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Abstract

Objectives

Epidemiological and experimental studies have established obesity to be an important risk

factor for osteoarthritis (OA), however, the mechanisms underlying this link remains largely

unknown. Here, we studied local inflammatory responses in metabolic-OA.

Methods

Wistar rats were fed with control diet (CD) and high-carbohydrate, high-fat diet (HCHF) for

period of 8 and 16 weeks. After euthanasia, the knees were examined to assess the articular

cartilage changes and inflammation in synovial membrane. Further IHC was conducted to

determine the macrophage-polarization status of the synovium. In addition, CD and HCHF

synovial fluid was co-cultured with bone marrow-derived macrophages to assess the effect

of synovial fluid inflammation on macrophage polarisation.

Results

Our study showed that, obesity induced by a high-carbohydrate, high-fat (HCHF) diet is

associated with spontaneous and local inflammation of the synovial membranes in rats

even before the cartilage degradation. This was followed by increased synovitis and

increased macrophage infiltration into the synovium and a predominant elevation of pro-

inflammatory M1 macrophages. In addition, bone marrow derived macrophages, cultured

with synovial fluid collected from the knees of obese rats exhibited a pro-inflammatory M1

macrophage phenotype.

Conclusion

Our study demonstrate a strong association between obesity and a dynamic immune

response locally within synovial tissues. Furthermore, we have also identified synovial
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resident macrophages to play a vital role in the inflammation caused by the HCHF diet.

Therefore, future therapeutic strategies targeted at the synovial macrophage phenotype

may be the key to break the link between obesity and OA.

Introduction

Accumulating epidemiological and experimental evidence supports an association between

obesity and a higher incidence of osteoarthritis (OA) [1–3]. The contribution of obesity to the

development of OA is intuitive as an increased load on the joints; however, bio-mechanics fail

to explain the occurrence of OA in non-weight bearing joints in obese subjects. Increased

plasma concentrations of insulin and insulin-like growth factors (IGFs), sex hormones and

adipokines released from adipose tissue may influence OA directly through increased joint

degradation; however, there is no clear consensus regarding the specific role of these factors in

OA [4–9]. Consequently, the precise molecular mechanisms by which obesity influences OA

development continues to be an important and unanswered question in OA research.

Increasing rates of diet-induced obesity have been attributed to the metabolic osteoarthritis,

and metabolic OA has been proposed as a new phenotype of OA that displays a unique OA

characteristics [10–13]. In order to understand and investigate metabolic OA, various diet-

induced obesity (DIO) models have been established and validated. In a high fat, high sucrose

(HFS) DIO rat model, after a 12-week post-obesity induction, DIO rats demonstrated

increased OA-like cartilage changes, and systemic and local synovial fluid inflammatory mark-

ers and accumulation of adiposity [13]. Another study showed that mice exposed to high fat

(HF) diet showed elevated OA scores, hyperalgesia, adipocyte-related hormones, and pro-

inflammatory cytokines in serum in proportion to body fat, and physical therapeutic

approaches produced modest changes in knee histopathology [14, 15]. Additional study found

that obesity and dietary fatty acid content regulate the development of OA [16]. These studies

together provide strong evidence that obesity is strongly linked with OA development.

Chronic inflammation is increasingly appreciated as a major factor promoting insulin resis-

tance and other metabolic disorders associated with diet-induced obesity in adipose tissue

[17–19]. Excess caloric intake leads to low-grade inflammation that is characterised by the

presence of infiltrating inflammatory cells, such as macrophages, in adipose tissue [20].

Recently, it has been shown that certain components of MetS can alter the inflammation in

joint structures. For example, excessive lipid diffusion into the joints via systemic circulation

and synovial fluid were linked to cartilage matrix protein oxidation and increased synovial per-

meability [21]. Increased cholesterol levels strongly elevate synovial activation and ectopic

bone formation in early-stage collagenase-induced OA [22]. Glucose concentration is strongly

associated with catabolic and anabolic metabolism of chondrocytes and synovium as it is an

essential substrate for global joint [9]. Hamada and colleagues provide evidence that TNFα is

elevated in the synovium of obese Type II diabetic OA patients, but not in non-diabetic obese

OA patients [23]. Increased serum glucose concentration has detrimental effects on cartilages

and these effects are induced by overexpression of matrix metalloproteinase, reactive oxygen

species and glycan end products, which results cartilage matrix breakdown and cell senescence

[24, 25]. These results together suggest that certain components of metabolic syndrome can

activate the synovial alterations inflammation and cartilage changes.

Macrophages are heterogeneous and remarkably plastic, generally inhabiting two major

sub-populations: those in a predominantly M1-polarised pro-inflammatory state and those in
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a predominantly M2-polarised anti-inflammatory state [26]. In synovial tissue within the

joints, macrophages are, along with fibroblasts, resident cells that under normal circumstances

remain quiescent. Clinically, the local synovial inflammation in OA patients is highly variable,

with some patients presenting no inflammation and others with severe inflammation [27].

Although obesity leads to inflammation, the detailed cellular events underlying the inflamma-

tory changes at the onset of obesity in the local joint environment are not well-established.

In this study, we demonstrate that diet-induced obesity promotes macrophage infiltration

and also activates macrophages towards the pro-inflammatory M1 phenotype within the syno-

vium. We also show that macrophages and chondrocytes stimulated with synovial fluid har-

vested from obese rats produce inflammatory and degradative changes. These observations

provide evidence that traditional western diet-high carbohydrate high fat is a risk factor for

OA-like pathological changes. The mechanisms responsible for these interactions are not fully

understood, but may involve M1 polarized synovial macrophage in the inflamed synovium.

This research will provide a new overview of the involvement of synovial macrophage in pro-

moting inflammatory and destructive responses in diet-induced obesity related OA and might

therefore by used as a therapeutic strategy for the development of disease-modifying anti-OA

drugs.

Methods

Rats

The use of rats for this study was approved by the Animal Ethics Committees of the Queens-

land University of Technology and the University of Southern Queensland under the guide-

lines of National Health and Medical Research Council of Australia (AEC project approval

code: 14REA010). 30 male Wistar rats (9–10 weeks old) weighing approximately 330-350g

were purchased from Animal Resource Centre (Perth, WA, Australia). The rats were individu-

ally housed at the University of Southern Queensland Animal House in a temperature-con-

trolled, 12-hour light/dark cycle environment with ad libitum access to water and

experimental diets. The rats were divided into three groups of ten animals each. One group

was fed on HCHF diet for 8 weeks, and two other groups were fed on CD or HCHF diets for

16 weeks. Physiological measurement and metabolic parameters were collected and analysed

as described [28, 29]. The two experimental diets used in this study were a control diet (CD)

and a high-carbohydrate, high-fat diet (HCHF). The composition of the diets used in this

study were same as described in our previous study [28, 29].

Tissue harvest and histologic analysis

After 8 or 16 weeks of dietary interventions, the rats were euthanized by intraperitoneal

injection of Lethabarb1 (100mg/kg). The knee joints were harvested and fixed in 4% para-

formaldehyde followed by decalcification in 10% ethylenediaminetetraacetic acid and was

later embedded in paraffin. Five-micrometer-thick sagittal sections were cut using a rotary

microtome (Leica). The rat knee sections were stained with fast green and Saf-O and then

evaluated for cartilage damage and synovial inflammation by two independent assessors.

The pathological changes of joint were assessed using the Mankin scoring system, as previ-

ously described [22, 30]. Synovial thickening was assessed using a 0–3 scoring system as pre-

viously described [22, 31](0 = no synovial thickening; 1 = lining of two cell layers; 2 = several

extra cell layers; 3 = clear inflammation with cell infiltrate). The criterion used for the selec-

tion of the four target sites were, lateral femur (LF), lateral tibia (LT), medial femur (MF)

and medial tibia (MT).
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Preparation of synovium homogenates and total RNA extraction

After the rats (n = 5) were euthanized, the synovium of knee joints were isolated and cut into

pieces. The samples were snap frozen in liquid nitrogen and homogenized in 1ml QIAzol lysis

reagent from Qiagen (Doncaster, VIC, Australia). Total RNA was extracted from homogenates

by using RNeasy Lipid Tissue Kit (Qiagen, Doncaster, VIC, Australia) according to the manu-

facturer’s instruction. The RNA quantity and quality were assessed using a Nanodrop 1000

Spectrophotometer (Thermo Scientific, Scoresby, VIC, Australia). Reverse transcription was

then followed.

Immunofluorescence and immunohistochemistry (IHC)

For immunofluorescence, a standard two-step staining technique as described [21]. Sections

were incubated with rabbit anti-rat CD68 antibody (Abcam, Melbourne, VIC, Australia; dilu-

tion 1:250), rabbit anti-rat iNOS antibody (Thermo Scientific, Scoresby, VIC, Australia; dilu-

tion 1:500) and a rabbit anti-rat Arg1 (Abcam, Melbourne, VIC, Australia; dilution 1:100).

The sections were incubated with corresponding fluorescent secondary antibodies. Immuno-

fluorescence was examined with a Leica SP5 confocal microscope.

Immunohistochemistry was performed using standard protocols [30]. The various antibod-

ies and their concentration used in this experiment were similar to immunofluorescence with

the substitution of secondary antibodies (Dako, North Sydney, NSW, Australia). Samples were

stained with diaminobenzene and counterstained with haematoxylin. Images were captured

using a Zeiss Axio vision light microscope. To conduct semi-quantitative data analysis, the

positive cells from different fields of observation were counted and normalized to the cell

number per 100 total cells in each group.

For each immunostaining, negative control either without primary antibody or with iso-

type-matched IgG instead of primary antibody was included. All sections were randomly

coded and scored in a blinded way by two independent investigators.

Collection of knee joint synovial fluid from rats

Immediately after euthanasia, The skin overlying the knee was excised from both control and

obese rats, the knee joint cavity was entered by a 27G needle and 100 μL sterile saline which

given into the joint was withdrawn and taken into a 1.5ml centrifuge tube. Synovial fluid (SF)

aspirates with sterile saline from both knee joints was pooled. Synovial fluid samples were cen-

trifuged at 700× g for 10 minutes according to published study [32] to remove cellular ele-

ments and then immediately frozen at -80˚C until further use. The presence of cellular

elements in synovial fluid were manually determined at a high magnification (40 ×) using

synovial fluid smears.

Rat bone marrow-derived macrophage (BMDM) cell culture

Rat BMDMs were isolated and cultured using published protocol [33]. The femur and tibia

were obtained from CD diet-fed rats and bone marrow was collected by flushing the bones with

serum-free DMEM supplemented with 1% penicillin-streptomycin using a 10-ml syringe and a

24-gauge needle. Bone marrow cells were collected by filtering through a 40μm cell strainer (BD

Biosciences, North Ryde, NSW, Australia). Monocytes were stimulated with 20 ng/ml recombi-

nant macrophage colony-stimulating factor (M-CSF; 100ng/ml, PeproTech, Mt Waverly, VIC,

Australia), then seeded in cell culture flasks (T75 cm2 flasks). All non-adherent cells in the

supernatant were removed on day 3 and the remaining adherent cells (regarded as macro-

phages) were maintained in culture for a further 7 days with media being replaced every 3 days.
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Macrophages (BMDMs) co-culture with synovial fluid

Rat BMDMs were transferred to 24-well plates (2×106 cells/ml) and incubated at 37˚C for 24

h. The SF from HCHF or CD rats were diluted 1:1 with serum-free DMEM containing 1%

penicillin-streptomycin. After 24 h, the adherent cells were washed and stimulated in serum-

free medium, with either (1) HCHF SF, (2) CD SF, or (3) no stimulation at 37˚C for 24 hours.

The cells were washed and the polarisation state of the macrophages was determined by qPCR.

Micromass cultures of rat articular cartilage chondrocytes (ACCs)

High-density micromass droplets were prepared as described previously [34]. The SF from CD

or HCHF animals was diluted 1:1 with serum-free medium and added to the chondrocyte

micromass. Controls received serum-free medium. After 72 h, the cells were washed and the

effects of co-culture on the chondrocytic phenotypes was assessed by qPCR at 7 days. All

experiments were performed using freshly isolated P0 cells.

Isolation of synovial macrophages from OA synovium

Synovium was isolated from five patients (68.6 ± 8.6 years; 5 female; BMI 39.68 ± 3.625) with

advanced clinical OA, all of whom were undergoing total knee replacement at The Prince

Charles and Holy Spirit Northside Private Hospital, Brisbane, QLD. Ethical approval was

granted by the Queensland University of Technology and The Prince Charles Hospital Ethics

Committee. OA synovium were isolated and digested as previously described [35–37]. To

obtain synovial macrophages, synoviocytes were separated based on cell marker CD14 [38].

Synoviocytes were incubated with CD14 microbeads (Miltenyi Biotec, Macquarie Park, NSW,

Australia) in the dark at 4˚C. The CD14 magnetically labelled cells were isolated by magnetic

activated cell sorting (MACS, MASC Separation columns LS; Miltenyi Biotec, Macquarie Park,

NSW, Australia). The selected macrophages were cultured in DMEM supplemented with 10%

FBS at 37˚C for 24 hours.

Macrophage differentiation and co-culture

To obtain M1/M2 differentiated macrophages, human CD14+ synovial macrophages were

simulated as describe [39]. A modified macrophage-chondrocyte co-culture system was per-

formed. To obtain M1/M2 differentiated macrophages, human CD14+ synovial macrophages

were transferred to 6-well plates and cultured for another 24h. Cells were stimulated in serum-

free medium with either (1) 100ng/ml LPS (Sigma-Aldrich, Castle Hill, NSW, Australia) plus

20ng/ml IFNγ (R&D System, Noble Park, VIC, Australia) for M1 differentiation, (2) 20ng/ml

IL-4 (R&D System, Noble Park, VIC, Australia) for M2 differentiation, or (3) no stimulation

(control) at 37˚C for 48 hours The differentiated macrophages were washed and cultured for

another 24h in serum-free DMEM medium without IFNγ/LPS or IL-4.

For co-culture experiments, chondrocyte cell line (C28/I2) was cultured at 1×106 cells per

ml in 6-well culture plates and incubated at 37˚C. After overnight seeding in regular growth

medium (DMEM supplemented with 10% FBS and 1% penicillin-streptomycin), the cells were

washed with PBS for 3 times. The CM of in vitro differentiated macrophages was diluted 1:1

with serum-free medium and directly added to C28/I2 cells. Control group received serum-

free medium only. After 72 h, the medium was replaced according to each group respectively

for another 72h. At the end of the co-culture period, total RNA and conditioned media were

harvested for further analyses.
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Glycosaminoglycan assay

The total amount of released GAG in the supernatant at day 3 and day 7 from primary cultured

chondrocytes was quantified using GAG assay kit (Blyscan Assay Kit, Labtek, Brendale, QLD,

Australia). The assay was performed following the manufacturer’s protocol.

RNA extraction, real-time PCR and enzyme-linked immunosorbent

assay (ELISA)

Total RNA was extracted using TRIzol reagent (Invitrogen, Mt Waverley, VIC, AUS) in accor-

dance with the manufacturer’s instructions. cDNA was synthesised from 1 μg of the total RNA

according to manufacturer’s protocol using an SensiFAST cDNA Synthesis Kit. Real-time

quantitative PCR, using SYBR Green detection chemistry, was performed on the ABI 7500

Fast Real Time PCR system (Applied Biosystems, Thermo Scientific, Scoresby, VIC, Australia).

The initial cycle was 50˚C for 2 min and 95˚C for 10 min followed by 40 cycles of 95˚C for 15 s

and 60˚C for 1 min. Melt curve analyses of all real-time PCR products were performed and

shown to produce a single DNA duplex. All samples were measured in triplicate and the mean

value was considered for comparative analysis. Expression levels were calculated relative to the

mean of experimental control, and beta-actin expression was used as the internal control.

Quantitative measurements of all primers used in this study were determined using the

(2−ΔΔCt) method, and GAPDH and β-actin expression were used as the internal controls, as

described previously by our group [34, 40, 41]

Cytokine production, reflective of the pro-inflammatory and anti-inflammatory function of

M1 and M2 macrophages, respectively, was assessed using ELISA. The ELISA kits were pur-

chased from R&D systems (R&D System, In Vitro Technologies, Noble Park, VIC, Australia).

The pro- and anti-inflammatory cytokine concentrations including IFN-γ, IL-1β and IL-10 in

serum were also quantified using ELISA (R&D System, In Vitro Technologies, Noble Park,

VIC, Australia). The various inflammatory cytokines used were (1) human: TNF-alpha and

IL-10 and (2) rat: IL-6 and IL-10. The assays were performed following the manufacturer’s

protocols for the specific cytokine.

Statistical analyses

Statistical differences were tested using an unpaird Student’s t test for comparison of two

parametric variables (i.e. body weight, metabolic parameters, gene expression), Mann-Whit-

ney test for comparison of two non-parametric variables (i.e. histological scores). All analyses

were performed using GraphPad Prism 7 and P-values < 0.05 were considered to be signifi-

cant. All data are presented as mean ± SD.

Results

High carbohydrate and high fat (HCHF) feeding induces metabolic

syndrome and obesity in the rats

We have previously reported that rats fed a HCHF diet develop symptoms characteristic of

metabolic syndrome and cardiovascular changes, in particular central obesity, elevated blood

pressure, impaired glucose tolerance, insulin resistance, non-alcoholic fatty liver disease and

dyslipidaemia; this is therefore a relevant model of diet-induced metabolic syndrome in

humans [28, 29]. In line with our previous studies, 9-week-old male Wistar rats fed a HCHF

diet for 16 weeks had a significant increase in body weight and total abdominal fat (Fig 1A and

Table 1) which led to an increased abdominal circumference gradually (Fig 1B and Table 1).

Rats given CD diet for 16 weeks had higher food intake than the HCHF diet-fed rats, while the
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energy intake were lower in CD diet group due to low energy density of CD (Table 1). HCHF

diet-fed rats had higher feed conversion efficiency than CD rats (Table 1). Total body fat mass

was higher in HCHF diet-fed rats, with no difference in lean mass between the two groups

(Table 1). The basal blood glucose concentrations and AUC were similar between HCHF and

CD rats at 16 weeks. The variations were high for basal blood glucose concentrations in HCHF

rats while variations for AUC were high for CD rats (Table 1). The plasma insulin concentra-

tion in 16 weeks HCHF diet-fed rats were increased than CD group (Table 1). These findings

indicate that the rats were hyperinsulinaemic together with a decrease in insulin response

which is the definition of insulin resistance. HCHF group also showed higher plasma activities

of alanine transaminase, and alkaline phosphatase than CD rats (Table 1). Furthermore,

plasma total cholesterol concentrations did not change, but plasma concentrations of triglycer-

ides and NEFA were markedly higher in HCHF rats compared with CD rats (Table 1). Rats

given a HCHF diet were also showed worsening cardiac function and increased systolic blood

pressure when compared to CD rats, as described previously by our group [28]. We next com-

pared the pro- and anti-inflammatory cytokine concentration in the serum of CD and HCHF

Fig 1. Metabolic effects of HCHF diet feeding. (A) Body weight of Wistar rats on CD or HCHF diet (n = 8). (B) Dorsal view of the rats

showing the changes in the total abdominal length caused by the two diets after 16 weeks. ELISA analysis of pro-inflammatory (C) and (D) or

anti-inflammatory (E) cytokines in serum (n = 6). Data were analyzed by two-tailed Student’s t test. All data are presented as mean ± SD.

P < 0.05 (CD vs HCHF at two time point- week 8 and week 16) was considered to be significant. * = p <0.05.

https://doi.org/10.1371/journal.pone.0183693.g001
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rats. The HCHF diet-fed rats showed significant higher concentration of two pro-inflamma-

tory markers IFN-γand IL-1β (Fig 1C and 1D), while the concentration of anti-inflammatory

marker IL-10 was lower in HCHF compared to CD animals (Fig 1E), indicating a HCHF diet

induced pro-inflammatory condition in animals by suppressing anti-inflammatory cytokine

expression.

HCHF diet induces OA-like pathological changes

Effects of obesity and obesity-initiated metabolic syndrome on the knee joints assessed by Saf-

ranin-O staining showed no proteoglycan loss in the articular cartilage at 8 weeks and a

marked reduction in the proteoglycan content at 16 weeks in HCHF group compared to the

controls (Fig 2A and 2B). We performed a semi-quantitative histopathologic grading of the

stained knee cartilage using modified Mankin scoring system [22, 30], which showed the

HCHF group at 16 weeks consistently recording higher Mankin scores than the other groups

(Fig 2E). Synovial thickening (red arrow) of lining cells of HCHF diet-fed rats were increased

at 8 weeks, and then further increased at 16 weeks (Fig 2C and 2D). The fibrosis area (black

arrow) was observed in the body of the intima and sub-intima at week 8, and noted to occupy

the entire structure at 16 weeks (Fig 2C and 2D). Synovitis score, a measure for the amount of

Table 1. Dietary intake and body composition in CD and HCHF rats.

Variables CD

(16 weeks)

HCHF

(16 weeks)

Food intake (g/d) 40.2 ± 2.2 25.0 ± 2.3*

Water intake (mL/d) 26.1 ± 4.1 25.2 ± 3.5

Energy intake (kJ/d) 452 ± 24 543 ± 44*

Feed conversion efficiency (%) 19.3 ± 4.1 36.2 ± 6.8*

Total body fat mass (g) 79.5 ± 34.7 207.7 ± 81.6*

Total body lean mass (g) 305.0 ± 23.6 310.6 ± 46.9

Abdominal circumference (cm) 20.2 ± 0.7 22.4 ± 1.1*

Visceral adiposity index (%) 4.01 ± 0.88 10.07 ± 2.59*

Retroperitoneal fat (mg/mm) 155.2 ± 46.7 572.2 ± 219.1*

Epididymal fat (mg/mm) 98.0 ± 21.0 273.9 ± 69.5*

Omental fat (mg/mm) 88.7 ± 26.8 257.9 ± 73.9*

Basal blood glucose concentrations (mmol/L) 3.59 ± 0.30 3.86 ± 0.51*

Area under the curve (mmol/L�min) 687 ± 124 726 ± 73*

Liver (mg/mm) 203.2 ± 28.0 345.9 ± 33.6*

Alanine transaminase (U/L) 19.4 ± 5.4 40.9 ± 11.1*

Aspartate transaminase (U/L) 57.4 ± 13.4 66.4 ± 7.8

Alkaline phosphatase (U/L) 121.7 ± 24.8 248.7 ± 59.5*

Total cholesterol (mmol/L) 1.42 ± 0.36 1.59 ± 0.11

NEFA (mmol/L) 1.09 ± 0.37 4.84 ± 1.13*

Triglycerides (mmol/L) 0.36 ± 0.17 1.92 ± 0.67*

Insulin (μg/L) 2.35 ± 1.80 4.12 ± 1.09*

Leptin (μg/L) 3.21 ± 1.12 11.37 ± 3.80*

Cardiovascular function [28]

CD- control diet-fed rats; HCHF-high-carbohydrate, high-fat diet-fed rats; NEFA-non-esterified fatty acids.

*P < 0.05 was considered to be significant.

All data are presented as mean ± SD. n = 8.

https://doi.org/10.1371/journal.pone.0183693.t001
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infiltrated cells and local proliferation, was markedly increased in HCHF rats when compared

with CD rats (Fig 2F).

HCHF diet results in synovial thickening throughout the joint

Next, we observed the synovial inflammation in four different sites of the synovial membrane

(Fig 3A). These changes were characterised by increased thickness of synovial membrane layer

and disorganised structure. Compared with the CD group, the knee joints of the HCHF group

rats revealed marked synovial thickening. The synovial membrane was thickened by the pres-

ence of synoviocyte in the intima and sub-intima with a replacement of the connective tissue,

from adipose to fibrous (black arrow) (Fig 3B). In contrast, the CD rats showed no signs of

pathological changes of the synovium as indicated by typical palisading structure of the intimal

lining layer and 2 to 3 layers of synoviocyte in the synovial intima and sub-intima with a pre-

dominance of adipose cells (Fig 3B). For each site of the synovial membrane, the synovial

inflammation score was greater in the HCHF diet rats than in the respective control (Fig 3C).

Together, these results indicate that the HCHF diet confers a systemic inflammatory pheno-

type resulting a global local inflammation.

Fig 2. Time-dependent histopathologic changes in the joint of HCHF diet-fed rats (8 and 16 weeks). Histological evaluation of the

knee joints. Tissues were stained with safranin-O and fast green (A-B) to estimate the proteoglycan loss among the two time points in HCHF

and CD groups. Scale bar = 20 μM. Extent of articular cartilage degradation was graded using Mankin scoring system (E). Safranin-O and

fast green staining shows the difference in thickness of the synovial membrane following, (C)8, and (D)16-week HCHF diet Histological

scoring showed increased synovial thickening in 8 and 16-week-diet rats (F). Data were analyzed by Mann-Whitney test. All data are

presented as mean ± SD. P < 0.05 (HCHF at week 8 vs HCHF at week 16) was considered to be significant. * = p <0.05. n = 8 per each

group at each collection time point. Scale bar = 20 μM.

https://doi.org/10.1371/journal.pone.0183693.g002
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HCHF diet induces synovial polarisation

Our model was characterised by the evidence of inflammation and accumulation of cells in the

synovium of HCHF diet-fed obese rats. To characterise the infiltrated cell population, immu-

nohistochemistry was performed using a panel of phenotypic markers for macrophages. This

analysis revealed increased macrophages in the synovia of the HCHF group compared with

the controls (Fig 4). CD68-positive macrophages were increased in the synovial lining in the

HCHF treatment group than in controls. Additional experiments were conducted to deter-

mine if increased CD68 expression in HCHF synovitis was related to preferential macrophage

polarisation. The phenotype of the CD68+ macrophages resident in the synovium was assessed

by the expression of the M1 marker iNOS and M2 marker Arg1. In the HCHF group, most

cells in the synovial membrane were positive for the M1 macrophage marker and iNOS was

expressed through the synovium, whereas the positive Arg1 marker was slightly increased in

the intimal lining and sub-lining layers. Furthermore, the HCHF group had more intense

iNOS fluorescent signalling compared with the controls, which was also the case with Arg1

(Fig 4A and 4B).

Fig 3. 16 weeks of HCHF diet causes synovial inflammation. (A) Schematic diagram showing the Region of Interest (ROI). Safranin-O

and fast green staining (B) shows the difference in thickness of the synovial membrane in the different regions of the knee joints of CD and

HCHF diet rats. The synovitis score in the different regions of the knee joints of rats fed the two diets (C). Data were analyzed by Mann-

Whitney test (CD MF vs HCHF MF; CD MT vs HCHF MT; CD LF vs HCHF LF; CD LT vs HCHF LF). All data are presented as mean ± SD,

P < 0.05 was considered to be significant. * = p <0.05. n = 8 for each diet group at each ROI. Scale bar = 20 μM.

https://doi.org/10.1371/journal.pone.0183693.g003
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To further demonstrate that HCHF diet promote macrophage inflammation, we mea-

sured the mRNA expression of the different pro-inflammatory and anti-inflammatory genes

by quantitative PCR (qPCR). HCHF diet resulted in higher inflammatory cytokine gene

expression, as was observed in Cd86, Tnf, Nos2 and Ccl2 (Fig 4C), but did not significantly

affect the expression of anti-inflammatory genes (Fig 4D), compared to CD diet-treated

group.

Fig 4. Macrophage-like cells increase in inflamed synovium of 16-week HCHF rats and are predominately iNOS+. (A)

Representative immunohistochemical and immunofluorescence analyses of synovial tissues from CD or HCHF diet rats with anti-CD68,

anti-iNOS or anti-Arg1. (B) Quantitative assessment of CD68+, iNOS+ or Arg1+ cells of inflamed synovium. Total positive cells per 100 cells

were used as a standard measure to quantify. (C, D) qPCR analysis of pro-inflammatory M1-like (C) or anti-inflammatory M2-like (D) genes

in synovium after diet stimulation. Data were analyzed by two-tailed Student’s t test. All data are presented as mean ± SD, P < 0.05 was

considered to be significant. * = p <0.05. n = 5. Scale bar = 20 μM.

https://doi.org/10.1371/journal.pone.0183693.g004
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Synovial fluid of rats on HCHF diet alters macrophage polarisation and

chondrocytes in vitro

We then tested if synovial fluid from HCHF and CD altered normal rat bone marrow-derived

macrophages (BMDMs) (Fig 5). Gene expression levels of CD86 and Nos2 were higher in these

macrophages following treatment with HCHF synovial fluid indicating a polarisation towards

an M1 phenotype (Fig 5A). There was a commensurate decrease in expression of Arg1 and

Mrc1 in HCHF synovial fluid-treated macrophages compared with controls (Fig 5B). Further,

IL-6 as an M1 marker cytokine increased in response to HCHF synovial fluid treatment (Fig

5C) whereas IL-10 expression as an M2 marker cytokine was not affected (Fig 5D).

We then tested whether obese rat’s synovial fluid affected chondrocytes directly and

resulted in discernible in vitro phenotypic changes using a high-density micromass cell culture

of rat articular chondrocytes stimulated in synovial fluid. The HCHF synovial fluid reduced

gene expression of the chondrogenic markers ACAN and SOX9whereas expression of degra-

dative and hypertrophic markers such as MMP13,ADAMTS5 and COL10were increased com-

pared to the CD synovial fluid (Fig 5E). Glucosaminoglycan (GAG) release into the medium

as a measure of proteoglycan degradation was higher by day 3 in the HCHF group compared

to CD and remained to be so after 7 days (Fig 5F).

Fig 5. Synovial fluid of 16-week HCHF rats alters macrophage polarization and chondrocyte differentiation in vitro. Relative qPCR

analysis of pro-inflammatory M1-like (A) or anti-inflammatory M2-like (B) genes in BMDMs after synovial fluid stimulation. ELISA analysis of

pro-inflammatory (C) or anti-inflammatory (D) cytokines in conditioned medium. (E) Relative qPCR analysis of MMP13, ADAMTS5, COL10,

ACAN and SOX9 in micromass cultured ACCs after 7 days of synovial fluid stimulation. (F) GAG release in supernatant of ACCs after

synovial fluid stimulation at day 3 and day 7. Data were analyzed by two-tailed Student’s t test. All data are presented as mean ± SD,

P < 0.05 was considered to be significant. * = p <0.05. n = 5 independent samples.

https://doi.org/10.1371/journal.pone.0183693.g005
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M1 polarised macrophages suppress chondrogenesis in articular

chondrocytes

The ability of polarised macrophages to decrease cartilage production was further tested in a

series of experiments involving CD14+ synovial monocytes/macrophages. These cells were

polarised towards an M1 phenotype by IFN-γ and LPS or alternatively towards an M2 pheno-

type by IL-4 (Fig 6). IFN-γ and LPS strongly upregulated the gene expression of M1 macro-

phage markers CD86 and Nos2 compared to controls (Fig 6A), whereas IL-4 increased

Fig 6. M1 macrophage negatively affects chondrogenic differentiation of chondrocytes. Relative qPCR analysis of

pro-inflammatory M1-like (A) or anti-inflammatory M2-like (B) genes in CD14+ macrophages after cytokine treatment.

ELISA analysis of pro-inflammatory (C) or anti-inflammatory (D) cytokines in conditioned medium. Relative qPCR analysis

of MMP2 (E), MMP13 (F), RUNX2 (G), ADAMTS5 (H), SOX9 (I), and ACAN (J) mRNA levels in chondrocytes treated with

M1 CM or M2 CM. (K) GAG release in supernatant of chondrocytes treated with 50% M1/M2 CM treatment for 3 and 7

days. Data were analyzed by two-tailed Student’s t test. Values represent the mean ± SD of experimental triplicates,

P < 0.05 was considered to be significant. * = p <0.05. n = 5 independent samples.

https://doi.org/10.1371/journal.pone.0183693.g006
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expression of the M2 macrophage markers Mrc1 and Arg1 (Fig 6B). M1 macrophage polarisa-

tion resulted in higher concentrations of the pro-inflammatory cytokine TNF-α and reduced

concentrations of IL-10 (Fig 6C and 6D).

The effects of polarised macrophages on chondrogenesis was assessed using the C28/I2

chondrocyte cell line cultured in a monolayer and treated with M1 and M2 conditioned media

(CM). The gene expression of MMP2 (Fig 6E), MMP13 (Fig 6F), RUNX2 (Fig 6G) and

ADAMTS5 (Fig 6H) was upregulated in response to M1 CM compared to controls. Conversely,

expression of the chondrogenic markers, SOX9 (Fig 6I) and ACAN (Fig 6J), was robustly upre-

gulated by M2 CM but there was no change in the cartilage degradation markers. The results

with M2 CM suggest that M2 macrophages prevent chondrocytes from de-differentiating into

a hypertrophic phenotype. This hypothesis was further supported by the GAG release assay

which showed increased GAG release resulting from M1 CM treatment (Fig 6K).

Discussion

In this study, we subjected rats to a high-carbohydrate, high-fat diet to induce a metabolic

state that mimics human obesity as part of metabolic syndrome. This diet consists of high

amounts of simple sugars (such as fructose and sucrose) as well as long-chain saturated and

trans fatty acids [28] which increased energy intake. The total caloric density of the high-car-

bohydrate, high-fat diet was considerably higher than standard corn starch chow. Although

the overall food intake of obese rats was lower than that of the of the control rats, the overall

energy intake was therefore higher for the high carbohydrate, high-fat diet-fed rats compared

to the controls. The prolonged consumption of energy-dense diets in humans is strongly cor-

related with visceral obesity and the onset of metabolic syndrome, which suggests that our

model is an appropriate model to explore the association between obesity and related compli-

cations including cartilage dysfunction [42–45]. With this model, we showed negative impact

on the knee joints of the animals fed an energy-dense diet. Our results suggested that the

HCHF diet cohort developed changes to cartilage homeostasis, exhibiting synovial inflamma-

tion resembling that in OA mediated by macrophages. These responses followed the dietary

regimes and were not induced by surgical destabilisation of the joints, so indicating the

hypothesis that synovial inflammation may be a key mediator and possible initiator of obesity-

induced OA.

The accumulation of inflammatory T cells, B cells and macrophages are implicated in the

tissue damage arising from high-fat diet-induced obesity by promoting adipose tissue inflam-

mation and exacerbating insulin resistance [46–48]. There is growing evidence supporting the

notion that synovial macrophage is the key effector cell for both inflammatory and destructive

responses in OA [14, 33, 49]. The synovial macrophages are abundant in synovial intima and

sub-intima, and are the dominant cell types present in the inflamed synovium occur in

approximately 50% of OA patients [50–52]. Histological evaluation of inflamed OA synovium

has shown that these cells express a high level of a general macrophage marker CD68, even in

the early phase of the disease [51]. CD68, also known as Gp110 or macrosialin, is a 110-kDa

glycoprotein highly expressed by monocytes and tissue macrophage and is considered as a

standard pan marker [49]. Previous study has shown that in vivo depletion of synovial macro-

phage prior to induction of collagenase-injected experimental OA blocked cartilage destruc-

tion and osteophyte formation [53], which clearly indicates the involvement of macrophages

in development of OA progression. Since inflammation plays an important role in the devel-

opment and progression of OA in human and post-traumatic OA models, we aimed to test if

obesity-related metabolic alteration in rodent model is associated with synovial macrophage

activation and cartilage destruction. In the present study, rats subjected to the HCHF diet had
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a higher number of cells within the synovium of the knee joint that were immune-reactive for

the macrophage marker CD68. It should be noted that the finding of increased OA-like

changes was dependent on the presence of HCHF diet alone. This is consistent to a previous

animal study demonstrating worsening knee OA in mice on a high fat diet [14]. A recent

study, has shown that depletion of macrophage increases systemic and local inflammation and

did not attenuate experimental OA in high-fat induced obesity in MaFia mice, however this

study results were based only on short-term depletion, long-term depletion experiments are

required to confirm the macrophage involvement in obesity induced OA [54]. Our finding

suggest a local joint macrophage activation in the development of obesity-associated OA.

However, we were unable to define the origin of these macrophages and whether or not they

were differentiated from proliferating resident synovial cells or, alternatively, recruited from

systemic blood cells. Since we found the alterations of synovium in the multiple sites of knee

joints, the latter scenario is feasible; a cell-labelling study in mice showed that up to 5% of

labelled blood monocytes were still expressing the Ki67 cell-proliferation marker two days

after being transferred into recipient animals [55, 56]. As such, we noticed an increase of mac-

rophage inflammation halfway through the 16- week-diet, when the cartilage still appeared

normal. This indicated the immune response in the synovium preceded cartilage degeneration

which became more apparent at the experimental endpoint.

Previous studies have shown that the macrophages are polarized and acquire a phenotype,

ranging from pro-inflammatory (M1) to anti-inflammatory M2; of these polarized macro-

phages, classically activated M1 macrophage is the main contributor to produce pro-inflam-

matory cytokines which has been considered as a factor in mediating catabolic effects, while

anti-inflammatory M2 macrophages exert anabolic effects [35, 57]. These findings led us to

consider the spectrum of macrophage phenotypes in diet-induced obesity-driven synovitis. In

order to distinguish and test the presence of M1 and M2 macrophages under obese conditions,

we performed a single colour immunohistological staining by using defining markers, activate

inducible nitric oxide synthase (iNOS) and type 1 Arginase (Arg-1), respectively. It is well

established that iNOS and Arg-1 give rise to two mediators, the “killer” molecule nitric oxide

(NO) and the “repair” molecule ornithine respectively that are involved in two opposite activi-

ties, pro-inflammatory (M1) verses anti-inflammatory (M2) function. Interestingly it was

found that macrophages in synovium of obese rats preferentially expressed M1 marker as com-

pared to those in the CD rats. On the other hand, M2-like macrophages were also slightly ele-

vated in the inflamed synovium. The macrophage phenotypes were further confirmed by gene

expression. It is well established in the literature that M1 polarized macrophages express pro-

inflammatory markers CD86,Tnf, Ccr7, Il6,Nos2 and Ccl2, in contrast, M2 activation leads to

the expression of markers such as Arg1, Il10,Mrc1 and Clec7a [58]. Along with analysis of

immunohistochemistry, a mixed expression pattern of M1 and M2 macrophages was detected.

However, HCHF diet did not significantly affect the expression of anti-inflammatory genes,

compared to CD diet-treated group. One possible explanation is that in obesity model, adipose

tissue secretes pro-inflammatory cytokines systemically that directly affect the local synovial

macrophage alteration [59]. Furthermore, there is a strong interplay between iNOS and Arg-1,

where ARG negatively regulates NOS activity by reducing the availability of l-Arg. On the

other hand, Nω-hydroxy-l-arginine, an intermediate in the synthesis of NO, is a competitive

inhibitor of ARG [60]. Even though M2 anti-inflammatory macrophages are only slightly

increased in in inflamed synovium, we believe that the interaction of different subset of macro-

phages and other type of cells in synovium are important and required for catabolic and ana-

bolic equilibrium.

Although the cytokine presence in the synovial fluid was extensively studied and a close

relationship between cytokine expression and progression of OA was also showed in previous
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studies in experimental OA model and from patients with OA [61, 62], an interaction between

synovial fluid microenvironment and synovial macrophages or chondrocytes in obesity-

related OA remains unknown. In this study, we observed that synovial fluid of obese rats alters

macrophage polarisation towards to a pro-inflammatory M1 phenotype in vitro, while the M2

polarization status was not sufficient. We observed that synovial fluid isolated from HCHF

rats affected chondrocytes by upregulation of matrix degenerating genes. We also observed the

significantly increased GAG release in chondrocytes exposed to HCHF synovial fluid. It might

be possible that at the 16 week time point, the synovial fluid has already been conditioned by

M1 macrophages, and observation that showed in chondrocyte co-culture system was poten-

tial positive feedback loop. It is known that the common characteristic linking obesity with

OA is the “low-grade inflammatory state” [63], the importance of cytokines and adipokines in

adipose tissue has been highlighted [64]. However, at this stage we were unable to identify spe-

cific stimuli included in the synovial fluid that was able to induce the pro-inflammatory profile

in macrophages, and the pro-catabolic and pro-hypertrophic profile in chondrocytes. In previ-

ous studies it has been shown that the concentration of adipokines (leptin and resistin) was sig-

nificantly higher in serum from obese individuals that were considered to be mediators that

can act on synovial macrophages, infrapatellar fat pad inflammation and chondrocytes by reg-

ulating cartilage-degrading proteases, a disintegrin and metalloproteinase with thrombospon-

din motifs as well as pro-inflammatory cytokine and eicosanoids [65, 66]. Furthermore, the

toll-like receptor 2 and 4 ligands such as S100-alamin proteins, fibronectin and low-molecu-

lar-weight hyaluronic acid has been found in synovial fluid, particularly early-stage OA that

can induce catabolic responses in chondrocytes and inflammatory response in synovial macro-

phages [67–69]. Additionally, the pro-inflammatory cytokines like IL-1β, IL-6, IL-12 are asso-

ciated with chondrocyte hypertrophy in OA, which induce release of GAG [70]. However, it

was not certain whether these factors in synovial fluid alone stimulated the specific responses

or whether one factor could influence the expression of another through systemic inflamma-

tory response. In future, we will perform an overall profile of cytokines, chemokines, adipo-

kines and other signalling proteins of the synovial fluid from the two group of animals to

investigate the potential driver for macrophage and chondrocyte alternation.

Although we could not detect a clear M2 phenotype polarization after macrophage exposed

to HCHF synovial fluid, the importance of the role of M2 macrophages during wound healing

have been reported by previous studies such that the OA joint has been likened to a chronic

wound [71–74]. For this reason, M1 and M2 CM prepared from human synovial monocytes/

macrophages polarized to an M1 or M2 phenotype, were used as a model system to address

the effect of both subsets on chondrocytes. We detected that M1 CM significantly increased

degradative genes, where inhibition of these markers were not observed treatment with M2

CM. Although M2 CM treatment did not affect degradative genes, under non-inflammatory

condition, the chondrogenic gene expression level were significantly increased by this stimula-

tion. This was discrepant since it was demonstrated earlier that M1 polarized buffy coast iso-

lated monocytes inhibited cartilage matrix genes and upregulated matrix degenerating genes

in vitro, while M2 CM did not significantly affect any of these gene [57]. This published study

focused on end-stage OA chondrocytes and have not taken into account the effect of polarized

macrophages on the normal chondrocytes [57]. However, it is possible that the mechanisms

associated to the effect of synovial fluid in macrophages and chondrocytes may not be the

same to those activated by conditioned media in macrophages cells. A detailed metabolic pro-

filing of synovial fluid and conditioned media will reveal the common mediator during this

cross-talk. Our study has some limitations. Firstly, the cell phenotyping markers used in this

study may also express in other cells. Although CD68 has been widely used to identify macro-

phages, its expression has been found in immature CD1a-postive dendritic cells [75]. iNOS
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has been found to be expressed in the peripheral blood lymphocytes and some dendritic cells

showed higher expression of Arg-1 [76, 77]. Therefore, there is a possibility that some cells as

identified by these three markers are not macrophages. Secondarily, the human CD14+ in
vitro polarized macrophage phenotypes were characterized based on well-established markers.

An extensive characterization of isolated CD14+ monocytes/macrophages may help to investi-

gate which factor in OA synovial macrophages actually affected the cartilage under inflamma-

tory condition. Moreover, in this study, we observed that HCHF synovial fluid, had

remarkable effects on both synovial macrophages and chondrocytes, however, an overall pro-

file of cytokines, chemokines and other signalling proteins of the synovial fluid from the two

group of animals is required to clearly elucidate the association between the diet-induced obe-

sity and OA. Additionally, we obtained joint synovial fluid sample by a standard lavage proce-

dure [78]. Nonetheless, it is possible that different concentrations of synovial fluid analytes can

be generated by the collection process alone, in addition to any changes due to obesity. Further

alternative techniques [13, 79] may be required to obtain synovial fluid from small animal

joints and fully clarify the effect of synovial fluid from HCHF rats to the negative impact of

chondrocytes and alternation of macrophages. Additionally, similar as humans, Wistar rats

demonstrate obesity prone and obesity resistance phenotypes after exposure to obesity-induc-

ing diet [80, 81]. These two phenotypes has been used to evaluate the damage severity in differ-

ent knee joints related to obesity. However, we do not find these two phenotypes in our

studies, even though we used exclusively Wistar rats, as shown by the relatively narrow SD val-

ues for body weight and DEXA scans. In our recently published study [28], we found that dif-

ferent saturated fats can lead to differential weight distribution in Wistar rats. In future we will

use these models to do a sub-analysis to determine the damage severity in response to rapid

body fat and body mass across the outcomes.

Conclusion

The key findings from this study are firstly, the importance of macrophage in the development

of obesity-associated OA and secondly, the increase in M1 compared to M2 polarised cells in

the obese rats compared to the lean cohort. It is, therefore, more than likely that the M1 macro-

phages are important in the development of obesity-associated OA. Further studies are needed

to understand the initiation of macrophage polarisation and how macrophages interact with

other factors involved in obesity, such as oxidative stress, complement activation, cell death

and angiogenesis. Targeting these cells and their signalling pathways may be the key to discov-

ering new interventions to break the obesity-OA link.
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