table 4: Performance Comparison on the OASIS dataset.

Reference Method
AD vs. NC

ACC AUC SEN SPE

Salami et al. [41] WholeBrain CNN 0.877 - - -

Islam et al. [42] WholeBrain CNN 0.932 - - -

Saratxaga et al. [43] WholeBrain CNN 0.92 - - -

He et al. [44] WholeBrain CNN+Global ATT 0.92 - - -

Our model WholeBrain CNN+Global ATT 0.945 0.970 0.920 0.960

Note: The best performance is highlighted in bold, while the second best performance is underlined.

the relative contribution of features, so that the most
relevant lesion area in the brain can be identified.

3.4 Experiment Results

The proposed method is implemented and tested using
the datasets of ADNI, AIBL and OASIS, and is com-
pared with the state-of-the-art methods. The experi-
mental results on datasets ADNI, AIBL and OASIS
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are shown in Table 2, Table 3 and Table 4, respec-
tively. The methods under comparison in these tables
are described in the Section 3.3. The proposed method
shows a superior prediction performance and reflects
the robustness of the proposed model.

In the classification experiments for AD and NC, it
is evident that our model achieves the highest predic-
tion accuracy among all the evaluated methods with
an ACC of 0.985 on the ADNI dataset.

Unlike the noticeable differences in images between
the AD and NC groups, the differentiation of images
between the pMCI and sMCI groups is less eminent,
which makes it hard to distinguish. The proposed
model achieves an accuracy of 0.894, which is the
best among all the methods under comparison. This
is because 1) our model can extract features at local
and global levels and performs decoupling operations
among different channels; and 2) the attention mech-
anisms (both spatial attention and channel attention)
allow the proposed model to effectively localize the
regions of brain physiological changes.

It is worth pointing out that results obtained
through deep learning algorithms exhibit higher accu-
racy than those through alternative algorithms. This
reflects the limitations of alternative machine learn-
ing algorithms (e.g., SVM, Long Short-Term Mem-
ory (LSTM), and similar approaches) with only shal-
low semantic information obtained from sMRI images.
In contrast, deep learning algorithms excel in their
ability to accurately identify and classify brain lesion
areas. Confusion matrices presented in Fig. 5 and Fig. 6
illustrate the comparative robustness of our model in
classifying AD vs. NC, and sMCI vs. pMCI, respec-
tively. The different numbers of actual positive and
negative labels in these figures reflect the class imbal-
ance in our dataset. Specifically, for classification task
AD vs. NC, our dataset contains a total of 625 sam-
ples, among which 272 samples belong to the positive
class and 353 samples belong to the negative class. For
classification task sMCI vs. pMCI, our dataset con-
tains a total of 788 samples, among which 257 samples
belong to the positive class and 531 samples belong
to the negative class. This imbalance is inherent to
the dataset and is representative of real-world sce-
narios where certain classes may be underrepresented.
The results clearly indicate that the proposed method
outperforms other methods under comparison.

3.5 Ablation Study

In order to thoroughly assess the efficacy of the MSD
block, SA block, and regularized loss function of the
proposed method, we conduct ablation studies on dif-
ferent combinations of the network components. The
outcomes of these experiments are presented in Fig. 7.
The ‘Baseline’ model in Fig. 7 means that the pro-
posed network does not take the MSD block and
SA block into consideration, and relies solely on the
cross-entropy loss function for the classification task.

From Fig. 7 we can make the following observa-
tions:

1. Adding the MSD block to the baseline model,
namely ‘Baseline+MSD’, surpasses the baseline
model in both classification accuracy and AUC.
Conversely, the single-channel convolution tends to
be susceptible to overfitting concerns due to its con-
strained feature extraction capacity and inadequate
feature representation. Having the MSD block not
only reduces parameters but also strengthens fea-
ture quality, promoting the amalgamation of global
and local information and empowering the model to
capture fine-grained features efficiently.

2. The inclusion of the SA block, that is, ‘Base-
line+MSD+SA’, enables a synergistic fusion of fea-
tures from all three directions, allowing the model to
concurrently consider features from all the aspects,
resulting in heightened classification accuracy.

3. The whole model gives the best classification accu-
racy and AUC, which is attributable to the joint
loss function (i.e., combining the clustering loss with
the cross-entropy loss). This outcome validates the
effectiveness of the joint loss function in learning
class centroids, minimizing the distance between
data samples within the same class while increasing
the separation between distinct classes. It is impor-
tant to note that relying solely on the cross-entropy
loss function often makes the network over-prioritize
the prediction label, thus potentially impeding its
generalizability. By introducing the clustering loss
function, the method exhibits a smoother scor-
ing progression, refraining from making absolute
predictions and improving its ability to general-
ize. The joint loss function plays a pivotal role in
boosting performance, ensuring more precise and
generalizable predictions.

4 Discussion

Several methods [17, 47, 48] were designed to pro-
cess 2D image data, where feature information was
extracted from various slices by the CNN, and achieved
a classification accuracy exceeding 80 percent. How-
ever, these methods, primarily relying on 2D CNNs and
single feature selection, exhibit notable drawbacks:

1. Discontinuous brain slices can influence the assess-
ment of afflicted brain regions.

2. Disease prediction, driven by feature selection,
may be biased towards distinguishing brain struc-
tures while overlooking natural individual variation,
which can lead to misclassification.

In contrast to 2D CNNs, 3D CNNs utilizing whole-
brain images offer the potential for higher classification
accuracy as they can comprehensively consider indi-
vidual variation. Nevertheless, due to a myriad of
information in 3D MRI images compared to 2D images,
it is more challenging to fully and accurately iden-
tify brain atrophy features. As a remedy, multi-scale
convolution is proposed in this paper, so that small-
and large-scale changes in the brain structure can be
captured simultaneously.
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(a) Confusion Matrix of Chen’s Model [20] (b) Confusion Matrix of Guan’s Model [39]

(c) Confusion Matrix of Lian’s Model [38] (d) Confusion Matrix of Our Model

Fig. 5: Confusion matrices of different models on the classification task of AD vs. NC over dataset ADNI.

(a) Confusion Matrix of Chen’s Model [20] (b) Confusion Matrix of Guan’s Model [39]

(c) Confusion Matrix of Lian’s Model [38] (d) Confusion Matrix of Ours Model

Fig. 6: Confusion matrices of different models on the classification task of sMCI vs. pMCI over dataset ADNI.
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Fig. 7: Results of ablation studies. ‘Baseline’ means that only the cross-entropy loss function is in action for the
classification task while MSD Block, SA Block and the clustering loss function are all deactivated.

(a) AD vs. NC on ADNI (b) pMCI vs. sMCI on ADNI (c) AD vs. NC on AIBL

Fig. 8: Line plots obtained from both ADNI and AIBL datasets.

(a) AD vs. NC on ADNI (b) pMCI vs. sMCI on ADNI (c) AD vs. NC on AIBL

Fig. 9: Histograms obtained from both ADNI and AIBL datasets.

Fig. 10: An AD patient’s locations of pathology identified by the proposed model.
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Fig. 11: An MCI patient’s locations of pathology identified by the proposed model.

Fig. 12: 3D Heatmaps of the brain with extracted features generated by the proposed model.

However, when performing 3D convolutions, there
is a potential for information interaction between dif-
ferent regions, leading to image misclassification. Some
brain structural features may be unrelated to AD.
Yet they become involved in the convolution oper-
ations, resulting in less weights being assigned to
affected brain areas during weight calculations, impact-
ing classification accuracy. In essence, 3D CNN models
using multi-scale convolutions may struggle to capture
structural changes across the entire brain.

To handle the issues associated with structural vari-
ations in the brain, the input 3D sMRI images may be
rotated, resulting in a transformation from one image
to three images. The proposed mode is then partitioned
into three branches, with the addition of the MSD
convolution operation to mitigate interactions among
different image regions. Furthermore, the SA mecha-
nism is incorporated to obtain the fused image. Each
step of this process aims to selectively retain more
lesion-related features while eliminating a substantial
volume of redundant information within the 3D image.
Nevertheless, parameters generated by a 3D CNN with
multiple branches are far more than those generated
by a 2D CNN. To tackle this issue, we resort to the
proposed group convolution with 1× 1× 1 convolution
kernels to realize dimensionality reduction, which saves
the computational cost.

In this study, we have also compiled data on the
performance of our model for each individual patient.
Fig. 8 illustrates the line plots that depict the model’s
performance for each patient in both AD vs. NC and
pMCI vs. sMCI tasks. Similarly, Fig. 9 presents the
histograms that intuitively express the proportion of
our model’s classification accuracy among patients.
From these figures, it is evident that while our model
demonstrates strong overall performance in both tasks,

there are certain patients for whom the diagnosis is
not accurately rendered. This inconsistency may be
attributable to individual variability in the human
brain structure and function. In some cases, patients
with severe conditions may exhibit only minor neuro-
logical changes, posing challenges for accurate classifi-
cation. Future research should therefore aim to address
these challenges by focusing on individual differences,
enhancing the model’s ability to accurately diagnose
patients with subtle neurological variations.

To assess whether the proposed method can extract
feature maps effectively, we carry out a series of visual
experiments. As depicted in Fig. 10 and Fig. 11, Fig. 10
illustrates the pathological areas detected by the model
during the AD classification task, whereas Fig. 11
highlights the pathological regions identified by the
model in the MCI conversion prediction task. There-
fore, the AD and MCI patients’ pathological locations
identified by the proposed method agree with AD-
related research literature [49, 50]. Notably, the 3D
heatmap [51] (Fig. 12) of the brain indicates that the
focus area is in close proximity to the hippocampus,
substantiating established research that AD is intrin-
sically linked to the hippocampus, which is responsible
for memory storage.

5 Conclusion

To overcome the limitations of feature information in
2D sections and the challenges in dealing with 3D
sMRI images, we have proposed a new AD predic-
tion method that consists of three main components
– the MSD block, SA block and Classification block.
The MSD block helps utilize global and local informa-
tion and capture detailed features, while reducing the
computational load through the decoupling process.
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The SA block can fuse features from the three direc-
tions (i.e., axial, sagittal, and coronal), allowing more
attention to be directed towards brain lesion areas.
Moreover, the joint loss function in the classifier, which
integrates the clustering loss with the cross-entropy
loss, greatly improves generalizability and prediction
performance of the proposed method. The experiment
results validate the proposed design, as our model
achieves excellent classification accuracy of 0.985 on
the ADNI dataset and 0.963 on the AIBL dataset when
compared with other related methods. Furthermore,
the proposed algorithm effectively discriminates AD
patients from the NC group and pMCI patients from
the sMCI group, manifesting its potential for clinical
applications. Additionally, the method proposed in this
paper could be applied to other areas, such as EEG
classification tasks [52, 53].
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