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ABSTRACT 

It is important to collect and validate data from satellites in order to obtain global 

information about the solar UVA (320-400 nm) environment. This research 

reconstructed and validated the broadband UVA irradiances derived from discrete 

spectral irradiance data retrieved from the Ozone Monitoring Instrument (OMI) 

satellite from 1 January to 31 December 2009. OMI data at solar noon was compared 

to ground based spectral irradiance at Toowoomba (27°36’ S 151°55’ E), Australia at 

310, 324 and 380 nm for both cloud free and all sky conditions. There was a strong 

relationship between the ground based UV spectroradiometer data and satellite based 

measurements with an R2 of 0.89 or better in each waveband for cloud free days. 

Models developed for the sub-tropical site data account for these differences and are 

essential for any correlation between satellite and ground based measurements. 

Additionally, this research has developed a model to evaluate the solar noon broadband 

UVA irradiance from the discrete satellite spectral irradiance at 310, 324 and 380 nm, 

comparing the UVA irradiance at solar noon on cloud free days to those measured over 

12 months with a ground based UVA radiometer. An R2 of 0.86 was obtained 

confirming that for cloud free days the broadband UVA can be evaluated from the 

OMI satellite spectral measurements.  

 

This research also investigated the influence of cloud on the broadband UVA solar 

noon irradiance evaluated from the solar noon satellite based OMI spectral UV data 

that were compared to the ground based radiometer irradiance in a twelve year period, 

from 1 October 2004 to 31 December 2016. The correlation, calculated with the model,  

between ground based radiometer data and the evaluated OMI broadband UVA 

irradiance depend on whether or not the solar disc was obscured by the presence of 

cloud and on the total sky cloud fraction. For conditions when the sun was not obscured 

by cloud, the evaluated satellite and the ground-based UVA irradiance correlation was 

best for cloud cover between 0-2 okta (R2 = 0.78) and worst for high cloud cover of 

>4 and up to 8 okta (R2 between 0.30 and 0.40). The R2 value reduced with increasing 

cloud cover and showed significantly weaker correlation when the sun was obscured. 

The correlation between the evaluated satellite broadband UVA and ground-based 

measurements over the twelve years for total cloud cover conditions of 4 okta or less 

confirmed that the broadband UVA satellite evaluation model using the OMI spectral 
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data is valid for approximately 71% of the days at the Southern Hemisphere sub-

tropical study site. 

 

This research then developed a method to accurately calculate the total daily 

broadband UVA exposure from the satellite derived solar noon irradiance on cloud 

free days. The method utilises cloud free UVA irradiance data, collected daily at high 

temporal resolution over the period 2005 to 2016, to derive the normalised diurnal 

UVA exposure and determine a factor relating the solar noon irradiance to the total 

daily UVA exposure. To demonstrate the versatility of this approach, OMI satellite 

solar noon UVA irradiance data were employed in calculating the total daily UVA 

exposures and compared to the respective ground based site measurements. There was 

a strong correlation between the total daily satellite and ground based broadband UVA 

exposures (R2 = 0.90). The developed method enables the total daily UVA exposures 

to be evaluated from satellite solar noon UVA irradiances at sites that do not record 

short term temporal variations in terrestrial UVA. 

 

Finally, this research investigated and evaluated the influence of cloud on the total 

daily UVA exposure calculated from the three OMI UV spectral irradiance measures 

at solar noon. These evaluated satellite total daily UVA exposures were compared to 

the total daily UVA exposures of a ground based broadband radiometer over the period 

of October 2004 to December 2014 at the Toowoomba site under all cloud cover 

conditions including sun obscured and not obscured states. The method was employed 

to evaluate the influence of cloud on the total daily UVA exposure. When the sun was 

not obscured by cloud, there was good agreement between satellite and ground based 

daily UVA exposure with R2 between 0.80 and 0.84 for the cloud conditions 0 to 2, > 

2 to 4, > 4 to 6 and > 6 to 8 okta. For sun obscured by cloud, the R2 was 0.71, 0.64 and 

0.75 respectively for > 2 to 4, > 4 to 6 and > 6 to 8 okta. The method was validated 

using total daily UVA exposures from ground measurements taken in 2015 and 2016 

giving a mean absolute error of 84.2 kJ/m2 (10%) and 138.8 kJ/m2 (30%) respectively 

for the cases of sun not obscured cloudy days and sun obscured by cloud cover. Total 

daily UVA exposures were able to be calculated from the OMI satellite spectral 

irradiance data for all cloud conditions, including cases when the sun was obscured, 

demonstrating the potential of the technique to be applied remotely in locations that 

do not record surface UVA measurements directly. 
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1.1 RATIONALE 

The solar radiation incident on the earth’s surface is divided into the three wavebands 

depending on wavelengths: visible, infrared and ultraviolet (Calbó, Pagès & Gonzaláz 

2005).  Johann Ritter discovered ultraviolet (UV) radiation in 1801 (Diffey 2002b). 

UV radiation has significantly higher energy at shorter wavelengths than to solar 

radiation in the visible waveband (De Miguel et al. 2011). The UV radiation waveband 

has been divided into three wavelength regions: UVC (100-280 nm), UVB (280-320 

nm) and UVA (320-400 nm) (Figure 1.1). 

 

 

Figure 1.1 Electromagnetic spectrum distribution of the solar radiation (Soehnge, 

Ouhtit & Ananthaswamy 1997).   

 

UVA has a longer wavelength, less energy and lower biological effectiveness than 

short wavelength UV. As a comparison, UVA exposures of 25 kJ/m2  are considered 

equivalent to UVB exposures of 250 J/m2  in terms of biological effectiveness (Mille r 

et al. 1998). However, regular exposure to small amounts of UVA, leads to significant 

damage and cutaneous alterations in the human epidermis (skin) (Lavker et al. 1995).  

 

 Since 2004, the satellite borne Ozone Monitoring Instrument (OMI) has been 

providing UV data complementing the Total Ozone Mapping Spectrometer (TOMS) 

which provided data from 1978 to 2010 (Ialongo et al. 2011). The sunburning 

(erythemal) UV data that are taken from the OMI has previously been compared and 
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validated to ground based data (Mateos et al. 2013; Fioletov, Kerr & Wardle 1997). 

However, no such comparison has been undertaken for the UVA radiation 

wavelengths. This project proposes to develop a method to evaluate the broadband 

UVA solar noon irradiances from the OMI satellite data and present a method to 

evaluate the total daily UVA exposures for comparison with calibrated ground-based 

measurements. UVA is still a health concern and must be accounted for in research 

that investigates the relationship of UVA to disease/damage to the body. Correlating 

the ground based to satellite derived solar noon UVA irradiance and total daily UVA 

exposures data will allow for improved UVA measurements and data coverage for 

future research. 

 

1.1.1 Objectives  

 

The solar noon spectral irradiance at several specific wavelengths are determined by 

the OMI and TOMS instruments. The OMI instrument provides the discreet spectral 

irradiance at 305, 310, 324 and 380 nm, with no provision of the broadband UVA 

irradiance from 320 to 400 nm. The overall objective of this research is to reconstruct 

and validate the broadband solar noon UVA irradiance and the total daily UVA 

exposures derived from current Ozone Monitoring Instrument (OMI) data. To achieve 

this aim, the research has the following specific objectives: 

 

1- Comparison and validation of the spectral UVA data from the OMI satellite against 

ground based spectroradiometer data located at the sub-tropical site in Toowoomba, 

Australia. 

 

2- Development of a method (mathematical model) to reconstruct the solar noon 

broadband UVA irradiance from the OMI data (310, 324 and 380 nm) at a sub-

tropical site. 

 

3- Evaluation and validation of the reconstructed satellite UVA irradiance to the 

ground based data on cloud free days from an independent radiometer over a period 

of one year (2009). 
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4- Comparison of the evaluated OMI solar noon irradiance over a 12 year period with 

ground based data including the influence of cloud. 

 

5- Development and validation of a method for the evaluation of total daily UVA 

exposures from the OMI satellite data.  

 

6- Comparison of the OMI reconstructed total daily UVA exposure on cloud free days 

with the ground-based measurements over the years from 2004 to 2016. 

 

7- Investigation and analysis of the influence of cloud conditions on the UVA 

exposures from the OMI satellite data and comparison with the measurements of 

the ground based instrument. 

 

1.2 HYPOTHESIS  

The OMI discrete spectral UV irradiance can be used as a proxy for broadband surface 

UVA irradiance and total daily UVA exposure.  

 

1.3 THESIS OUTLINE 

1. Chapter 1- provides an overview of the effects of UV radiation, factors that 

influence the UV environment, UV measurement methods and previous 

studies about the comparison between satellite and ground based UV 

measurements. 

2. Chapter 2 - presents the methods and equipment used in this project. 

3. Chapter 3 - details the validation of solar noon UVA satellite data using 

ground based spectral UV data and the evaluation of the solar noon 

broadband irradiance for cloud free days over a year. 

4. Chapter 4 – compares the solar noon satellite derived UVA irradiance 

and surface measurements including the influence of clouds and 

aerosols over a 12 year period. 

5. Chapter 5 – presents the method developed for evaluation of the total 

daily UVA exposures. The method is applied to cloud free days over a 

12 year period. The total daily UVA exposures are then evaluated for 
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all sky conditions. This employs a 10 year data set to extend the method 

for cloudy days and the use of a 2 year data set for validation.   

6. Chapter 6 – provides conclusions and suggestions for future research.       

 

1.4 OVERVIEW 

Both the UVB (280-320 nm) and UVA (320-400 nm) wavebands have significant 

influences for human health and the earth’s ecosystems. CIE (1987) has used the 

wavelengths region as UVA (315-400 nm). However, Photobiologists use the 

wavelength region as UVA (320-400 nm) (Diffey 2002b). Therefore, in this research, 

it is appropriate to use UVA (320-400 nm). Solar UV irradiance on a global scale need 

to be collected on a time repetitive basis. This is required for the monitoring of the UV 

climatology that influences the biological system on the earth. It is essential to provide 

awareness of the importance of the global coverage of UV irradiance using satellite -

based measurements as the basis of atmospheric factors. It is important to compare and 

validate the global satellite data against ground-based instrumentation. This chapter 

will discuss the effects of UV radiation and factors influencing UV radiation. Then, 

the methods and instrumentation for measuring UV radiation will be reviewed in this 

chapter. The chapter will also address the comparisons between ground-based and 

satellite measurements.      

 

1.5 LITERATURE REVIEW 

1.5.1 Effects of UV Radiation  

 

The earth’s surface is exposed to a significant quantity of solar UV radiation (8-9%) 

(Frederick et al. 1989). Of this radiation, UVA radiation makes up 6.3% and a majority 

of this is transmitted to the earth’s surface without absorption (although it is prone to 

scattering and attenuation by aerosols, water droplets and ice crystals in tropospheric 

cloud layers and undergoes natural fluctuations in magnitude depending on total cloud 

fraction and cloud optical depth). UV radiation is an important factor in the harm done 

to a number of biological systems on the earth (Hollosy 2002).  
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Solar UV radiation has two effects on human health. UV radiation has serious 

biological ramifications, including skin diseases (Rass & Reichrath 2008). Both the 

UVB and the UVA wavebands have a damaging influence on human health (Caldwell 

1998). One common method of defining the influence of solar radiation on human skin 

is to weight the UV spectrum with the erythemal action spectrum (CIE 1988; CIE 

1998). This spectrum is strongly weighted in the UVB and is often used as a proxy for 

biological damage. The World Health Organisation together with the World 

Meteorological Organisation (WMO) and international collaborators have adopted the 

erythemally weighted UV to define the UV index, an internationally accepted standard 

used to inform the public of potential sun exposure risk (WHO 2002).  

 

Human skin diseases are a clear consequence of UV radiation exposure effects 

(Natarajan et al. 2014; D'Orazio et al. 2013; De Gruijl 1999). Human skin produces a 

coloured protein (melanin) that works as a natural sunscreen to filter UV radiation in 

the human skin (Jablonski & Chaplin 2012). However, this protein does not stop the 

harmful effects of UV radiation completely, especially those due to long term UV 

exposure (Honigsmann 2002). In addition, skin colour or skin type determines the 

quantity of melanin in the skin. Table 1.1 describes the effects of erythemal UV 

radiation according to the skin type. Sunburn of the skin (erythema) is a consequence 

of too much weighted UV irradiance (CIE 2014). Therefore, the effects of UV 

radiation exposure such as sunburn or erythemal effects are disparate depending on the 

skin type (Diffey 1991). 

 

Table 1.1 The relationship between skin types and erythemal UV exposure as defined 

by Fitzgerald type (Fitzpatrick 1988). 

Skin category  Erythemal UV effects Description 

1 Very severe burns and pain 

with no tan 

Persons who have very fair 

skin, green or blue eyes 

and freckles   

2 Severe burns and pain and 

light tan 

Persons who have fair skin, 

blue and brown eyes and 

blond hair 

https://www.sciencedirect.com/science/article/pii/S095980499900283X?_rdoc=1&_fmt=high&_origin=gateway&_docanchor=&md5=b8429449ccfc9c30159a5f9aeaa92ffb#!
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3 Moderate burns and clear 

tan 

Persons who have white 

skin  

4 Sometimes burns and very 

clear tan 

Persons who have white 

and brown skin and black, 

brown and hazel eyes  

5 Very rare burns and clear 

tan 

Persons who have brown 

skin  

6 No burns and very clear tan Persons who have black 

skin 

 

Skin cancer resulting from UV radiation is a common disease around the world, that 

occurs for millions of people each year (Narayanan, Saladi & Fox 2010). Two main 

types of skin cancer have been identified: non-melanoma (NMSC) and melanoma skin 

cancer. Non-melanoma skin cancer (NMSC) is divided into basal cell carcinoma 

(BCC) and squamous cell carcinoma (SCC) (Rass & Reichrath 2008; Reichrath & 

Nurnberg 2008; Neidecker et al. 2009; Wright et al. 2012). NMSC is more common 

than melanoma skin cancer, but melanoma has a higher mortality rate (Narayanan, 

Saladi & Fox 2010). Due to Australia’s latitude, it has high level of UV radiation 

during the year (Gies 2003; Gies et al. 2004).Worldwide, Australia has the second 

highest rates of incidence of skin cancer (Australian Institute of Health and Welfare, 

2017; Doran et al. 2015). The incidence rates of skin cancer are increasing and are 

greater than those of any other types of cancer. The high incidence rates of skin cancer 

have a significant direct and indirect economic impact. For example, in New South 

Wales in 2010, the cost of 150,000 skin cancer cases was $536,000,000 (Doran et al. 

2015).      

 
The eye, like skin, is affected by UV radiation especially with respect to repeated UV 

exposure. Consequently, eye problems increase with increasing UV radiation exposure 

(Stamnes & Stamnes 2008). Eye damage is related to the UV wavelength (or UV 

intensity). When the eye is exposed to short wavelength UV radiation (in terms of 

UVC), the eye damage occurs immediately. Repeated longer wavelength UV radiation 

(UVB and UVA) also leads to eye problems (Ambach & Blumthaler 1993). Figure 1.2 

shows the transmission of UV radiation into the eye. UV eye disease often occurs with 

basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). Even though, ocular 
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melanoma is rare in relation to UV exposure, it may occur for population groups with 

white skin and blue eyes (Gallagher & Lee 2006). Eye or eyelid skin problems caused 

by UV exposure include blistering, exfoliation, cataracts, Photo keratitis and blurred 

vision (Stamnes & Stamnes, 2008). 

 

 

 

Figure 1.2 Penetration of ultraviolet radiation into the eye (Behar-Cohen et al. 2011).  

 
In contrast, UV radiation exposure can have positive consequences on human health 

(Juzeniene et al. 2011). It is considered as a main source of vitamin D, which is 

important for calcium equilibrium in the human body (Webb & Holick 1988; CIE 

2006). Vitamin D deficiency has also been linked to breast and ovarian cancer (Grant 

2007). The human body’s need for vitamin D is varable and depends on environment 

and genetic makeup (Webb & Engelsen 2006). The effectiveness of the UV for vitamin 

D production depends on wavelength (Figure 1.3) and the exposure time. The UVB 

wavelengths are predominantly the ones responsible for vitamin D production 

(Norman 1998; CIE 2006).  
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Figure 1.3 Vitamin D action spectrum showing the relative effectiveness of the UV 

wavelengths for vitamin D production (CIE 2006). 

 

In addition to UV radiation effects on human health, UV radiation affects other 

systems at the earth’s surface. Solar UV radiation causes a negative influence on 

aquatic ecosystems and species (Häder et al. 2007). It has indirect effects on plants 

through an increase or a decrease in the capability of the plants to fight insects and 

pathogens. UVB is also responsible for direct effects on plants such as changes in the 

genetic activities that create variations in the forms and functions of plants (Caldwell 

et al. 1998). Moreover, solar ultraviolet radiation, especially UVB radiation, degrades 

the quality of materials such as wood, paper, biopolymers and plastics (polymers) , 

decreasing the outdoor service life of these materials (Andrady et al. 1998).   

 

1.5.2 Effects of UVA Radiation 

 

UVA radiation has the lowest energy and the longest wavelength of the UV radiation 

wavebands. Importantly, UVA radiation is not attenuated by atmospheric ozone and is 

much more abundant on the Earth’s surface than UVB radiation (Figure 1.4). UVA 

solar radiation at the Earth's surface makes up more than 90% of the availab le 

ultraviolet and experiences less relative atmospheric attenuation at high solar zenith 

angles (SZA, see section 1.5.3.3) than UVB (Diffey 2002a; Frederick et al. 1989). It 

is well established that UVA can have harmful effects on human health (Kozmin et al. 

2005; Moyal & Fourtanier 2002; Krutmann 2000). Through unknown interna l 
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interactions, DNA absorbs UVA photons and this UVA absorption leads to DNA 

damage. This can contribute to carcinogenesis and aging (Ravanat & Douki & Cadet 

2001). UVA radiation contributes to skin stress due to photo oxidation processes in 

the DNA (Vile et al. 1994). Furthermore, because of its longer wavelength UVA can 

penetrate deeper into biological systems, allowing damage to occur in greater depths 

(Stamnes and Stamnes 2008; Amaro-Ortiz, Yan & D'Orazio 2014) (Figure 1.5).  

 

 

Figure 1.4 UV spectral irradiance recorded by a spectroradiometer on a cloud free 

day at the University of Southern Queensland, Toowoomba, Australia (measured 

12.15pm, 10 September 2004). 

     

Although the energy of UVA radiation absorbed by DNA is significantly lower than 

absorption of UVB radiation (Freeman et al. 1987), preferential absorption and 

atmospheric scattering influences the diurnal variation in the ambient UVA and UVB 

solar radiation, with the two wavebands displaying significant differences in 

distribution from the measured peak irradiance at solar noon (Diffey 2002b). There is 

more UVA irradiance due to atmospheric transmission processes. 
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Figure 1.5 UVA penetration into the human skin (Amaro-Ortiz, Yan & D'Orazio 

2014). 

 

1.5.3 Factors influencing UV irradiance 

 

Solar UV radiation is subject to many factors, which determine and influence the 

irradiance that reaches the Earth’s surface (Parisi, Sabburg & Kimlin 2004; Cadet et 

al. 2017). Because of these factors, UV radiation is prone to scattering, absorption and 

attenuation during its path through the atmosphere to the Earth’s surface. All the short 

wavelength radiation (UVC and part of the UVB) is absorbed by the atmosphere. 

Longer wavelength radiation will scatter according to Rayleigh or Mie scattering 

depending on the size of the atmospheric particles, aerosols and cloud particles 

(Madronich & Flocke 1999). 

 

1.5.3.1 Ozone 
 

The atmospheric layer of the stratosphere (altitude 15-35 km) is one of the atmospheric 

layers that contains the trace gas called ozone. Ozone is a triatomic oxygen molecule 

formed by single oxygen atoms and diatomic oxygen. The physical thickness of the 

layer of ozone is measured depending on the number of ozone molecules per cm2 at 
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standard pressure. The quantity of 2.69×1016 molecules cm-2 represents one Dobson 

unit. 

 

The influence on UV radiation can be calculated by a formula at standard temperature 

and pressure conditions depending on the total ozone column (Calbó, Pagès & 

Gonzaláz 2005). 

  

𝐷′

𝐷
= (

𝑇𝑂𝑍′

𝑇𝑂𝑍
)

−𝑅𝐴𝐹

                                                                                        (1.1) 

 

where 𝐷′ and  D are UV radiation exposure at two different conditions. 𝑇𝑂𝑍′ and TOZ 

are total ozone column at two different conditions and RAF is a radiation amplifica t ion 

factor. Ozone significantly affects the amount of UV radiation reaching the Earth’s 

surface. UVC radiation is absorbed completely, and UVB radiation is absorbed or 

attenuated during passage through the ozone layer (Fountoulakis et al. 2014).  

Therefore, any changes in the concentration of atmospheric ozone will affect the 

terrestrial UV radiation (Bais et al. 2015; McKenzie et al. 2011). There have been 

changes in stratospheric ozone such as ozone depletion in mid and high latitudes 

because of increased CFC chemicals during the last part of the 20th century 

(Sivasakthivel and Reddy 2011; Bais et al. 2011). The Australian population suffers 

from high levels of UV radiation exposure because of Australia’s position in the 

Southern Hemisphere, which experiences less ozone than the Northern Hemisphere at 

comparative latitudes (Gies et al. 2013). UVA irradiance has low absorption by ozone 

and therefore is less influenced by this factor.  

 
Over the last decades, a number of researchers have addressed ozone measurements 

from satellite-based instruments (Thompson et al. 2003; Fishman and Brackett 1997). 

For example, Fishman et al. (2003) have studied global distribution of ozone from 

TOMS measurements to determine tropospheric ozone pollution in some regions of 

India, USA, China and Africa. This study has concluded that satellite measurements 

provide a great deal of information about ozone pollution in these regions. 
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1.5.3.2 Aerosols 
 

There are a variety of types of particles existing in the atmosphere due to natural and 

anthropogenic factors including dust, soot, sulphate haze and sea-salt aerosols (Wenny 

et al. 1998). Aerosols have a significant impact on the UV levels in the atmosphere 

because of their optical properties (absorption and scattering). Since the beginning of 

the industrial revolution, absorption and scattering of UV radiation by aerosols has 

reduced the amount of UV radiation that reaches the earth’s surface from 5% to 18% 

(Mckenzie et al. 2008). The degree of absorption or scattering are identified through 

the aerosol optical depth (AOD) [𝐴𝑂𝐷 = 𝐴𝑂𝐷𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 + 𝐴𝑂𝐷𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔] which 

varies according to using the Angstrom formula (Kerr 2005):  

 

AOD(λ) = 𝛽λ−α                                                                                (1.2) 

 

where 𝛽 is the Turbidity coefficient, α is the Angstrom coefficient and λ is wavelength. 

Additionally, aerosols are considered a main factor in heating the atmosphere and 

changing its energy distribution processes because they intercept UV and other 

wavelengths in the atmosphere before it arrives at the Earth’s surface, which may 

suppress the formation of clouds (Feng, Ramanathan & Kotamarthi 2013). Thus, many 

studies have been researching the influence of aerosols.  

 

Some of the aerosol studies have relied on the satellite-based measurements to study 

the detection of aerosols absorption and scattering (Hsu et al. 1999; Herman et al. 

2013). For example, Torres et al. (1998) have discussed a theoretical method to derive 

aerosol properties using backscattered UV radiation from satellite (version 7 TOMS 

instrument) data. In addition, this study has estimated aerosol optical depth using a 

model error sensitivity at two UV wavelengths (340 nm and 380 nm). Veefkind et al. 

(2000) have used different satellite-based instruments (GOME and ATSR-2) to 

compute and determine the distribution of the aerosol optical depth in the UV 

waveband. Furthermore, this study has addressed a comparison between GOME and 

ATSR-2 satellites and ground-based measurements. The region of this study was 

north-western Europe for a perfectly cloud free day (25th July 1995).  
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1.5.3.3 Solar Zenith Angle  
 

The Solar Zenith Angle (SZA) is the angle of the line of sight to the sun with respect 

to the zenith. Two factors determine the SZA which influence the amount of UV 

radiation that reaches the earth’s surface: geographical location and changes with time 

of day and day of the year. An increase of the SZA leads to a decrease in the intens ity 

of UV radiation that falls on the earth’s surface. First of all, the proportion of the 

incident direct radiation decreases with the cosine of SZA [𝑈𝑉𝐷 cos (SZA)] 

(Schwander, Koepke & Ruggaber 1997) where 𝑈𝑉𝐷is the direct UV radiation. 

Secondly, the passage of solar radiation through the atmosphere (path length (μ) = 

slant/vertical) is greater at larger SZA. Thus, the absorption and scattering of UV 

radiation increases with increasing SZA (Kerr 2005). 

 

1.5.3.4 Surface Albedo 
 

UV radiation reflects from ground surfaces and any other surfaces in the environment. 

The amount of UV radiation that is absorbed or reflected when it reaches the earth’s 

surface depends on the various surfaces properties (Turner and Parisi 2009). The 

ground cover reflectivity of UV radiation, expressed as a ratio of the reflected light to 

the incident light, is represented by the unit less quantity called albedo. Albedo is 

described from 0 (no reflection) to 1 (total reflection) (Feister & Grewe 1995). There 

is a positive relationship between surface UV irradiance and surface albedo due to 

direct reflection and increased atmospheric backscatter toward the terrestrial surface. 

Ice and snow can reflect UV radiation more than visible radiation (Bais et al. 2015). 

Consequently, snow condition such as thickness and snow age affect the estimation of 

UV irradiance by satellites (Simic 2011). 

 

1.5.3.5 Altitude and Earth’s Orbit 
 
High altitudes have less thickness of the atmosphere for UV radiation to traverse and 

as a result the altitude of different locations affects surface UV irradiance. High 

altitudes usually correspond to zero, or low-pollution atmospheric areas, which in turn 

leads to high amounts of UV radiation (Piazena 1996). The altitude effect (AE) on the 

surface UV radiation is calculated as a following percentage (Blumthaler, Ambach & 

Ellinger 1997): 



Chapter 1 Introduction 

15 
 

  

Altitude Effect (AE) = [
𝑈𝐻𝐴

𝑈𝐿𝐴

− 1] ×
𝛥𝐴

1000
× 100%                         (1.3) 

 

where UHA is the UV radiation at high altitude, ULA is the UV radiation at low altitude 

and ΔA is the altitude difference .  

 
Solar UV radiation is also affected by the annual change in distance between the earth 

and the sun due to the earth’s elliptical orbit around the sun. The annual earth’s orbit 

reduces the distance to the sun in the Southern Hemisphere summer by about 1.7%. 

This percentage is sufficient to increase the UV radiation intensity to about 7% in the 

Southern Hemisphere summer (Parisi & Kimlin 1997).  

 

1.5.3.6 Clouds 

 

Of all the atmospheric factors influencing satellite based monitoring of surface UV 

irradiance. Cloud is perhaps the most significant influencing factor (Calbó, Gonzaláz 

& Pagès 2001; Sabburg and Parisi 2006). The physical influences of atmospheric 

scattering, refraction and reflection are enhanced by the presence of cloud (Anton & 

Loyola, 2011; Parisi et al. 2008).  Water and ice particles that make up clouds scatter 

solar radiation contributing to the diffuse UV irradiance that reaches the earth’s surface 

(Kazantzidis, Eleftheratos & Zerefos 2011). In recent years, studies have assessed the 

radiative contribution of clouds to the global surface irradiance because of the potential 

climatological importance of energy budgets to global warming. As a result, it has 

been found that clouds either attenuate or enhance the amount of UV radiation that 

reaches the earth’s surface (Calbó, Pagès & Gonzaláz 2005; Sabburg & Wong 2000). 

However, in general, the influence of clouds is more explicit in the longer wavelength 

visible spectrum than for UV radiation, due to the predominance of longer wavelength 

visible radiation in the direct solar spectrum and following scattering according to 

Rayleigh’s criterion. Therefore, in contrast to visible radiation, the level of diffuse UV 

radiation can still be high, even though the sky may be covered completely and 

optically dim (Herman et al. 2013). The attenuating impact of clouds on the solar UV 

at a certain wavelength can be accounted for by using a cloud modification factor 

(CMF) (Simic et al. 2011), defined here as: 
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CMF =
E(λ)w

E(λ)k

 ,                                                                                       (1.4) 

 

where 𝐸(𝜆)𝑤 is the UV irradiance under cloud cover and 𝐸(𝜆)𝑘  is the UV irradiance 

expected for cloud-free conditions. It is difficult to quantify the effects of clouds 

accurately because of the spatial and temporal inhomogeneity of clouds (Bais et al. 

2015). Cloud conditions (cover, type, spatial and temporal distribution) play an 

important role in determining the UV irradiance, measured either by surface or satellite 

based instruments (Sabburg & Parisi 2006; Udelhofen et al. 1999).  

 

Some studies have obtained information about the cloud conditions using satellite -

based measurements. An and Wang (2015) have provided different fields of cloud 

observations from the satellite-based instrument of the Moderate Resolution Imaging 

Spectrometer (MODIS) and surface instruments such as the Total Sky Imager (TSI). 

In this study, the MODIS instrument has a higher annual mean cloud fraction than 

ground-based measurements, because MODIS has a specially developed cloud 

detector which is called MODIS-aqua (afternoon overpass). 

 

 Fontana et al. (2013) have described cloud fraction data taken from Tera and Aqua 

MODIS instruments for the period from 2000 to 2012 over Switzerland. In this study, 

a comparison has been conducted between MODIS satellite data and four ground based 

stations’ data in meteorological Synop station, Switzerland. This comparison has 

provided valuable information on how climate is varied by cloud cover. Thus, cloud 

cover detection using satellite based measurements plays an important role to 

determine and understand the radiative effects on the earth’s surface (Stubenrauch et 

al. 2013; Frey et al. 2008; King et al. 2003). 

 

1.6 METHODS OF MEASURING UV RADIATION 

For most of the studies that address the interaction between UV radiation and receiving 

surfaces, UV radiation is considered in terms of radiometric quantities (irradiance, 

radiant exposure and quantities that are spectrally weighted). Irradiance is the incident 

radiant broadband UV radiation and the units are W/m2 (McCluney 2014). W/m2 /nm 
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are the units of spectral irradiance for a single wavelength that is measured by 

spectroradiometers. Radiant exposure is the energy received by a surface area and the 

units are J/m2 (Diffey 2002b). The weighted UV irradiance is the spectral distribution 

of the irradiance that has been weighted at each wavelength with the wavelength 

dependent biological effectiveness for a particular biological process, for example, the 

erythema action spectrum is a weighting for erythema. 

 

1.6.1 Ground-based instruments 

 

Historically, it has been difficult to achieve accurate spectral UV measurements using 

ground-based instruments. These difficulties arise because UV radiation is subject to 

a series of absorption and scattering processes, due to aerosols, clouds, ozone and 

albedo during its path through the atmosphere, making the resulting UV distribution 

complex. Furthermore, there are real difficulties in maintaining measuring instruments 

in accordance with long-term stability and calibration standards (Sharma et al. 2011; 

Kerr et al. 2002). Prior to discovery of the Ozone hole (late 1980s), accurate 

measurement of UV radiation was not available (McKenzie et al. 2011). By the mid-

1990s, there was a noticeable improvement in the accuracy of UV radiation 

measurements, especially with spectroradiometers (Bais et al. 2015). 

 

1.6.1.1 Spectroradiometers 
 

Spectroradiometers are ground-based instruments that measure the spectrum of UV 

radiation (UVA and UVB) at 1 nm or better spectral resolution. There are many factors 

that affect the accuracy of spectroradiometers, for instance, calibration standards, 

instruments drift and wavelength misalignment (Kerr et al. 2002). However, while 

other spectrometers may produce higher uncertainty measurements, 

spectroradiometers have a high accuracy in measuring the quantity of UV radiation 

(Bais et al. 2015). In addition, recent spectroradiometer developments, such as dual-

prism spectrographs, mean spectral measurements have become much faster than other 

methods. As a result, it is possible to examine changes due to atmospheric factors, such 

as clouds, which can change over small temporal scales. Moreover, by supplementing 

these instruments with diffusers, significant improvements have been made to 

corrections of the cosine error (a measure of the instrument response relative to the 

cosine response from 0-90o in SZA) (Grobner, Blumthaler & Ambach 1996).  
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1.6.1.2 Dobson Spectrophotometer 
 

The Dobson Spectrophotometer is a ground-based instrument designed to measure 

total ozone. This instrument contains two monochromatic prisms which use a 

differential absorption technique (for two particular wavelengths pairs: 305.5 nm, 

325.4 nm and 317.6 nm, 339.8 nm) in the UV region where ozone absorbs strongly for 

the first pair, but not the second (Kohler 1999). The accuracy of calculations of total 

ozone, by a Dobson Spectrophotometer depends on spatial circumstances such as 

instrument location and the nature of the sky, for example whether it is clear or cloudy. 

In addition, calibration levels play a key role in determining the accuracy of the 

Dobson instrument (Van Roozendael et al. 1998). Basher (1982) concludes that if a 

Dobson instrument is subjected to a high calibration level, the error of its 

measurements may be around 2-3%. 

 

1.6.1.3 Brewer Spectrophotometer  
 

The Brewer instrument was designed to measure total ozone quantity (Balis et al. 

2007). This instrument has two monochromatic prisms, which have differentia l 

absorption for five wavelengths (306.3 nm, 310.1 nm, 313.5 nm, 316.7 nm and 320.1 

nm) (Gao et al. 2001; Van Roozndeal et al. 1998). Total ozone values as measured by 

Dobson and Brewer instruments are calculated by the general relation (Vanicek, 2006): 

 

𝑇𝑂𝐷𝑆 =
(𝐹0 − 𝐹 − 𝛽𝑚𝑝/𝑝0 )

𝛼𝜇
                                                           (1.5) 

 

where TODS is the total ozone values by the direct sun absorption,   𝐹, 𝐹0  are linear 

combinations of ground spectral irradiance, 𝛼, 𝛽 are linear combinations of ozone 

absorption and Rayleigh scattering, 𝜇, 𝑚 are relative optical air masses of ozone and 

the atmosphere and 𝑝,𝑝0  are observed and air pressure at mean sea level. 

 

The Brewer instrument measures the spectral UV irradiance at a resolution of ~ 0.5 

nm (Fioletov et al. 2002). As for the Dobson instrument, one of the factors affecting 

the Brewer instrument accuracy is calibration. The Brewer instrument is more sensitive 
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than the Dobson under good calibration conditions, so it can measure at lower sun 

angles (Van Roozendael et al. 1998). 

 

1.6.1.4 Radiometers 
 

Solar UV radiometers use a conventional technique to convert UV radiation as 

electromagnetic radiation to electric signals (Paulescu et al. 2013). There are two types 

of radiometer instruments: broadband filter radiometers and narrowband multi filter 

radiometers. The wavelength coverage of broadband radiometers is more than 10 nm 

(wide wavelength range) while the coverage of narrowband radiometers encompasses 

from 2 to 10 nm (Kerr et al. 2002).  The main purpose of using radiometers is to 

measure erythemal effective irradiance or a particular waveband (Smith, White & 

Ryan 1993). There are many factors that affect the performance of radiometers such 

as the level of calibration, stability (for example, no changes in internal temperature as 

per manufacture specifications) and weather fluctuations (temperature and humidity). 

With standard conditions, radiometers can measure the irradiance in less than a second 

while spectroradiometers require several minutes to complete a measurement over a 

desired spectral range (Di Sarra, Disterhoft & DeLuisi 2002).      

 

1.6.2 Satellite-based Instruments 

 

Surface-based UV radiometers are used to measure the UVA and UVB irradiance but 

do not provide sufficient coverage to monitor the majority of the earth's surface, 

especially over the oceans (Kalliskota et al. 2000). Interest in terrestrial (and marine) 

UV radiation reaching the earth's surface over the past few decades has created 

increasing demand for satellite-based instrumentation. Approaches that depend on 

satellite data are suitable alternatives to surface-based instrumentation because 

satellites have the capability to determine important parameters over a wide area and 

provide reasonable estimates of the UV irradiance where local surface instrumenta t ion 

is not available (Soulen & Frederick 1999; Paulescu et al. 2012). 

 

 Satellite based instrumentation has been employed for the provision of global 

coverage on a time repetitive basis of the atmospheric ozone, aerosols, UVA and UVB 

at specific wavelengths. There are several satellite instruments that monitor UV 

radiation that continue to provide a growing body of data enabling remote investiga t ion 
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of local UV climatology in the mid- to long-term. These have provided high spatial 

and temporal resolution datasets from the late 20th century to the present day, and 

include: Total Ozone Mapping Spectrometer (TOMS), Global Ozone Monitoring 

Experiment (GOME), Moderate Resolution Imaging Spectrometer (MODIS) and 

Ozone Monitoring Instrument (OMI) satellite platforms (Bais et al. 2015). 

 

1.6.2.1 Total Ozone Mapping Spectrometer (TOMS) 
 

Since the 1970s TOMS instruments have been one of the National Aeronautics and 

Space Administration (NASA)’s second generation systems designed to perform 

ozone measurements (Kalliskota et al. 2000; Veefkind et al. 2006). TOMS have 

significantly contributed to determining atmospheric chemistry, atmospheric 

dynamics and ozone Pollution. Their measurements work within 1 nm wide bands in 

the UV irradiance channels (313 nm, 318 nm, 331 nm, 340 nm, 360 nm and 380 nm). 

Ozone absorbs 313 and 318 nm strongly while the other wavelengths have minimal 

absorption (Herman et al. 1997). Therefore, the TOMS is ideal for ozone 

measurements, as the wavelengths can be used to determine total column ozone. 

 

In addition, the TOMS UV algorithm retrieves information about the spectral UV 

irradiance from the ground level. The spatial resolution of the TOMS retrievals is about 

100 km × 100 km area. Solar noon is the only time that TOMS provides the spectral 

UV irradiance measurements (Xu et al. 2010). Furthermore, TOMS uses a spectral 

method, called the residual method for estimating clouds and aerosols during the 

retrieval of spectral UV irradiances (Herman et al. 1999).      

 

1.6.2.2 Global Ozone Monitoring Experiment (GOME) 
 

The Global Ozone Monitoring Experiment appeared as satellite instruments in 1995 

when it was launched on the ERS-2 (second European Remote Sensing) satellite. The 

main purpose of using the GOME instrument is to provide ozone distribution 

measurements and other trace gases such as NO2, BrO2, ClO2, SO2 and H2CO. 

Furthermore, GOME instruments measure aerosol optical depth and cloud fraction 

parameters (Callies et al. 2000).  

 
In addition, the GOME instruments have high spectral resolution (0.2-0.4 nm) which 

are designed to measure the UV and visible region of solar radiation (240-790 nm) 
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(Veefkind et al. 2006; Weber et al. 1998; Kujanpää & Kalakoski 2015). The UV and 

visible radiation enter the GOME instrument through the input optics and undergo a 

series of processes that are a key feature of these instruments, through a double 

monochromatator that contains a prism and four gratings as dispersing elements for 

four channels (Burrows et al. 1999).  

 

The GOME instruments have the capability to determine the polarization of the solar 

radiation using sensitive broadband detectors (Bramsted et al. 2003). However, the 

GOME ERS-2 (GOME-1) version has a limited data rate because of the environmenta l 

and spatial problems, and the instrument structure. There is another modified version 

of the GOME instrument (Munro et al. 2016), called GOME-2. The GOME-2 

instrument was launched on the larger satellite (METOP) on the ARIANE-5 spacecraft 

that has a different environment, calibration method and orbit. GOME-2 has new 

features such as 40 km × 40 km spatial resolution, enhanced calibration features and a 

modern polarisation system (Callies et al. 2000).      

 
 

1.6.2.3 Moderate Resolution Imaging Spectrometer (MODIS) 
 

MODIS entered service in 1999 on board the Earth Observing System (EOS) Tera 

satellite and in May 2002, MODIS also, launched on the Aqua satellite (Segura et al. 

2015). Data for this instrument is taken from reflected solar irradiance and depends on 

36 spectral bands. The range of these different spectral bands is between 0.415 µm and 

14.235 µm and are used to measure global aerosols. The MODIS algorithm retrieves 

information about aerosols by using a 500 m resolution radiance in six bands between 

550 m to 2100 m. The information between these ranges provides a stable and accurate 

product. The MODIS algorithm uses 𝛼𝜆 (spectral reflectance as a function of 𝑙𝜆, 𝑆𝑍𝐴, 

𝑆0,𝜆 ), where, 

 

𝛼𝜆 = 𝑙𝜆

𝜋

𝑆0,𝜆cos (𝑆𝑍𝐴)
                                                                       (1.6) 

 

𝑙𝜆 is a spectral radiance, 𝑆𝑍𝐴 is solar zenith angle and 𝑆0,𝜆 is solar irradiance.The most 

important condition in obtaining accurate aerosol retrieval is that MODIS must have 

sufficient stability and sensitivity (Levy et al. 2009). 
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 In addition, MODIS has cloud algorithms that provide cloud detection and all the 

cloud properties such as thermodynamic phase, temperature, pressure, water path and 

optical thickness (Segura et al. 2015; Platnick et al. 2003; Kaufman et al. 2005). 

MODIS Tera and Aqua detect the cloud fraction at two different times (Terra at 10:30 

am and Aqua at 1:30 pm). Three hours between Tera and Aqua detection provide a 

good characterisation of the cloud in the daytime (Ackerman et al. 2008).  

 
 

1.6.2.4 Ozone Monitoring Instrument (OMI) 
 

OMI is a generation of spectrometers placed in orbit by NASA on 14 July 2004. OMI 

observes the top layers of the atmosphere and covers the UV band and visible 

irradiance (270-500 nm) with high spatial resolution (13 × 24 km2 at nadir) and 

spectral resolution of 0.5 nm. OMI was developed to provide data on the ozone 

column, clouds, surface UV and gases (NO2 , SO2, HCHO, BRO, OCID). Thus, the 

purpose of using OMI is to monitor long-term changes of UV levels (Bernhard et al. 

2015; Pitkanen et al. 2015; Torres et al. 2007; Veefkind et al. 2006; Ialongo et al. 2010; 

Jégou et al. 2011; Zempila et al. 2018). The OMI UV algorithm is a derivative from 

the TOMS UV based algorithm as developed previously by NASA. This algorithm 

evaluates the surface irradiance under cloudless conditions (Eclear ). Eclear  is then 

multiplied by the factor CT (which is equal to the derived cloud divided by the non-

absorbing aerosol transmittance factor) to estimate the irradiance in the presence of 

cloud (Ecloud) (Ialongo et al. 2010; Tanskanen et al. 2006) where 

          

Ecloud = Eclear . CT                                                                            (1.7) 

 

However, OMI does not cover the boundary layer of the atmosphere which means that 

absorption by aerosols is not accounted for by the OMI algorithm. Consequently, the 

OMI algorithm typically overestimates the surface UV irradiance. 
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1.7 COMPARISON OF GROUND-BASED TO SATELLITE DATA 

1.7.1 OMI Broadband UV 

 

Mateos et al, (2013) have estimated the differences in daily terrestrial erythemal 

irradiance. This was achieved by comparing the OMI measurements to six Spanish, 

three Argentinean, two Italian, two Israeli, and one Australian ground stations. The 

results have shown an overestimation of the satellite values where all these results were 

compared at low surface albedo conditions. This overestimation significantly depends 

on cloud condition, ozone and aerosols. Buntoung and Webb (2010) have compared 

the results of erythemal UV dose measurements between OMI and broadband 

instruments (at four urban sites in Thailand). OMI measurements show overestima tion 

under clear sky conditions of UV irradiance by 10-40% for urban sites. The researchers 

have concluded that this overestimation comes from the impact of aerosol absorption 

that is not taken into account in the OMI algorithm.  

 
Pitkanen et al. (2015) have addressed a comparison to validate OMI satellite UV data 

using ground-based data (Brewer spectrophotometer and Solar Light 501 radiometer) 

for two sites at Jokioinen and Sodankyla, Finland. The data of this study represents 

just the summer seasons of 2005 to 2011. This comparison shows +21% of bias for the 

satellite data compared to ground based data. This overestimation has been explained 

by the cloudiness and overcast conditions of the summer seasons.  

 

Bernhard et al. (2015) have compared OMI and ground-based erythemal daily UV data 

at 13 stations located in Arctic and Scandinavian sites. Measurements of this study 

were over the years from September 2004 and December 2012. In this comparison, 

OMI data overestimate ground-based data by up to 11% during the year, when the 

surface albedo is accounted for in the OMI algorithm and the ground-based data are 

taken from unpolluted, low-latitude and snow-free areas. However, this study has 

noted the increase of the OMI overestimation by up to 14% at noon in November each 

year. This difference was because, the OMI algorithm does not take the local noon 

solar zenith angle (SZA) into consideration.  

 
Tanskanen et al. (2007) have conducted a comparison between the Ozone Monitoring 

Instrument data and ground based measurements to validate daily erythemal UV doses. 

The regions of the study have low levels of aerosols and snow free surfaces. In this 
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study, OMI overestimation compared to the ground based data is up to 10% where the 

erythemal doses reach 80%. These results are attributed to the OMI algorithm which 

does not consider the surface albedo, aerosols or trace gas absorption.        

 
Ialongo, Casale & Siani (2008) have compared the differences of erythemal dose rates 

(EDRs) and erythemal daily doses (EDD) between OMI and ground-based instruments 

(Brewer and broadband radiometer) that are located in Rome. The results show OMI 

overestimation of UV measurements compared to the Brewer and radiometer 

measurements. The researchers have shown that this overestimation could be because 

of the nature or the structure of OMI that is not suitable to measure the effects of 

tropospheric aerosols on UV measurements. In summary, most of the studies show the 

OMI satellite data provides an overestimation compared to the ground based data 

because of some factors. These factors such as aerosols and SZA influence UV 

irradiance measurements by satellite.  

 

1.7.2 GOME and TOMS Ozone 

 

Anton et al. (2011) have measured simultaneous total ozone column (TOC) data that 

are taken from the GOME-2 and Infrared Atmospheric Sounding Interferometer (IASI) 

satellites and five calibrated ground based Brewer instruments located on the Iberian 

Peninsula in Spain. This study showed GOME-2 provides slight underestimation of 

the Brewer ozone data by 1.6%. In contrast, IASI has clear overestimation of Brewer 

by 4.4%. These differences are attributed to the differences between the vertical 

sensitivity of IASI and GOME-2. However, in general, the performance of GOME-2 

and IASI present an excellent agreement of ozone data with ground-based instruments 

especially in cloud-free conditions. 

 

Viatte et al. (2011) have studied ozone total column data by using a comparison 

between Fourier Transform Infrared (FTIR) and Brewer instruments with OMI, 

GOME, and Infrared Atmospheric Sounding Interferometer (IASI). This comparison 

has been conducted in Tenerife from March to June 2009. All the comparisons between 

satellites and surface instruments provided an excellent agreement of 0.94. This 

correlation is attributed to the high quality of Brewer and FTIR instruments needed to 

validate total ozone column with OMI and GOME data.  
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Bramstedt et al. (2003) have provided a study, which included a comparison between 

GOME and TOMS satellite instrument data and surface station data (Dobson 

instrument). Datasets of this study included the measurements from 1996 to 2000. The 

total ozone has been calculated in this study by applying the TOMS algorithm to 

GOME spectra. This comparison shows a reasonable agreement between the satellites 

and surface data. The operational measurements of the GOME instrument show a 

seasonal variation because of air mass factors that cause derivation difficulties in the 

GOME algorithm. TOMS satellite measurements have shown a high agreement with 

Dobson data with about 2% uncertainty. Thus, TOMS and GOME satellites ozone 

measurements provide an excellent agreement with the ground based measurements, 

which may be attributed to the high sensitivity of the TOMS and GOME instruments.   

 

1.7.3 Spectral UV 

 

Cachorro et al. (2010) have addressed the comparison between satellites (TOMS and 

OMI) and Brewer instruments located at a station in the south of Spain. The 

measurements were taken from 2004 to 2008 for three wavelengths: two wavelengths 

within the UVB range (305, 310 nm) and one within the UVA range (324 nm). In this 

case, Brewer measurements overestimate satellite data from 10-15% for all UV 

wavelengths and about 13% for the erythemal UV. Many factors contributed to this 

difference including cloud conditions, aerosols, ozone and solar elevation. 

 

 Kazadzis et al. (2009) have presented a comparison of the UV measurements of OMI 

and ground based instruments that are located in urban areas (Thessaloniki, Greece). 

This study has included the data from 2004 to 2007. The results show large OMI 

overestimation in the UVB, where 305 nm reaches 30% for all sky conditions (clear 

and cloudy), and less overestimation in the UVA with 324 nm and 380 nm reaching 

20% and 16% respectively. These differences were because the OMI algorithm does 

not consider aerosol absorption.  

 
Buchard et al. (2008) have compared OMI data and ground based instruments (two 

specroradiometers and one radiometer) that were located in Villeneuve d’Ascq France. 

Their measurements were limited to two wavelengths (324.1 and 380.1 nm). The 

greatest differences of measurements occurred when the level of UV irradiance was 

low. Here, OMI presents overestimation of 22%, on average, above spectroradiometer 
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measurements and 34%, on average, above radiometer measurements. The impact of 

aerosol optical thickness clearly causes the disparity between OMI and ground-based 

instruments.  

 
Kazantziadis et al. (2006) have compared the spectral UV irradiance that are measured 

by four European stations (Finland, Netherlands, Italy, Greece) to TOMS satellite data. 

The result of this study showed that TOMS overestimates UVB at 305 nm, and 310 

nm by almost 12% and 18% respectively, while TOMS overestimates UVA (342 nm) 

by 13%. This variation in the percentages is due to ozone and aerosols having lower 

absorption for longer wavelengths.  

 
Sharma et al. (2011) focused on a comparison of OMI satellite data and ground based 

UV radiation measurements in four different sites of Nepal: Kathmandu, Pokhara, 

Biratuagar, and Lukla in 2010. Their comparison was taken over two seasons of the 

year (before the monsoon and during the monsoon). The OMI satellite data 

overestimated the ground based data by different percentages in each season. Before 

the monsoon, the overestimation was clearly bigger than that during the monsoon for 

all sites. This study attributed the reason for the overestimation to the OMI algorith m, 

which has no aerosol corrections, and to the different atmospheric conditions in these 

two seasons. In addition, this study shows a good correlation between satellite and 

surface ozone column measurements that reach 91%.   

 

Fioletov et al. (2004) have addressed the UV index climatology by a comparison 

between the TOMS satellite instrument and Brewer spectrophotometer measurements 

located at 28 sites in the United States and Canada. The measurements were taken for 

snow-cover and snow-free conditions. In the snow-covered conditions, the results 

show a large TOMS underestimation reaching 60% lower than Brewer measurements. 

However, UV index measurements show that, TOMS has an overestimation that 

reaches 30%. This big difference between TOMS and Brewer estimations for two 

different snow conditions was attributed in this study to the aerosol absorption that is 

not considered in the TOMS algorithm. For some sites of this study, that were located 

in clean environments, the correlation between TOMS and Brewer data reaches nearly 

one. 
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 Meloni et al. (2005) have examined the series of erythemal doses by a comparison 

between Brewer and versions 7 and 8 of TOMS data. The Brewer instrument was 

installed at the marine site of Lampedusa. This examination has been conducted in the 

period 1998-2003. The bias between the Brewer and version 7 TOMS for heavy 

aerosol conditions, reaches +25%, but this percentage dropped to around 8% for cloud 

free sky conditions. The main reason for these differences is that, TOMS does not 

detect the aerosol fraction near the surface. The differences between version 8 TOMS 

and Brewer data were from 3.4 to 8.4% for cloud free sky conditions. In this case, the 

comparison was independent of the aerosol optical depth and the satellite estimations 

are improved by an aerosol absorption correction. These studies show variation of 

agreement between the satellite and ground based spectral UV measurements. This 

variation may be attributed to factors such as influence of aerosols and ozone.     

    

1.7.4 Nitrogen Dioxide 

 

Kramer et al. (2008) have compared the measurements of vertical column densities 

(VCDs) of NO2 between OMI and the ground-based instrument (CMAX-DOAS) 

located at the University of Leicester (UK) for the period of data collection from 

December 2005 to March 2006. The results showed good agreement between ground -

based and satellite instruments for cloudless conditions. However, without the 

tropospheric layer measurements, there is a strong bias in the OMI measurements in 

comparison with CMAX-DOAS. This bias is due to the pollution in the urban area is 

affecting the ground based measurements. In this study, OMI underestimated the 

measurements of CMAX-DOAS in the near-surface layers. 

 

 Petritoli et al. (2004) have provided a quantitative comparison of the tropospheric 

nitrogen dioxide between the GOME satellite instrument and in situ chemiluminescent 

ground-based instruments located in the Po basin (north Italy). The period of the study 

is over 2000 and 2001. Even though the study was conducted in high-pollution areas, 

and has high level of fog and clouds, the comparison between the GOME tropospheric 

column data and ground based concentrations was a reasonable correlation in a 

monthly distribution. 
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1.7.5 TOMS Broadband UV 

 

Kerr et al. (2002) compared UV measurements of Brewer instruments, which are 

located in different Canadian areas and UV measurements of TOMS. They showed 

differences ranging from 3-11%. This study attributed differences to many predictable 

factors that could affect the results, such as: SZA, clouds, angular response error, 

calibration errors, local microclimate and aerosols. McKenzie et al. (2001) have 

focused on the differences of UV dose measurements between satellite (TOMS) and 

ground-based instruments in the southern (Lauder, New Zealand) and Northern 

hemispheres (Garmisch-Partenkirchen, Germany; Thessaloniki, Greece and Toronto, 

Canada). This study found that the measurements of ground based instruments were 

less than the satellite values in most of the sites while, in some unpolluted sites, there 

is satisfactory agreement between satellite and ground based measurements. The 

differences were attributed to the effects of ozone, aerosols, and cloud conditions. 

 

1.7.6 GOME UV  

 

Arola et al. (2002) have assessed the UV measurements of satellite (GOME) and from 

Brewer ground based instruments located in Finland, Germany, Belgium, Netherlands 

and Norway. The results showed significant differences between the values of UV 

daily doses of satellite and ground-based data. The differences could reach 30-60%. 

This deviation of the results has been attributed to many factors such as snow, and the 

GOME cloud algorithm. This study has concluded that there would still be a strong 

demand for ground-based instruments in coming years. However, the uncertainties in 

satellite based instrumentation can be overcome by careful calibration to surface 

measurements. This proposed project will extend previous research by considering 

comparisons in the UVA waveband.   

 

1.8 SIGNIFICANCE OF THE PROJECT 

Excessive solar UV radiation increases the risk of skin cancer and solar UV related 

eye diseases. The UVB and UVA radiation have damaging effects for both humans 

and the Earth’s ecosystems (Caldwell et al., 1998). One method of defining the effect 

on human skin is the erythemal UV, which is defined as the UV spectrum weighted 
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with the erythemal action spectrum (CIE 1988). This is weighted heavily in the UVB 

waveband compared to the UVA. However, the UVA waveband has also been shown 

to be damaging to human skin (Agar et al. 2004).  

 

Satellite based instrumentation has been employed for the provision of global coverage 

on a time repetitive basis of the atmospheric ozone, aerosols, erythemal UV and the 

irradiance at specific wavelengths. It is important for this time repetitive, global data 

to be validated against ground based instrumentation if accurate estimates for the 

terrestrial irradiance and exposure are to be made using remotely sensed 

measurements. Various studies have done this for the OMI erythemal UV, however no 

longitudinal research has been undertaken to reconstruct and validate the broadband 

UVA irradiance and exposure derived from the OMI data over a series of years.  

 

1.9 CHAPTER SUMMARY 

This chapter addressed the rationale for this project and provided a literature review 

about UV radiation, and its effects, the factors influencing the UV irradiance, methods 

of measuring UV radiation and comparisons of ground-based to satellite data. The 

following chapter provides details on the instruments used in this research and the 

methods developed for evaluation and validation of the UVA irradiance and total daily 

UVA exposure derived from the satellite data, and their comparison with the ground 

based measurements.  
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2.1 OVERVIEW  

This chapter provides details of the equipment and methods used in this research. 

Three instruments that record the spectral and broadband irradiance and the cloud 

conditions from ground-based measurements are discussed in this chapter. In addition, 

this chapter addresses the collection methods of the satellite based data. 

 

 Spectral irradiances from OMI for 2009 have been compared with a ground based 

spectral spectroradiometer data. This research has developed a method to evaluate and 

validate the broadband UVA solar noon irradiances derived from OMI satellite 

spectral data. In addition, the broadband UVA solar noon irradiance derived from the 

OMI satellite spectral UV irradiance over 12 years including the influence of cloud 

have been calculated. As a part of this research, a new method has been developed for 

the accurate calculation of total daily UVA exposure integrals under cloud-free 

conditions. Furthermore, this method was used to calculate the total daily UVA 

exposure from the broadband UVA irradiance to provide a comparison between total 

daily UVA satellite exposure data and total daily UVA ground-based exposure data 

over a 10 year period. This technique was also applied to remotely sensed data 

collected in 2015 and 2016 using the respective relationships between the ground -

based and satellite total daily UVA exposure for each cloud category. Results were 

compared to integrated surface measurements to test the validity of the method. 

 

2.2 SPECTRAL AND BROADBAND SURFACE BASED MEASUREMENTS 

TO VALIDATE OMI UV SATELLITE DATA 

This research is located at the Southern Hemisphere sub-tropical site of Toowoomba 

(27°36’ S 151°55’ E), in Queensland Australia. Toowoomba is a rural inland city, 

which is located about 120 km west of Brisbane (Queensland’s capital city) at an 

elevation of 691 m above sea level with a population of approximately 135, 000.  It 

has a relatively unpolluted atmosphere with low aerosols concentrations. The UVA 

radiation data for this research were collected by a UV double grating 

spectroradiometer and a UVA Biometer and were compared to the satellite data from 

the OMI instrument. Ground based cloud data was collected using an all sky camera 

located at the same site and aerosol data from a satellite platform. The first part of the 
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research involves the study of 12 months of data from 1 January 2009 to 31 December 

2009 at solar noon times. The solar noon times were determined using the Toowoomba 

solar noon calendar (Sundial calendar) for each day (Internetworks, 2018). In this part 

of the research, the 2009 year data have been used because the number of days when 

the equipment was operational is greater than the other years and the 2009 year was 

drier with less cloud than the average of other years in Toowoomba. The other parts 

of the research have employed data collected from October 2004 to the end of 2016. 

 

2.2.1 Ground-based measurements  

 

2.2.1.1 Spectroradiometer Data 
 

The calibrated specroradiometer is a double monochromator scanning system (model 

DTM 300, Bentham Instruments. UK) (Figure 2.1) and was used to record ground-

based spectral solar UV irradiance. This instrument is installed on an unshaded roof 

top site at the University of Southern Queensland in Toowoomba. Parisi and Downs 

(2004) have described the structure, installation, calibration and operation of the 

Bentham spectroradiometer in detail. The instrument is housed in an environmenta lly 

sealed box with the temperature maintained at 24 ± 1º C. The input optics are provided 

by a Teflon diffuser (model D6, Bentham Instruments. UK) that is connected via a 

fibre optic cable to the first monochromator. The global UV spectra are recorded 

automatically from 5:00 am to 7:00 pm at 10 minutes intervals between 280 nm and 

400 nm, in 0.5 nm increments, where each scan takes approximately 3 minute to 

complete. The calibration of the spectroradiometer is traceable to the UK National 

Physical Laboratory standard and the error of the spectroradiometer data is estimated 

to be ±9 %.   
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Figure 2.1 Bentham spectroradiometer in the laboratory (top) and on the roof inside 

the environmentally shaded box (bottom). 

 

2.2.1.2 Total Sky Imager 
 

To identify the cloud conditions during the intervals of the spectroradiometer scan, this 

research used a Total Sky Imager (model TSI440 Yankee Environmental Systems, PA, 

USA) (Figure 2.2). This instrument is based on a CCD colour camera recording images 

of the sky over a 160o field of view (Sabburg & Long 2004). The operation of the TSI-

440 is based on a hemispherical dome, which rotates on a horizontal plane. This dome 
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has a black shadow band for blocking the sun, and a solar-ephemeris to calculate the 

position of the sun, enabling the dome to rotate during the day to block the sun. The 

hemispherical dome reflects an image of the sky into the CCD camera, which is 

suspended above and over the centre of the dome by a thin arm. An image-processing 

program running on a PC workstation captures images by TCP/IP, processes the 

images to determine the pixels that are either cloud or no cloud, determines if the solar 

disc is obscured, or not obscured, and saves the images to JPEG files (Parisi & Downs 

2004; Calbó & Sabburg 2008; Long et al. 2006; Yankee Environmental Systems 

2006), and the image properties to a text file (Table 2.1 and Table 2.2). The data line 

entries in these two tables of ‘tsi.image.sunny’ and ‘tsi.image.fraction.opaque’ provide 

the required information on whether the solar disc is obscured or not obscured and 

fraction of the sky that is covered in cloud. 

 

The Total Sky Imager is programed to collect and process sky images at the start of 

each spectroradiometer scan. In the example in Table 2.1, the sun is obscured with a 

cloud fraction of 1 for the 1 January 2009 for a solar altitude of 85.3º. Similarly, in 

Table 2.2, the sun is not obscured with a cloud fraction of 0.094 for 16 February 2009 

for a sun altitude of 74.7º.  

  

 

CCD camera 

Hemispherical 

dome 
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Figure 2.2 Total Sky Imager instrument with clear sky image (left) and a cloudy sky 

(right). 

 
Table 2.1 Example of TSI imager information for cloudy day (sun obscured sky 

condition) with a cloud fraction of 1.0. 

#Thu Jan 01 12:00:04 GMT+10:00 2009 

tsi.image.region.horizon.count.thin=0 

tsi.image.region.zenith.count.total=14434 

tsi.image.count.below.horizon=20839 

tsi.image.sunny=false 

tsi.image.region.zenith.count.thin=0 

tsi.image.solar.azimuth=348.12609506612904 

tsi.image.solar.altitude=85.30368008834192 

tsi.image.count.box=22194 

tsi.image.time=1 January 2009 2\:00\:00 

tsi.image.fraction.thin=0.0 

tsi.image.count.sky=42514 

tsi.image.version=1.1.2 
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tsi.image.region.zenith.count.opaque=14434 

tsi.image.region.horizon.count.opaque=6673 

tsi.image.region.sun.count.thin=0 

tsi.image.count.below.proczen=8963 

tsi.image.count.mask=6749 

tsi.image.region.sun.count.opaque=2805 

tsi.image.region.horizon.count.total=6673 

tsi.image.count.unknown=117 

tsi.image.fraction.opaque=1.0 

tsi.image.region.sun.count.total=2922 

 

Table 2.2 Example of TSI imager information for cloud free day (non-sun obscured 

sky condition) with a cloud fraction of 0.094. 

#Mon Feb 16 12:00:04 GMT+10:00 2009 

tsi.image.region.horizon.count.thin=43 

tsi.image.region.zenith.count.total=14812 

tsi.image.count.below.horizon=20839 

tsi.image.sunny=true 

tsi.image.region.zenith.count.thin=118 

tsi.image.solar.azimuth=5.93113441623094 

tsi.image.solar.altitude=74.65763090014225 

tsi.image.count.box=22194 

tsi.image.time=16 February 2009 2\:00\:00 

tsi.image.fraction.thin=0.009195618006521382 

tsi.image.count.sky=42629 

tsi.image.version=1.1.2 

tsi.image.region.zenith.count.opaque=1234 

tsi.image.region.horizon.count.opaque=1486 

tsi.image.region.sun.count.thin=77 

tsi.image.count.below.proczen=8973 

tsi.image.count.mask=6724 

tsi.image.region.sun.count.opaque=337 

tsi.image.region.horizon.count.total=6687 

tsi.image.count.unknown=17 

tsi.image.fraction.opaque=0.09399704426564076 

tsi.image.region.sun.count.total=2543 

 
 

2.2.1.3 Biometer data 
 

The Biometer (model 501, Solar Light Inc, PA, USA) (Figure 2.3) measures the 

erythemally weighted broadband UV radiation within 280-400 nm and the UVA 
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Biometer (model 501A, Solar Light Inc, PA, USA) measures the broadband irradiance 

UVA from 320 to 400 nm. The instruments have filters and detectors to record the 

erythemal UV and the UVA irradiance in five minute daily intervals with a data logger 

and are temperature stabilised at 250C (Parisi, Sabburg & Kimlin 2004). The erythemal 

Biometer records the erythemal exposure in units of minimum erythemal dose (MED) 

for the past five minutes. The UVA instrument records the exposure over the past five 

minutes in units of J/cm2. 

 

In this research the TSI-440 instrument has some missing data for some days during 

the period of the study (10 October 2004 to 31 December 2016) due to a failure of the 

instrument on these days. Consequently, the broadband erythemal Biometer data were 

used to determine if the sky was clear on those particular days. If the data collected in 

this way formed part of a bell-shaped curve at noon, and met the mathematical criterion 

according to “The change in magnitude with time test” of Long & Ackerman (2000) 

it was taken as a cloud free sky. Days which did not fit the criterion of Long and 

Ackerman were not counted as cloud free (Figure2.4 a). Thus, if the curve was not 

smooth at solar noon, it was taken as cloudy (Figure2.4 b). 

 

To classify the perfectly cloud-free days, two criteria were implemented. The first 

criterion: if the difference in successive measurements recorded in each five–minute 

recording interval of the Biometer exceeded 10% variance of the preceding 

measurement, the day was excluded from the study dataset, as presumably a measured 

difference of greater than 10% from the previous measurement would be due to the 

presence of cloud. Secondly, the distribution of each selected day was examined 

visually, and excluded if any noticeable discontinuity in the UVA irradiance curve was 

detected. 
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Figure 2.3 Erythemal UV (right) and UVA (left) Biometers. 

 

 

 

 

Figure 2.4 Time series of biometer erythemal UV irradiance for a cloud free day (a) 

and a cloudy day (b). 
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2.2.2 Satellite-based Measurements 

 

OMI satellite data was retrieved from the Giovanni website which is provided by 

NASA (http: //giovanni. gsfc. nasa.gov/giovanni/) (Figure 2.5). The Giovanni website 

provides the OMI spectral UV irradiance at solar noon from October 2004 until the 

current day. In this study, the OMI spectral irradiance data was collected for the three 

UV wavelengths of 310 nm, 324 nm and 380 nm. These wavelengths were selected 

because the last two are in the UVA waveband and the first one is required to 

interpolate, to provide information from 320 to 323 nm.   

 

The satellite data were collected from the first day that OMI data was available 1 

October 2004, up to 31 December 2016 and provides the OMI satellite solar noontime 

derived spectral irradiance at a spatial resolution of 1º. The region selected was to 

provide area averaged data over this region. The data produced is as a CSV file. In 

order to make a comparison between satellite data (OMI) and ground based Bentham 

spectroradiometer data, cloud free days were selected by using information from the 

TSI images when the amount of cloud was determined to be from 0 to 2 okta (all the 

sky conditions). As explained previously, erythemally effective Biometer data were 

used for the days with missing data from the TSI to determine if there were any cloud 

free days.  
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Figure 2.5 The Giovanni website provides the UV irradiances at solar noon from 
1/10/2004 to 31/12/2016. In this study, the spectral irradiance data is collected for the 

three UV wavelengths (310, 324 and 380 nm) at solar noon. The area of this data is 

the Toowoomba region, Australia (151.80360,−27.71850,152.22660,−27.3120). 

 

2.2.3 Derivation of Satellite Broadband UVA Irradiance 

 
The spectral irradiance at 310, 324 and 380 nm at local solar noon during 2009 were 

firstly compared to the corresponding ground based spectral irradiance on cloud free 

days. This research compared the solar noon broadband UVA irradiance evaluated 

from the satellite spectral data with the broadband UVA irradiance measured with the 

ground based UVA Biometer. The satellite UVA irradiance were evaluated from the 

satellite spectral irradiance at 310, 324 and 380 nm for cloud free days. The trapezoida l 

rule was applied to interpolate between 310, 324 and 380 nm, with the spectral 

irradiance at 380 nm extended out to 400 nm (Anav et al. 2004; Igoe & Parisi 2014) to 

develop a model for the evaluation of the broadband UVA (W/m2) from 320 to 400 

nm (A Jebar et al. 2017) as follows: 
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𝐸𝑈𝑉𝐴 = 0.57 S310 + 31.429 S324 + 48 S380         W/m2                 (2.1) 

 
where S310, S324 and S380 are the spectral UV irradiance (W/m2/nm) at the respective 

wavelengths from the satellite data. This formula approximates the irradiance limits 

for summation from 320 to 400 nm to provide the broadband UVA irradiance. Figure 

2.6 shows that, for the wavelength range to 400 nm, the value at 380 to 400 nm has 

been applied in equation 2.1.  

 

 

Figure 2.6 The solid line shows the trapezoidal integral of the UV irradiance with the 

wavelength using the spectral irradiances 310, 324 and 380 nm. This is superimposed 

on the UV spectrum collected with the Bentham spectroradiometer.    

 

2.3 UVA IRRADIANCE OVER A TWELVE-YEAR PERIOD FROM OMI 

DATA INCLUDING THE INFLUENCE OF CLOUD 

2.3.1 Ground Based Data 

 

In this research, 1,920 days of data were used in the comparison between the Biometer 

UVA irradiance measured at solar noon and the OMI UVA broadband data at solar 

noon evaluated using equation 2.1. The average calibration factor of the UVA 

Biometer to the UVA irradiance derived from the scanning spectroradiometer was 

1.007 for the 12 year period of this study. The data spans the period from 1 October 

2004 to 31 December 2016. The total number of days depends on when both the Total 

Sky Imager and the UVA Biometer were concurrently collecting data at solar noon 
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along with OMI satellite data being available. A total of 115 days (5.9%) were 

excluded from the analysis due to surface instrument malfunction. The available data 

set was split into the four cloud categories at solar noon of 0 to 2, > 2 to 4, > 4 to 6 

and > 6 to 8 okta based on the TSI image data recorded at solar noon. These four cloud 

cover categories were each further sub-divided into the days when the sun’s disc at 

solar noon was and was not obscured by optically thick cloud. The statistics used in 

all the comparison were the relative root mean square error (rRMSE), mean absolute 

error (MAE) and coefficient of determination (R2). The MAE is used to provide 

overall differences and the rRMSE is used for comparison of linear relationships. 

 

2.3.2 Satellite-based Data 

 

To calculate the satellite broadband UVA irradiance [W m-2] over the waveband of 

320 to 400 nm from the OMI measurements, this study has applied the broadband 

UVA evaluation model (equation 2.1) for the period 1 October 2004 to 31 December 

2016. The evaluated satellite broadband UVA irradiance data were compared with the 

Biometer broadband solar noon UVA irradiance for the four cloud categories and the 

cases of sun obscured and sun not obscured. 

 

2.4 TOTAL DAILY UVA EXPOSURE EVALUATED FROM OMI SATELLITE 

SPECTRAL IRRADIANCE FOR CLOUD FREE DAYS 

The total daily radiant UVA exposure, UVATOT [J/m2] is the integral of the daily solar 

UVA irradiance, EUVA [W/m2] measured from sunrise to sunset. UVATOT may be 

determined for the length of a solar day [t = 0 to 1] according to Equation 2.2, where 

the length of the day is normalized: 

 

𝑈𝑉𝐴𝑇𝑂𝑇 = ∫ ∫ 𝐸𝑈𝑉𝐴 (𝜆, 𝑡)  𝑑𝜆𝑑𝑡

400

𝜆=320

1

𝑡=0

                                                 (2.2) 

  

 

where EUVA under cloud free conditions is dependent on the diurnal variation in air 

mass and is a function of local solar zenith angle (SZA), EUVA increases from sunrise, 

reaching a maximum at solar noon, and decreasing steadily to sunset. Because the 
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radiant UVA exposure is measured between 320 to 400 nm (Diffey 2002b), the diurnal 

variation of EUVA is largely independent of atmospheric absorption by ozone, a 

significant regulator of terrestrial UVB irradiance, but ozone provides negligib le 

attenuation in the UVA before 330 nm (Madronich 1998). Thus, the variation of EUVA 

under cloud free conditions follows a predictable daily distribution, approximating a 

normal or Gaussian curve (Figure 2.7). 

 

 

 

Figure 2.7 Seasonal variation in UVA (320-400 nm) exposure recorded at five-minute 

intervals and measured for cloud free days between February 2005 and December 

2016. 

 
In Figure 2.7, the measured radiant UVA exposure for each five-minute interval is 

plotted for 186 cloud free days measured in sub-tropical Queensland, Australia for the 

period February 2005 to December 2016 (12 years). The UVA exposures for each five -

minute interval were recorded with the temperature stabilised integrating UVA 

Biometer (model 501A Solar Light Co. PA, USA). Radiant UVA exposure curves 

were included in the Figure for all days in the 12 year measurement period that were 

determined to be cloud free. Cloud free days were those in which no cloud was 

detected in the daily recording period (from local sunrise to sunset). The exclusion 

criteria described earlier to exclude days that were not cloud free all day resulted in 

the removal of 3,771 (95.3%) daily radiant UV exposure curves from the complete 12 

year dataset. Variations observed in Figure 2.7 in the measured peak UVA exposure 

and the length of the daily exposure interval are caused by the seasonal influence in 
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local sun rise and sun set times and peak SZA. The longest days and minimum SZA 

(maximum UVATOT) occur in late December, near the summer solstice (Southern 

Hemisphere) and the perihelion passage of the Earth's annual orbit occurring in early 

January. 

 

Table 2.3 summarises the total number of cloud free curves included in the current 

research according to month of the year for all years in the study period. The table 

shows the seasonal influence of cloud cover for the Toowoomba measurement site, 

where most cloud free days occur in the austral winter months (June to August) and 

the least occur in the sub-tropical summer (December to February). 

 
Table 2.3 Number of cloud free days from February 2005 to December 2016 used in 

deriving the UVA exposure integral for each day under cloud free conditions. The 
percentages in brackets represent the measured fraction of cloud free days in each 

month. The final column is the integral of the UVA exposure data that has been 

normalized in x and y,  UVANORM. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Month Cloud-free 

days  

 UVANORM   

(average monthly) 

January 2 (0.6%) 0.54 

February 4 (1.3%) 0.54 

March 8 (2.3%) 0.55 

April 5 (1.5%) 0.55 

May 20 (5.9%) 0.55 

June 26 (7.9%) 0.55 

July 44 (12.9%) 0.55 

August 41 (12.0%) 0.55 

September 17 (5.2%) 0.55 

October 16 (4.7%) 0.54 

November 2 (0.6%) 0.54 

December 2 (0.6%) 0.54 
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To remove the influence of seasonality in the plotted UVA exposures, each curve in 

the data-series was normalised with respect to the peak UVA irradiance and with 

respect to the day length. Each of the 187 cloud-free curves are plotted again in Figure 

2.8 after being normalized in x (time of day) and y (measured UVA exposure). The 

normalization of both axes results in a nominal range and domain [0 to 1] on both axes 

and was performed according to Equations 2.3 and 2.4, where, 

 

𝑡𝑁𝑂𝑅𝑀 (𝑥) =
ℎ𝑜𝑢𝑟(𝑥)

ℎ𝑜𝑢𝑟𝑠𝑢𝑛𝑠𝑒𝑡 (𝑥) − ℎ𝑜𝑢𝑟𝑠𝑢𝑛𝑟𝑖𝑠𝑒 (𝑥)
                (2.3)          

 
 
And 

 

𝐸𝑈𝑉𝐴𝑁𝑂𝑅𝑀
(𝑥) =

𝐸𝑈𝑉𝐴 (𝑥)

𝐸𝑈𝑉𝐴 (𝑥𝑚𝑎𝑥 ) − 𝐸𝑈𝑉𝐴 (𝑥𝑚𝑖𝑛)
                              (2.4) 

     
where, tNORM (x) is the normalised time of day expressed as a fraction of the measured 

number of hours between sunrise and sunset where the day length (hourSUNSET(x) - 

hourSUNRISE(x)) was determined from the first and last non-zero measurement of EUVA 

for each of the 187 cloud free days in the 12 year measurement period. Similarly, the 

normalized exposure is expressed as a fraction by calculation of the quotient of EUVA 

at each recorded time of day to the daily range in UVA exposure. When corrected for  

seasonality, the integral of the normalised cloud free exposures represent a unit- less 

nominal integral occupying a 1 x 1 grid space in x and y. The normalised UVATOT 

shows little variation across all 187 UVA curves re-plotted in Figure 2.8. 

 

A Gaussian distribution has been used previously (Diffey 2009) to estimate the total 

erythemically weighted daily UV exposure. Here, a Gaussian distribution was not 

implemented to approximate the daily UVATOT due to noted differences in the exposure 

distribution with time of day (Diffey 2002b). Specifically, the UVA exposure 

distribution curve is less sensitive to Rayleigh's criterion for scattering at large SZA 

and is not sensitive to stratospheric ozone. The result is less tapering of the diurnal 

UVA distribution at large SZA, making a Gaussian approximation inaccurate for the 

derivation of the normalized UVA distribution with time of day. A trapezoidal 
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approximation (Equation 2.5) is used here to derive the normalised UVA exposure 

integral, 

 

∫ 𝐸𝑈𝑉𝐴𝑁𝑂𝑅𝑀
(𝑥) ≈

0.05

2
(𝐸𝑈𝑉𝐴𝑁𝑂𝑅𝑀

(0) + 𝐸𝑈𝑉𝐴𝑁𝑂𝑅𝑀
(1) + 2 ∑ 𝐸𝑈𝑉𝐴𝑁𝑂𝑅𝑀

(𝑖))𝑛
𝑖=1  (2.5) 

 

where, EUVANORM (0) and EUVANORM (1) represent the starting and terminating 

normalized exposure and EUVANORM (i) represents the normalised UVA exposure at 

each step in the numerical integral between the EUVANORM(0) and EUVANORM(1). 

Normalised integrals averaged for each respective month in the 12 year study period 

are listed in Table 1. 

 

 

 

Figure 2.8 Measured UVA exposure curves, normalised in x and y for each of the 187 
cloud free days in the period February 2005 to December 2016 (points). Gaussian 

model approximations normalised to the peak of the measured exposure data are 
plotted as blue dashed curves showing the range in possible Gaussian fits to the 

measured data. 
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2.4.1 Total Daily UVA Exposure 

 

The OMI satellite total daily UVA exposures (UVADay) have been calculated from the 

daily solar noon broadband UVA irradiance evaluated from the three OMI spectral 

irradiance measurements at 310 nm, 324 nm and 380 nm (A Jebar et al., 2017) with 

the following equation: 

 

𝑈𝑉𝐴𝐷𝑎𝑦[𝑘𝐽𝑚−2] =
𝐸𝑈𝑉𝐴 × 3600 × 𝐻 × 𝐹

1000
.                                       (2.6) 

 

where the daily UVA integral expressed in kJ/m2 is modeled as the fraction (F) of 

maximum daily broadband UVA irradiance determined from the OMI satellite  (EUVA 

[W m-2]), the constant 3600 is the number of seconds in an hour and H is the number 

of hours (expressed as a decimal) from sunrise to sunset. F represents the normalised 

fraction of the day occupied by a bell-shaped UVA cloud free distribution rising at 

sunrise, peaking at solar noon and falling at sunset (A Jebar et al. 2018b). 

 

2.5 INFLUENCE OF CLOUD ON OMI SATELLITE TOTAL DAILY UVA 

EXPOSURES OVER AN EXTENDED PERIOD  

In this section, the method to determine the total daily UVA exposures from the OMI 

satellite data has been further developed for cloudy conditions over the 10 years (from 

the 1 October 2004 to 31 December 2014 period). These data were further categorised 

into the cases of the solar disc not obscured by cloud and the solar disc obscured by 

cloud and for each of these two cases, the data were separated into the four cloud 

categories of 0 to 2, > 2 to 4, > 4 to 6 and > 6 to 8 okta based on available sky image 

data recorded by the ground based Total Sky Imager (TSI).  

 

The OMI satellite total daily UVA exposures for the ten-year period were derived with 

the model in Equation 2.6 from the solar noon UVA irradiance calculated from the 

OMI spectral irradiance measured at 310, 324 and 380 nm for the different cloud 

categories. There were compared to the ground based total daily UVA exposures 

measured with the calibrated UVA Biometer at the measurement site. The UVA 

Biometer provides the five-minute exposures in units of J/cm2 and these were summed 

over the day to provide the total daily UVA exposures in kJ/m2.  
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2.5.1 Validation 

 

The technique for the satellite daily UVA exposure estimates developed using 

remotely sensed data to December 2014 was also applied to remotely sensed data 

collected in 2015 and 2016 using the respective relationships between the ground -

based and satellite total daily UVA exposure for each cloud category for all cloud 

conditions over these two years. Results were compared to integrated surface 

measurements to test the validity of the method. For this purpose, surface measurement 

data from the broadband UVA meter and remote sensed satellite data from 2015 and 

2016 was categorised as days with the solar disc not obscured and those with the solar 

disc obscured. 

 

2.6 CHAPTER SUMMARY 

This chapter described the instruments and methods used to obtain the ground based 

and satellite based data used in this research. The following chapter will present the 

results of the research on spectral UV data and solar noon UVA data. 
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3.1 OVERVIEW  

This chapter presents and discusses the results of the validation of the OMI UV satellite 

measurements using ground-based spectral UV data and evaluation of UVA broadband 

solar noon irradiance, using OMI data from the period of 1 January to 31 December 

2009.   

 

3.2 SPECTRAL AND BROADBAND SURFACE BASED MEASUREMENTS 

TO VALIDATE OMI UV SATELLITE DATA 

This research compares the broadband unweighted UVA data derived from the OMI 

to ground based instruments. This section, will firstly compare the cloud free solar 

noon spectral irradiance at three wavelengths from OMI with ground based spectral 

spectroradiometer data. Using the spectral irradiance at these wavelengths a method 

will be developed to evaluate the broadband UVA solar noon irradiance derived from 

OMI satellite spectral data for cloud free days and validate this against ground based 

broadband data obtained from a radiometer at the Toowoomba measurement site (A 

Jebar et al. 2017). 

 

3.2.1 Spectral Data 

 

The time series of the cloud free spectral irradiance at solar noon during 2009 for the 

satellite data are shown in Figure 3.1 for the wavelengths of 310, 324 and 380 nm. This 

figure shows that the signal increases from 310 to 380 nm because the measured UV 

irradiance increases with wavelength in the UVA spectrum. The total number of days 

in the 1 January to 31 December period classified as cloud free days was 71 (19.5%) 

of the total number of days in the period. From 1 January to the end of March of 2009 

year, there were no recorded cloud free days. 
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Figure 3.1 Time series of spectral irradiance at 310, 324 and 380 nm for cloud free 
days for the OMI satellite data from 1 January 2009 to 31 December 2009. The total 
number of days in the 1 January to 31 December period classified as cloud free was 

71 (19.5% of the total number of days in the research period).  

 

The comparison of ground based spectroradiometer data to satellite derived solar noon 

spectral irradiance on cloud free days is shown in Figure 3.2. The OMI data is a spatial 

average over a 1º×1º grid and the ground based data is at a static point. Additiona lly, 

the OMI overpass time is not at solar noon and the data collected at the overpass time 

is used to calculate the values for solar noon, showing the need to provide calibrations 

as in this research to ground based data. The error bars correspond to the ±9% error 

associated with the ground based measurements (Parisi, Sabburg & Kimlin 2004). The 

average of the aerosol levels from the Giovanni web site on these cloud free days from 

the MODIS instrument on the Aqua and Tera satellites is 0.04 showing the relative ly 

low aerosol level over the site. The error at 310 nm due to the OMI evaluation of the 

ozone levels is expected to be minimal as the mean relative difference between OMI 

and ground based Dobson spectrophotometer ozone data for Brisbane (within 150 km 

of the site in this research) is within 1% (Balis et al. 2007).  

The satellite spectral irradiance comparisons to the ground based measurements show 

a clear correlation for the wavelengths of 310, 324 and 380 nm. There is a good 
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comparison between the satellite and ground based spectral irradiance measurements 

on cloud free days for the three discrete wavelengths with an R2 of 0.89 and rRMSE 

of 0.14 or better in each waveband (Figure 3.2). In each graph, the dashed line is the 

fitted regression line and solid line is the 1:1 line. The R2 value of 0.89 occurs for 310 

nm where the magnitude of the spectral irradiance is the lowest. Sensitivity to ozone 

variations and instrument noise affect the sensitivity of the instrument at 310 nm, 

thereby increasing the uncertainty of the comparison at 310 nm.  
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Figure 3.2 Cloud free days OMI and ground based spectroradiometer spectral 
irradiance comparison for (a) 310 nm, (b) 324 nm, (c) 380 nm (n=71 cloud free days). 

The error bars correspond to the ±9% error associated with the Bentham 

spectroradiometer data. The solid line in each graph is the 1:1 line. 

 

The distribution of the ratio of satellite to ground based measured spectral irradiance 

is plotted in Figure 3.3 for both cloud free conditions (darker bars) and cloudy 

conditions (lighter bars). Figure 3.3 illustrates that most of the spectral irradiance from 

the OMI satellite exceeded the measured ground based data as noted previously by 

other researchers for the shorter wavelength erythemal UV and UVB comparisons 

(Mateos et al. 2013). Median, first quartile and third quartile statistics are given in 

Table 3.1 for the distributions plotted in Figure 3.3.  

 

Those ratios above one confirm that some satellite measurements over predict the 

UVA irradiance for most sky conditions, which displays a similar trend to shorter 

wavelength comparisons as seen in the literature. Those ratios below one may be the 

result of low aerosols in the research area which may be different to other research 

areas. Also seen in the Figure, the cloudy days have a much wider range of values 

with the median ratio generally being higher than one.  
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Table 3.1 The first quartile (Q1), median and third quartile (Q3) values for cloudy and 

cloud free days at 310, 324 and 380 nm. 

 

 

 

 Q1 Median Q3 

Cloud free days (310 nm) 0.82 0.85 0.89 

Cloud free days (324 nm) 1.11 1.13 1.16 

Cloud free days (380 nm) 0.95 0.98 1.00 

Cloudy days (310 nm) 0.83 0.99 1.34 

Cloudy days (324 nm) 1.06 1.22 1.76 

Cloudy days (380 nm) 0.90 1.07 1.66 
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Figure 3.3 Histograms of the ratio of the satellite to ground-based spectral solar noon 

UV measurements for each of 310, 324 and 380 nm. The darker bars correspond to 
the measurements for the 71 cloud free days and the lighter bars correspond to 221 

measurements on cloudy days. N is the number of values. For each graph, there are 2 

or less values above the value of 6. 

 

3.2.2 Broadband UVA 

 

The broadband UVA solar noon irradiance, which are derived from the solar noon 

OMI spectral irradiance data have been reconstructed using Equation 2.1 and 

compared under cloud free days to ground based measurements. Figure 3.4 shows the 

UVA irradiance (W/m2) modelled from the satellite spectral irradiance measurements 

(W/m2/nm) at 310, 324 and 380 nm for solar noon compared to the broadband UVA 

data measured with the UVA Biometer on cloud free days in the period 1 January to 

31 December 2009. The error bars represent the ±10% error associated with the ground 

based UVA Biometer data. There is a reasonable agreement between the solar noon 

UVA broadband irradiance from the measured ground based UVA Biometer 

instrument and the modelled UVA irradiance derived from satellite with an R2 of 0.86. 

Figure 3.4 shows the satellite UVA evaluation is approximately 30% higher which can 

be accounted for by calibration to ground based instruments and in turn used for health 

applications where ground based data are not available. The spectroradiometer 

measurements at 310, 324, 380 nm were used in Equation 2.1 to calculate the UVA 
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and compared to the Biometer UVA. The dashed line is the fitted regression line and 

the solid line is the 1:1 line. The R2 was 0.86 and the rRMSE was 0.085. The slope is 

0.7 indicating that there is some difference between ground and satellite based data.     

 

 

 

Figure 3.4 Comparison of the broadband UVA irradiance values evaluated from OMI 
spectral data and the UVA irradiance from the ground based measurements as derived 

from Equation 2.1 using the OMI spectral irradiances. The error bars are the ±10% 

error associated with the ground based data and the solid line is the 1:1 line. 

 

3.3 CHAPTER SUMMARY 

This chapter discussed the validation of the OMI UV satellite measurements at 310, 

324 and 380 nm using ground based spectral UV data. The model developed in this 

research to calculate UVA irradiance from the satellite data has been validated to the 

ground based radiometer irradiance data. The following chapter applies the method 

evaluated to twelve years of data to evaluate UVA irradiance from OMI data includ ing 

the influence of cloud on the UVA irradiance. The influence of aerosols at the research 

site on the UVA irradiance is also considered.  
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4.1 OVERVIEW 

This chapter provides the results of the comparisons of the OMI UV satellite 

measurements against ground-based spectral UV data including the influence of cloud 

for the 12 year period of 2004-2016. In addition, the chapter provides the results of the 

evaluated UVA irradiance from OMI data including the influence of cloud for the 

twelve years. Furthermore, this chapter considers the influence of aerosols on the UVA 

irradiance. 

 

4.2 SPECTRAL UV IRRADIANCES AND THE INFLUENCES OF CLOUD  

Figure 4.1, 4.2, 4.3 and 4.4 show the results of the comparisons between the solar noon 

ground based spectroradiometer data and the OMI satellite measurements for the three 

wavelengths of 310, 324 and 380 nm for all the cloud conditions, including obscured 

and not obscured conditions (0-2, 2-4, 4-6, and 6-8 okta). Ground based data (Bentham 

measurements) are taken over the 12 year period when there was available spectral 

data (2005, 2007, and 2008). For the cloud condition categories of 0-2 okta (Figure 

4.1), there is a good correlation with an R2 from 0.63 to 0.76 and an rRMSE ranging 

from 0.31 to 0.25 for the three wavelengths. For the > 2-4 okta category (Figure 4.2), 

there is a similar correlation to the 0-2 okta, particularly at the wavelength of 310 nm. 

For this category, the R2 was from 0.57 to 0.74 and the rRMSE ranged from 0.41 to 

0.32 for all three wavelengths. The measured spectral irradiance comparisons for > 4-

6 okta and > 6-8 okta (Figure 4.3 and 4.3) showed lower correlation than the 0-4 okta 

cloud conditions, with R2 values of  0.52 to 0.55 (> 4-6 okta) and 0.20 to 037 (> 6-8 

okta). This is  to be expected for these higher amounts of cloud cover. 
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Figure 4.1 OMI and Bentham spectral irradiance comparison for (a) 310 nm, (b) 324 

nm, (c) 380 nm, for the cloud cover of 0 to 2 okta. 
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Figure 4.2 OMI and Bentham spectral irradiance comparison for (a) 310 nm, (b) 324 

nm, (c) 380 nm, for the cloud cover of > 2 to 4 okta. 
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Figure 4.3 OMI and Bentham spectral irradiance comparison for (a) 310 nm, (b) 324 

nm, (c) 380 nm, for the cloud cover of > 4 to 6 okta. 
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Figure 4.4 OMI and Bentham spectral irradiance comparison for (a) 310 nm, (b) 324 

nm, (c) 380 nm, for the cloud cover of > 6 to 8 okta. 
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4.3 EVALUATED UVA IRRADIANCE OVER A TWELVE-YEAR PERIOD 

FROM OMI DATA INCLUDING THE INFLUENCE OF CLOUD 

The research reported here extends the previous section by considering evaluation and 

validation of the broadband UVA irradiance derived from discrete OMI spectral 

irradiance measurements to the ground based data recorded from an independent 

radiometer over a long-term (decadal) period. Subsequently there remains limited 

information in the literature to develop an understanding of the direct seasonal 

influence of cloud. This is an important consideration, given the prevalence of cloud 

cover in the day-to-day environment. In this research, comparison of the OMI 

reconstructed solar noon UVA broadband irradiance with ground based measurements 

obtained from 2004 to 2016 are reported for all sky coverage conditions at the elevated 

regional sub-tropical Southern Hemisphere site of this research that is free from major 

sources of anthropogenic pollution (A Jebar et al. 2018a). 

 

4.3.1 All Sky Conditions 

 

Figure 4.5 shows the time series of the evaluated satellite broadband UVA irradiance 

at solar noon for the Toowoomba study site from October 2004 to December 2016 for 

all sky conditions. This included 3,861 values over 3,861 days from satellite based 

data representing 88% of the available days. The number of values available as 

recorded by the TSI, for the cloud free days in the period was 1,082 (n = 1,082). For 

cloudy days (> 2 octa), the number of values when there was available TSI data was 

733 (n=733). The annual cyclical pattern of high and low irradiance with the changing 

seasons is seen in Figure 4.5 with the variation of the solar noon UVA irradiance 

changing annually between approximately 30 W/m2 and 60 W/m2. The influence of 

absorption due to ozone is minimal in the UVA waveband. Additionally, the aerosol 

index over the measurement site is generally low due to unpolluted skies (see Section 

4.4), apart from a small number of days that reported significant dust levels (Downs et 

al 2016). There is no snow at the sub-tropical site of the research, with no resulting 

large variation in the ground surface albedo. Consequently, measured reduction of the 

UVA irradiance below the cloud-free envelope is predominantly due to clouds.  

 
A histogram of the complete set of the evaluated UVA irradiance is provided in Figure 

4.6. The maximum solar noon UVA irradiance over this period is greater than 60 W/m2  
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with the median solar noon UVA irradiance being 38.8 W/m2. The first and third 

quartile values are 30.8 and 48.4 W/m2 respectively. The predominance of low 

amounts of cloud cover at the sub-tropical measurement site is evident in the positive ly 

skewed distribution of the 12 years data set toward higher noon time UVA irradiance 

measurements.  

 
The total dataset, split by calendar year is presented as box and whisker plots in Figure 

4.7. The line within each box is the median and the box is the data within quartiles one 

and three. The dashed line of the whiskers represents the range of the data up to ±5 

standard deviations, with two outliers. The box and whisker plot of 2004 is shifted to 

higher irradiance values due to only the last three months of the year being available. 

As this is the last two months of the austral spring and the first month of summer, the 

median is higher than that for the other years. For all but two years in the 12 year study 

period, the distribution of noon time annual solar UVA irradiance appears consistent. 

Red outliers in Figure 4.7 represent 26th of June 2007 and 7th of December 2011, which 

were completely overcast days, as determined from the TSI imager.   

 
The solar noon UVA irradiance for the years of 2009 and 2010 are noteworthy due to 

the change in the climatic conditions between these two consecutive years. The year 

2009 was a particularly dry year characterised by a severe dust storm in September 

2009 (Downs, Bulter & Parisi 2016). Annual rainfall for 2009 totalled only 433 mm, 

a difference of 38.4% from the decadal mean for Toowoomba reported by the 

Australian Bureau of Meteorology of 703.1 mm. For 2009, the mean UVA irradiance 

was 40.4 Wm-2 and the median was 40.9 W/m2 compared to the mean and median of 

the total remaining years of 38.9 W/m2 and median 38.8 W/m2 respectively. Mann-

Whitney – u tests show that there was a statistically significant difference in the 2009 

irradiance measurements compared to the total remaining years (p < 0.0264). Given 

that 2009 was drier than other years and employed to develop the method in Chapter 

3, the research in this chapter reports on satellite to ground based measurements more 

typical of the sub-tropical climate experienced at the Toowoomba measurement site 

taken over a longer decadal time period.  
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Figure 4.5 Time series of solar noontime UVA irradiance evaluated from the 310, 324 

and 380 nm satellite data. 

 

 

Figure 4.6 Distribution of the solar noon UV irradiance evaluated from the satellite 

data. 
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Figure 4.7 Box and whisker plots of the broadband UVA irradiance evaluated from 
the OMI spectral data from October 2004 to 31 December 2016 for all sky conditions. 

The line within each box is the median and the box is the data within quartiles one and 
three.  The dashed line of the whiskers represents the range of the data up to ±5 
standard deviations, with two outliers. The dataset for 2004 is shifted to higher 

irradiance due to only the last three months of the year being available. 

 

4.3.2 Cloud Data 

 
Table 4.1 shows the number of occurrences of days with the different amounts of solar 

noon cloud cover from October 2004 to December 2016. At this sub-tropical site, the 

majority of the data (62.4%) is in the category of 0-2 octa, with a median of 0.1728 

octa. The number of days in the two cloud categories of 0 to 2 and > 2 to 4 octa of 

cloud at solar noon was 1,285, representing 70.7% of the total number of study days. 

This means that the broadband UVA evaluation model from the OMI spectral data is 

applicable for approximately 70% of the days at the Toowoomba sub-tropical site. The 

number of the plotted cloud-free days (0 to 2 octa) is 1,262 as this takes into account 

the days when the Biometer data was employed to confirm a cloud free day (Long & 

Ackerman 2000).  The number of the plotted data from > 2 to 8 octa was less than the 

total TSI data available due to missing Giovani satellite data and Biometer data not 

available on some days. Figure 4.8 shows the time series of the TSI imager cloud 
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condition data as shown in the Table 4.1 at solar noon for the Toowoomba study site 

from October 2004 to December 2016. The gaps in the data are when the TSI was not 

operational. 

 
Table 4.1 Distribution statistics of the cloud cover at solar noon for the 2004 to 2016 

dataset (between 0 to 8 okta). Q1 is the first quartile of the range, Q3 is the third 

quartile of the range and N is a number of days with data in the respective category. 

 
 

 
 
Figure 4.8 Time series of the cloud conditions from zero to eight okta for October 

2004 to December 2016 as measured by the Total Sky Imager. 

4.3.3 Sun Not Obscured Sky Conditions 

 
The evaluated broadband UVA satellite irradiance at solar noon for the cases of when 

the solar disc was not obscured by cloud have been compared with the corresponding 

Octas Q1 Median Q3 n n 
(plotted data) 

n 
(obscured) 

0-2  0.03 0.17 0.76 1082 1262(data 

from TSI and 
Biometer) 

0 

>2-4  2.45 2.86 3.43 203 150 115 

>4-6 4.44 4.90 5.35 138 116 102 

>6-8  7.21 7.99 8 392 352 368 

       

0-8  0.10 1.13 5.02 1815 1880 585 

       

2-8  3.73 6.26 8 733 618 585 
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broadband ground-based UVA irradiance recorded by the ground based radiometer at 

the research site over the 1 October 2004 to 31 December 2016 period. This data set 

of sun not obscured sky conditions is provided in Figure 4.9 for the four cloud cover 

categories of 0 to 2, > 2 to 4, > 4 to 6 and > 6 to 8 okta.  

 

According to Figure, 4.9 (a), which shows data for sun not obscured sky conditions on 

days with ≤ 2 okta (65.7% of the available data), there is a correlation between the 

solar noon evaluated UVA satellite and the ground based irradiance values with an R2 

(coefficient of determination) of 0.77, and an rRMSE (relative root mean square error) 

of 18% and MAE (mean absolute error) of 3.58 (W/m2). Figure 4.9 (b) shows the 

broadband UVA comparison between the satellite and the ground-based data when the 

quantity of cloud was from > 2 to 4 okta (7.8% of the available data). As expected, this 

figure shows lower correlation between the satellite and ground based data than the 

correlation for the 0 to 2 okta data in Figure 4.9 (a). However, despite the low number 

of data values there is comparable correlation between the data sets (R2 is 0.64, rRMSE 

is 16% and MAE is 4.8 (W/m2)).  

 

Figure 4.9 (c) and 4.9 (d) for the cases of > 4 to 6 okta and > 6 to 8 okta show a poor 

correlation between the satellite and the ground based measurements due to the (50%-

100% cloud coverage) with an R2 of 0.31 and 0.4, an rRMSE of 53% and 25.5% and 

a MAE of 8.5 and 7.2 (W/m2) respectively. Temporal differences between the cloud 

observation by satellite at about 1.00 pm and the actual cloud cover at solar noon for 

the ground-based measurements are likely to be a significant contributor to the poor 

correlation in these cloudy condition cases (Tanskanen et al 2007). In this case, the 

satellite over-prediction is greatest. A possible explanation could be due to differences 

in local cloud cover measured at noon and the sampled satellite data measured at a 

different time during the satellite overpass time. This is evident as a trend to a lower 

gradient with increasing cloud cover at noon. Additionally, there are likely variations 

in the local site cloud cover and satellite samples measured over the pixel size of 40 

km × 80 km. 
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Figure 4.9 Comparison of the evaluated OMI satellite solar noon UVA irradiance with 
ground-based UVA data for the four categories of cloud cover of (a) 0 to 2, (b) > 2 to 
4, (c) > 4 to 6 and (d) > 6 to 8 okta for sun non obscured sky conditions. The error 

bars are the ±10% error associated with the ground-based data. The dashed line is 

the fitted trend line.  
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4.3.4 Sun Obscured Sky Conditions 

 
Figure 4.10 shows the data for sun obscured sky conditions in the three categories of 

cloud cover of > 2 to 4, > 4 to 6 and > 6 to 8 okta. Figure 4.10 (a) represents a 

comparison for > 2 to 4 okta. For this range of sky coverage, there is a weaker 

correlation compared to that with the sun not obscured data with an R2 of 0.51, an 

rRMSE of 41% and a MAE of 9.2 (W/m2). Figures 4.10 (b) (> 4 to 6 okta) and 4.10 

(c) (> 6 to 8 okta) show there is a similarity in the correlation of the comparisons for 

the sun obscured and sun not obscured sky condition for the > 4 okta cloud cases with 

a R2 of 0.36 and 0.42, an rRMSE of 79% and 68% respectively and a MAE of 10.6 

and 8.8 (W/m2). For all three categories of sun obscured cloud conditions, the spread 

of the data about the fitted trend line increases with increasing solar noon irradiance. 

A possible explanation for this is due to the more noticeable relative amplification and 

attenuation by cloud with increasing irradiance. For cloud cover greater than 4 okta, 

the gradient of the graphs presented in Figure 4.10 (b) and 4.10 (c) is closer to unity 

than the sun not obscured graphs of Figure 4.9 (c) and 4.9 (d). When the sun is 

obscured, the attenuating cloud reduces the typical overestimation of the satellite 

UVA.    
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Figure 4.10 Comparison of the evaluated OMI satellite solar noon UVA irradiance 
with ground-based UVA data. The data are plotted for the three categories of the 

amount of cloud cover of (a) > 2 to 4, (b) > 4 to 6 and (c) > 6 to 8 okta for sun obscured 
sky conditions. The error bars are the ±10% error associated with the ground-based 

data. The dashed line is the fitted trend line. 
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4.4 INFLUENCE OF AEROSOLS ON THE UV IRRADIANCE 

Figure 4.11 shows the time series of a daily UV aerosol index and aerosol optical depth 

for the Toowoomba study site from October 2004 to December 2016. The aerosol 

index measures the difference between the transmission of different UV radiation 

wavelengths through an atmosphere containing aerosols and a pure molecular 

atmosphere (Buchard et al. 2015). Aerosol optical thickness is a measure of the 

attenuation due to scattering and absorption by aerosols through the atmosphere. 

Figure 4.11(a) shows the significant majority of the daily UV aerosol index are 

between 0.5 and 1.5 (97.8%). The daily UV aerosol average value is 0.76, the median 

is 0.69 and the standard deviation is 0.29. In Figure 4.11 (b), the majority of the aerosol 

optical depths are less than 0.7. The spike to 1.5 in September 2009 is due to a severe 

dust storm over one day. The aerosol optical depth average value is 0.24, the median 

is 0.22 and the standard deviation is 0.14.  

 

Daily UV aerosol index and aerosol optical depth for the Toowoomba study site are 

low as a comparison with high aerosol regions such as some regions in the Northern 

Hemisphere. For example, in Iraq, the daily UV aerosol index average value is 1.44 

and the aerosol optical depth average value is 0.66 (<http: //giovanni. gsfc. 

nasa.gov/giovanni/>). In North Africa, the UV aerosol index reached 2.6 in 2006 

(Torres, Ahn & Chen 2013) and in China the aerosol optical depth average was over 

0.43 (Xin et al 2007). Based on the low aerosol levels over the site of the research, 

apart from one day in September 2009 in the 12 year period, aerosols have a 

significantly lower impact on the UVA irradiance compared to cloud cover.  
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Figure 4.11 (a) The time series of the daily UV aerosol index and (b) the aerosol 

optical depth for the Toowoomba study site from October 2004 to December 2016. 
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4.5 CHAPTER SUMMARY 

This chapter presented results and discussed the comparisons of the OMI UV satellite 

measurements against ground-based spectral UV data and the evaluated UVA 

irradiance from OMI data including the influence of cloud over a 12 year period. In 

addition, the level of aerosols over the research area have been considered in this 

chapter. The following chapter provides the evaluation of the total daily UVA 

exposure from OMI UVA irradiance data for both cloud free days and cloudy days and 

investigates the influence of cloud on total daily UVA exposure.  
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5.1 OVERVIEW 

This chapter provides the results and discussion on the method developed for the 

evaluation of the total daily UVA exposure from OMI UVA irradiance data for cloud 

free days over 12 years period. The total daily UVA exposures are also calculated for 

cloudy days and the influence of cloud on total daily UVA exposure are investigated.  

This involves the use of a 10 year data set for the development of the method for cloudy 

days and 2 year validation data set. 

 

5.2 TOTAL DAILY UVA EXPOSURE EVALUATED FROM SOLAR NOON 

OMI SATELLITE SPECTRAL IRRADIANCE FOR CLOUD FREE DAYS 

Data retrieved from satellites is often limited between one and several local passes per 

day, making the full evaluation of the daily variation in the solar UV exposures 

challenging. However, the risks of UV radiation are linked to accumulating UV 

exposure over a long term (Lavker et al. 1995). This requires the evaluation of total 

daily UV exposures from the irradiance derived at the satellite over pass time. 

Langston (2017) recently derived annual erythemally weighted exposure integra ls 

from single pass satellite noontime UVB irradiance estimates. Under cloud-free 

conditions, Diffey (2009) presented a technique to derive the daily UV erythemal 

exposure integral from the forecast maximum UV index by application of a Gaussian 

distribution function. In the research in this chapter, the total daily UVA exposures are 

derived from a dataset of cloud free surface exposures measured daily as a time series 

extending over 12 years.  The daily exposure integrals are presented here with 

reference to an expression that can be applied to derive the cloud free UVA integra l 

from single noontime measurements of the solar UVA irradiance. The developed 

technique may be applied where noontime irradiance is measured from a remote 

sensing platform to estimate upper daily (cloud-free) UVA exposure integrals. 

 

The total daily satellite broadband UVA exposures derived from OMI satellite and 

calculated by using Equation (2.6) have been reconstructed for the days that were 

totally cloud free during daylight hours in the period February 2005 to December 2016. 

These days are referred to as cloud free and the number in each month are provided in 
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Table 5.1. At the Southern Hemisphere sub-tropical site of this research, the highest 

proportion of cloud free days occurred between May and October, corresponding to 

late autumn, winter and the first half of spring. 

 

Figure 5.1 shows the total daily UVA exposures evaluated for the cloud free days 

between February 2005 to December 2016. There is a good correlation between the 

total daily UVA exposures from the measured ground-based UVA Biometer 

instrument and the total daily satellite UVA exposures with an R2 of 0.9, rRMSE of 

0.07 and MAE of 56.9 kJ/m2. The error bars are the error related with the ground-based 

UVA measurements and the dashed line is the fitted regression line. The slope is 0.7 

indicating that there is some difference between ground and satellite based data. The 

developed method provides the total daily exposure for cloud free days. It enables the 

total daily exposures to be evaluated at sites when there is no ground-based UVA 

radiometer.  

 

 

Figure 5.1 Comparison of satellite derived cloud free daily UVA exposure versus 
surface measured UVA exposure. The error bars represent the variation in surface 

UVA measurements (±10%). 
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5.3 INFLUENCE OF CLOUD ON OMI SATELLITE TOTAL DAILY UVA 

EXPOSURES OVER A TWELVE YEAR PERIOD  

In the UVA waveband, the GOME-2 satellite data provides the UVA daily maximum 

irradiance and the total daily UVA exposure. A comparison has been provided between 

this data and that from a ground-based spectroradiometer at a Southern Hemisphere 

site (Parisi et al. 2017). However, the earlier launched OMI (Ozone Monitoring 

Instrument) does not provide the total daily UVA exposure integral and it is important 

to have information on UV exposures, as the risk of some sun related disorders is 

related to cumulative exposure. Solar UV radiation is subject to many factors, which 

determine and influence the irradiance that reaches the earth’s surface (Madronich et 

al. 1998). Surface solar radiation is particularly sensitive to cloud (An and Wang 2015) 

which can be measured by both ground-based and satellite based instruments (Fontana 

et al. 2013).  

 

Previous research has addressed the influence of cloud to make comparisons between 

ground-based and OMI satellite based solar noon UVA irradiance for different 

amounts of cloud cover at a Southern Hemisphere site (A Jebar et al., 2018). No 

previous research has considered the influence of cloud on the total daily UVA 

exposures evaluated from OMI satellite spectral irradiance data. The research in this 

chapter reports on the development and validation of the method to evaluate the UVA 

exposures from the solar noon irradiance and the influence of cloud on the OMI 

satellite total daily UVA exposures evaluated from the OMI solar noon spectral 

irradiance for  the sub-tropical study site. 

 

5.3.1 Cloud and Fractions of Maximum Daily Exposure  

 

Table 5.1 shows the number of days in the different cloud categories for the cases of 

solar disc obscured and solar disc not obscured. The number of days in each category 

represent the days when there was available sky camera data at solar noon. This table  

presents the average over the ten years of the fraction, F of maximum daily exposure 

used in equation (2.6) for all categories.  
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According to this table, there is an inverse relationship between the fraction of the 

maximum daily exposure and the amount of cloud cover. In addition, the values of the 

fraction of maximum daily exposure for the sun not obscured sky conditions are bigger 

than the values of the fraction of maximum daily exposure for the sun obscured sky 

conditions. The decrease in the value of F (calculated in section 2.4) with the increase 

in cloud cover and with the sun obscured is due to the total daily UVA exposures 

decreasing with the cloud cover compared to the maximum daily exposures. 

 

Table 5.1 Number of days in each category of cloud cover between zero and eight okta 

and the average of the fraction of the maximum daily exposure for all categories. 

CATEGORIES 

OF THE CLOUD 

AMOUNT 

(OKTA) FOR 

SUN NOT 

OBSCURED SKY 

CONDITIONS 

NUMBER 

OF DAYS 

FRACTIONS 

OF 

MAXIMUM 

DAILY 

EXPOSURE 

(F) 

CATEGORIES OF 

THE CLOUD 

AMOUNT (OKTA) 

FOR SUN 

OBSCURED SKY 

CONDITIONS 

NUMBER 

OF DAYS 

FRACTIONS 

OF 

MAXIMUM 

DAILY 

EXPOSURE 

(F) 

0-2  712 0.50    

>2-4  38 0.45 >2-4 62 0.41 

>4-6 29 0.42 >4-6 64 0.39 

>6-8  19 0.42 >6-8 299 0.37 

 
 

5.3.2 All Sky Conditions 

 

Figure 5.2 shows the time series of the satellite total daily UVA exposures evaluated 

from the three OMI solar noon spectral irradiances for the study site from October 

2004 to the end of 2016 for all sky conditions. This includes the 10 year data set and 

2 year validation set. This figure has 3,511 daily UVA exposures based on when there 

was OMI satellite data available. The pattern of peaks and troughs in the exposures 

due to the seasons is shown in this figure, with a variation between approximately 840 

kJ/m2 and 1600 kJ/m2. Superimposed on the seasonal pattern is the influence due to 

cloud. 
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The time series is then sub-divided according to cloud cover categories as box and 

whiskers plots in Figure 5.3. Figure 5.3 (a) shows the total daily satellite UVA 

exposure at all sky conditions. Figure 5.3 (b) represents total daily satellite UVA 

exposure of the time series for the four cloud amount categories (0-2, > 2-4, > 4-6 and 

> 6-8 okta) for sun not obscured sky conditions. Figure 5.3 (c) represents total daily 

satellite UVA exposure at the three cloud amount categories (> 2-4, > 4-6, and > 6-8 

okta) for sun obscured sky conditions. 

 

The median of the total daily satellite UVA exposure is reduced from about 1100 kJ/m2  

to less than 600 (54.5%) kJ/m2 with the amount of cloud (Figure 5.3 (a)). Figures 5.3 

(b) and Figure 5.3 (c), show, as expected, that the increase of the amount of cloud 

reduces the total daily satellite UVA exposure. In Figures 5.3 (b), the median for > 4 

to 6 okta is higher than that for > 2 to 4 okta possibly due to the sample set, but in 

general the trend is decreasing UVA exposure with increasing cloud cover which is as 

expected. Additionally, the medians are generally lower for the sun obscured cases 

compared to the sun not obscured cases. 

 

Figure 5.4 presents the total daily satellite UVA dataset as box and whisker plots for 

each of the years (from 2004 to 2016). For each year, the horizontal line is the median 

for each year, the box represents the 1st and 3rd quartile and the dashed line represents 

the range of the satellite data. Except for 2004 where there are only three months of 

satellite based data available (to compare to the ground-based data), the distribution of 

the annual medians of the total daily UVA exposures appears consistent. In this figure, 

2010 has a lower median, and 1st and 3rd quartiles due to the above average annual 

rainfall of 1161 mm compared to the average annual Toowoomba rainfall of 679.75 

mm, and correspondingly higher amounts of cloud.  
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Figure 5.2 Time series of satellite total daily UVA exposures evaluated from the OMI 

solar noon spectral irradiance values.  
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Figure 5.3 (a) The total daily satellite UVA exposure for all sky conditions.  (b) The 

total daily satellite UVA exposure at the four cloud amount categories (0-2, > 2-4, > 
4-6 and > 6-8 okta) for sun not obscured sky conditions. (c) Total daily satellite UVA 
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exposure at the three cloud amount categories (> 2-4, > 4-6, and > 6-8 okta) for sun 
obscured sky conditions. The horizontal line in each box and whisker is the median, 

the box is the Q1 and Q3 range and the dashed vertical line is the range of values. 

 

 

 

Figure 5.4 Box and whisker plots for each year of satellite total daily UVA exposures 

data October 2004 to December 2016. 

 

5.3.3 Sun Not Obscured Sky Conditions 

 

The total daily UVA satellite exposures calculated from the satellite solar noon UVA 

irradiance for the cases of when the sun was not obscured by cloud have been 

compared with total daily ground-based UVA exposure at the measurement site over 

the period of 1 October 2004 to the end of December 2014 (Figure 5.5). The 

comparisons between the two data sets for the sun not obscured sky conditions are 

shown in Figure 5.5, for the cloudy days in the four cloud cover categories of 0 to 2, > 

2 to 4, > 4 to 6 and > 6 to 8 okta. The dashed lines are the regression lines fitted to the 

data and the error bars represent the ±10% uncertainty associated with the measured 

ground-based data. 
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When the amount of cloud was 0-2 and > 2 to 4 okta as shown in Figure 5.5 (a) and 

(b), there is a reasonable correlation between the total daily UVA satellite exposures 

evaluated from the OMI spectral irradiance measurements at solar noon and total daily 

ground-based UVA exposures with an R2 of 0.81 and 0.84, rRMSE of 0.13 and 0.10, 

MAE of 97.3 and 75.2 kJ/m2 respectively. For the cloudy days of more than 4 okta, 

Figure 5.5 (c) shows a good agreement between the satellite and ground based total 

daily UVA exposure with R2 of 0.80, an rRMSE of 0.17 and MAE of 98.7 kJ/m2 when 

the amount of cloud was > 4 to 6 okta. The use of the respective values of F for each 

category of cloud cover is likely contributing to this agreement.  Similarly, for the days 

with > 6 to 8 okta, Figure 5.5 (d) shows a reasonable correlation between the satellite 

and ground based total daily UVA exposures with R2 of 0.84, an rRMSE of 0.10 and 

MAE of 87.8 kJ/m2.    
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Figure 5.5 Comparison of the 2004 to 2014 satellite total daily UVA exposure 

evaluated from the OMI spectral irradiance evaluated at solar noon with the ground 
based total daily UVA exposure for the four categories of cloud cover of (a) 0 to 2, (b) 
> 2 to 4, (c) > 4 to 6 and (d) > 6 to 8 okta for solar disc non-obscured sky conditions. 

The dashed lines are the regression lines fitted to the data and the error bars 

correspond to the ±10% error associated with the ground-based data. 

 

5.3.4 Sun Obscured Sky Conditions 

 

Figure 5.6 shows the comparison of the satellite total daily UVA exposure evaluated 

from the OMI spectral irradiance and the ground-based total daily UVA exposure for 

sun obscured sky conditions. These are separated into the three cloud cover categories 

of > 2 to 4, > 4 to 6 and > 6 to 8 okta with the dashed line representing the fitted 

regression line.  

 

For the sun obscured cases in Figure 5.6 (a), there is a good correlation between the 

satellite and ground based total daily UVA exposure with an R2 of 0.71, rRMSE of 

0.36 and MAE of 124.9 kJ/m2. This figure shows a smaller R2 compared to the sun not 

obscured cases due to the influence of cloud over the sun. In Figure 5.6 (b), even 

though, the cloud cover is >4 to 6 okta, the correlation is still reasonable with R2 of 

0.64, an rRMSE of 0.27 and MAE of 158.4 kJ/m2. For the category of > 6 to 8 okta 

sky coverage shown in Figure 5.6 (c), the correlation is slightly weaker compared with 

the sun not obscured cases with the same cloud coverage with an R2 of 0.75, an rRMSE 
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of 0.29 and MAE of 133.3 kJ/m2. The larger rRMSE for the three cases of cloud cover 

> 2 to 4, > 4 to 6 and > 6 to 8 okta is expected because the cloud conditions used to 

determine the cloud categories are at solar noon and this amount of cloud cover, 

whether the sun is obscured or not, is often variable during the day.    
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Figure 5.6 Comparison of the satellite total daily UVA exposure for 2004 to 2014 

evaluated from the three OMI spectral irradiance with the ground-based total daily 
UVA exposure for the three categories of cloud cover of (a) > 2 to 4, (b) > 4 to 6 and 
> 6 to 8 okta for sun obscured sky conditions. The dashed lines are the regression lines 

fitted to the data and the error bars represent the ±10% errors with the measured 

ground based data.  

 

5.3.5 Model Validation 

 

The model was developed using the OMI satellite based solar noon UVA irradiance 

data set from 2004 to 2014 for the sun not obscured cases (N=210) and the sun 

obscured cases (N=32). The dataset from 2015 to 2016 was used to validate the 

developed model. Figure 5.7 shows the comparison of the satellite total daily UVA 

exposure and the ground-based total daily UVA exposure for sun not obscured and for 

sun obscured sky conditions for the 2015 and 2016 data set.  

 

In Figure 5.7 (a), the validation comparison has a good correlation with an MAE of 

84.2 kJ/m2 (10%) for the sun not obscured cases. Figure 5.7 (b) shows the validat ion 

for the sun obscured cloudy days which has a reasonable agreement with an MAE of 

138.4 kJ/m2 (30%). This larger MAE compared to the sun not obscured cases is due to 

the variability of the sun obscured cloud influence on the solar UVA. 
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Figure 5.7 Validation of the satellite total daily UVA exposure evaluated from the 
three OMI spectral irradiances with the ground-based total daily UVA exposure for 

the two categories of (a) sun not obscured cloudy days and (b) sun obscured cloudy 

days for the 2015 and 2016 data set. The dashed line in each graph is the 1:1 line.   

 
 

 
 

 

MAE = 138.8 kJ/m2 
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5.4 CHAPTER SUMMARY 

This chapter presented and discussed the development of the method to evaluate total 

daily UVA exposures from solar noon OMI satellite irradiance. This was developed 

and validated for clear skies and for cloudy skies with the sun both obscured and not 

obscured. The following chapter provides the conclusions for the research in this 

thesis.  
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6.1 OVERVIEW 

This chapter presents the conclusions of the research on the OMI satellite spectral data 

validation, the method developed to evaluate the UVA irradiances, the evaluation of 

the satellite UVA irradiance values, the method developed to calculate the total daily 

satellite UVA exposure and the evaluation of these daily UVA exposures for totally 

cloud free days and for cloudy days.    

 

6.2 SPECTRAL AND BROADBAND SURFACE BASED MEASUREMENTS 

TO VALIDATE OMI UV SATELLITE DATA 

The cloud free solar noon spectral irradiance from OMI data for 2009 have been 

compared with ground based spectral spectroradiometer data at the three wavelengths 

provided by the OMI satellite data (310, 324, 380 nm) for a sub-tropical Southern 

Hemisphere site. These comparisons show a clear correlation for these wavelengths 

and with an R2 of 0.89 or better in each waveband. These comparisons include the 

±9% absolute error in the spectroradiometer ground based data and the errors in the 

spatial averaging of the satellite pixel data. In this research, the ratio of the spectral 

irradiances from satellite compared to the ground based measurements has shown that 

for the cloud free cases at 324 nm, the median is greater than one. The corresponding 

median at 310 nm is less than one and it is very close to one at 380 nm. For the cloudy 

days, the ratios had a much wider range of values with the median ratio being higher 

than one for 324 nm and 380 nm and approaches one for 310 nm. The observed spread 

in the cloud-affected data was largely due to the temporal nature of local cloud cover 

and differences between the satellite overpass time and solar noon and the spatial 

averaging of the satellite data over the satellite pixel.  The models developed accounted 

for this over-estimation at the sub-tropical research site and are essential for any data 

correlation between satellite and ground based measurements.  

 

Additionally, this research developed and validated a method to compare, evaluate 

and validate the broadband UVA solar noon irradiance derived from OMI satellite 

spectral data at 310, 324 and 380 nm for cloud free days with ground based broadband 

data taken from a UVA Biometer. There is reasonable agreement between the 

modelled UVA irradiance derived from OMI and the solar noon UVA broadband 

irradiance from the UVA Biometer with an R2 of 0.86. Thus, it is possible to use this 
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method to evaluate broadband UVA irradiances at solar noon from the OMI data at 

310, 324 and 380 nm. 

 

6.3 UVA IRRADIANCE OVER A TWELVE-YEAR PERIOD FROM OMI 

DATA INCLUDING THE INFLUENCE OF CLOUD 

The broadband UVA solar noon irradiance derived from the OMI satellite spectral 

UV irradiance at the three wavelengths 310 nm, 324 nm and 380 nm have provided a 

long-term data series of over 12 years at a sub-tropical Southern Hemisphere site. This 

study has applied this model for both sun not obscured and sun obscured sky 

conditions. For sun not obscured sky conditions, four categories of the amount of 

cloud cover of 0 to 2, > 2 to 4, > 4 to 6 and > 6 to 8 okta have been used to investiga te 

the comparison between remote estimates of the broadband surface UVA evaluated 

from the satellite UVA spectral irradiances and local ground based measurements. 

These categories showed an inverse relationship between the amount of cloud and the 

correlation for the satellite and ground based data. In this case, the evaluated 

broadband UVA satellite irradiance model is likely to be less suitable for cloudy sky 

conditions of more than four okta. For sun obscured sky conditions, an increasing of 

the cloud amount led to lower correlation of the satellite derived UVA irradiance 

model than for sun not obscured sky conditions. There was also an observed increase 

in the spread of the data with increasing UVA irradiance. Investigation on the effect 

of cloud on the satellite derived UVA irradiance has shown that the model is valid for 

sun not obscured conditions with cloud of up to four okta (with an R2 = 0.77, and an 

rRMSE = 18% for coverage 0 to 2 okta and R2 = 0.64 and rRMSE = 16% for > 2 to 4 

okta). At the sub-tropical site of this research, the satellite derived UVA irradiances 

can be calibrated to surface measurements for most conditions, accounting for 

approximately 71% of the days having 4 okta or less of cloud in the 12 year study 

period.  

 

6.4 TOTAL DAILY UVA EXPOSURE EVALUATED FROM SOLAR NOON 

OMI SATELLITE SPECTRAL IRRADIANCE FOR CLOUD FREE DAYS 

A new method has been developed for the accurate calculation of total daily UVA 

exposure integrals under cloud free conditions. Terrestrial UVA surface exposures 

exhibit diurnal exposure patterns that vary predominately as a function of SZA, which, 
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in the absence of cloud are not greatly affected by total ozone column. Normalised 

exposure variations in the UVA were utilised in this research to find a reliable exposure 

integral applicable over a range of conditions. This technique may be applied to 

estimate daily UVA exposure integrals in remote locations that do not have access to 

surface UVA radiometers. This has the potential to extend the range of surface 

radiation parameters able to be derived from OMI and other remote satellite platforms, 

providing new information on surface exposures that affect a range of terrestrial and 

marine ecosystems as well as having implications for human health. 

 

6.5 INFLUENCE OF CLOUD ON OMI SATELLITE TOTAL DAILY UVA 

EXPOSURES OVER A TWELVE YEAR PERIOD  

This research has employed the developed technique to calculate the total daily UVA 

exposures from the broadband UVA irradiances derived from the three OMI satellite 

spectral irradiance at solar noon to provide a comparison between total daily UVA 

satellite exposure data and total daily UVA ground based exposure data over a 10 year 

time period. The techniques developed and the quantity of data collected have enabled 

the influence of cloud on the total daily UVA satellite exposures to be considered. This 

has been for all cloud conditions for different cloud cover for the solar disc not 

obscured and solar disc obscured cases. For the sun not obscured sky conditions, the 

cloud cover categories of  0 to 2, > 2 to 4, > 4 to 6 and > 6 to 8 okta have been 

considered. In addition, for the case of the solar disc obscured sky conditions, the cloud 

categories of > 2 to 4, > 4 to 6 and > 6 to 8 okta have been considered.  

 

For all cloud cover categories of sun not obscured data, there is a good correlation in 

the model between the total daily UVA satellite exposure data and the total daily UVA 

ground based exposure data, with R2 values of better than 0.8 and rRMSE values of 

0.17 or less. The > 2 to 4 okta coverage data with the sun obscured days provided an 

R2 value of 0.71 and rRMSE value of 0.36. The model validation using a two year data 

set provided an MAE of 84.2 kJ/m2 (10%) and 138.8 kJ/m2 (30%) respectively for the 

cases of sun not obscured and sun obscured sky conditions. At the Southern 

Hemisphere site of this research, the total daily UVA exposures were calculated from 

the OMI satellite spectral irradiance for sun not obscured cloudy days and for sun 
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obscured days, with further research required to compare the OMI satellite derived 

total daily UVA exposures to ground based data at other sites.  

 

6.6 CONCLUSION  

In this research, firstly, the cloud free solar noon spectral irradiance from OMI have 

been compared with ground based spectroradiometer spectral data at three 

wavelengths (310, 324, 380 nm) for a subtropical Southern Hemisphere site. These 

comparisons show a clear correlation for these wavelengths. Secondly, this research 

has developed a method to evaluate and validate the broadband UVA solar noon 

irradiance derived from OMI satellite spectral data at 310, 324 and 380 nm for cloud 

free days against ground based broadband data taken from a UVA Biometer. In 

addition, the broadband UVA solar noon irradiance have been calculated for a long 

term data series of over 12 years and applied for the sky conditions of sun not obscured 

and sun obscured. According to the results, the developed method will be suitable for 

cloudy sky conditions of less than four okta.  

 

This research has also developed and validated a technique to calculate the total daily 

UVA exposures from the broadband UVA irradiance derived from OMI satellite 

spectral irradiance at solar noon to provide a comparison between total daily UVA 

satellite exposure data and total daily UVA ground based exposure data. The model 

parameters have been evaluated for different cloud cover conditions for the totally 

cloud free days and cloudy days at sun not obscured and sun obscured cases. The 

model has been developed using the data set from 2004 to 2014. The rest of the dataset 

from 2015 to 2016 has been used to test the developed model, providing a MAE of 

10% for sun not obscured days and 30% of sun obscured days. This research has 

provided a method to use the OMI satellite data to calculate the total daily UVA 

exposures. The hypothesis “The OMI discrete spectral UV irradiances can be used as 

a proxy for broadband surface UVA irradiance and total daily UVA exposure” has 

been confirmed in this research. 
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6.7 FUTURE WORKS 

Further evaluation and examination of the OMI satellite UV measurements should be 

undertaken to provide a better understanding about the relationship of UVA to 

disease/damage to the body, such as the following: 

 Applying this project at different sites in the world such as in the Middle East, 

Africa and South America and taking in consideration different influenc ing 

factors, like aerosols, albedo and drought. 

 Evaluation and validation of a method to reconstruct the UV spectrum from 

the OMI satellite data at 310, 324 and 380 nm and that is weighted with 

different action spectra against ground based spectroradiometer data located 

at any other sites, for example, Middle Eastern, African and American sites. 

 Using the correlation between the satellite and ground based measurements to 

examine the effects of the UV radiation on the vitamin D effective UV. 

 Use the OMI satellite data to investigate and analyse the influence of UV 

radiation in causing cataracts. 

 Examination of the influence of UV irradiance on crop damage at other sites 

by using the satellite data. 

 

The reconstruction of the broadband UVA irradiance and total daily exposures from 

the OMI data will allow a number of future research projects. They will make a 

significant contribution to photobiology by providing new research data on surface 

irradiance and exposures. These research data will be vital in research on the UVA 

effects for a range of terrestrial and marine ecosystems as well as the implications for 

human health.   
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