
1

Authorization approaches for advanced permission-role assignments

Hua Wang1, Jianming Yong1, Jiuyong Li2, Min Peng3

1University of Southern Queensland, Toowoomba, Australia
(wang, yong)@usq.edu.au

2 University of South Australia, Adelaide, Australia
Jiuyong.Li@unisa.edu.au

3Department of computer, Wuhan University, P.R. China
hhdawn@public.wh.hb.cn

Abstract

Role-based access control (RBAC) has been proven
to be a flexible and useful access control model for
information sharing in distributed collaborative
environments. Permission-role assignments (PRA) is
one important process in the access model. However,
problems may arise during the procedures of PRA.
Conflicting permissions may assign to one role, and as
a result, the role with the permissions can derive
unexpected access capabilities.

 This paper aims to analyze the problems during the
procedures of permission-role assignments in
distributed collaborative environments and to develop
authorization allocation algorithms to address the
problems within permission-role assignments. The
algorithms are extended to the case of PRA with the
mobility of permission-role relationship. Finally,
comparisons with other related work are discussed to
demonstrate the effective work of the paper.

Keywords: RBAC, PRA, Authorization.

1. Introduction

 The National Institute of Standards and Technology
developed the role-based access control (RBAC)
prototype [3] and published a formal model [4]. RBAC
has been widely used in database system management
and distributed environments since it enables managing
and enforcing security in large-scale and enterprise-
wide systems [13, 18]. RBAC involves individual users
being associated with roles as well as roles being
associated with permissions. As such, a role is used to
associate users and permissions. A user in this model is
a human being. A role is a job functions or job title
within the organization associated with authority and
responsibility.
 Permission is an approval of a particular operation
to be performed on one or more objects. As shown in
Figure1, the relationships between users and roles and

between roles and permissions are many-to-many (i.e.
permission can be associated with one or more roles,
and a role can be associated with one or more
permissions).
 Recently, RBAC has been widely used in database
system management and operating system products
since its management advantages [12, 17]. In 1993, the
National Institute of Standards and Technology (NIST)
developed prototype implementations, sponsored
external research, and published formal RBAC models
[4, 6]. Many organizations prefer to centrally control
and maintain access rights, not so much at the system
administrator's personal discretion but more in
accordance with the organization's protection guidelines
[2, 16]. RBAC is being considered as part of the
emerging SQL3 standard for database management
systems, based on their implementation in Oracle 7 [8].
Many RBAC practical applications have been
implemented [1, 5, 9].
 However, there is a consistency problem when
using RBAC management. For instance, if there are
hundreds of permissions and thousands of roles in a
system, it is very difficult to maintain consistency
because it may change the authorization level, or imply
high-level confidential information to be derived when
more than one permission is requested and granted.
 The permissions assigned to a role by
administrators may conflict. For example, the
permission for approving a loan in a bank is conflicting
with the permission of funding a loan. These two
permissions cannot be assigned to a role; however,
because of role hierarchies, a role may still have these
permissions even if they have been revoked from the
role. In the latter case, a user with this role is able to
access objects in the permission and has operations on
the objects. There are evident problems with the
processes of assigning and revocation.
 Authorization granting problem -- How to check
whether a permission is in conflict with the permissions
of a role?
 Authorization revocation problem -- How to find

2

whether permissions of a role have been revoked from
the role or not?
For example, Figure 2 shows a system administrative
role (BankSO) in a bank to manage regular roles such
as AUDITOR, TELLER, ACCOUNT_REP and
MANAGER. Role MANAGER inherits AUDITOR and
TELLER. ACCOUNT_REP has a SSD relationship
with AUDITOR as well as DSD relationship with
TELLER.
The administrative role BankSO can assign audit
permission or cash operation permission to a role
but not both, otherwise it compromises the security of a
bank system. Our aim is to provide relational algebra
algorithms to solve the problems and then automatically
check conflicts when assigning and revoking.

Based on the database and its tables such as ROLES,
SEN-JUN in the paper [12, 14], this paper is going to
develop formal approaches to check the conflicts and
thereby help allocate the permissions without
compromising the security. The formal approaches are

based on relational structure and relational algebra
operations. To my knowledge, this is the first attempt
in this area to develop formal approaches for permission
allocation and conflict detection.
 The ROLES relation in Figure 2 is in Table 1. The
attribute TELLERC shows whether the role TELLER is
conflicting with the RoleName in the relation or not. For
instance, in the third tuple, a user with role TELLER has
conflicts with the role AUDITOR.

Table 1: The relation ROLEs in Figure 2

 SEN-JUN - This is a relation of roles in a system.
Senior is the senior of the two roles. Table 2 expresses
the SEN-JUN relationship in Figure 2.

Table 2: SEN-JUN table in Figure 2

The new tables like PERM and ROLE_PERM are
needed.
 PERM - This is a relation of {PermName, Oper,
Object, ConfPer }: PermName is the primary key for
the table, and is the name of the permission in the
system. Oper is the name of the operation granted. It has
information about the object that the operation is
granted on. Object is the database item that can be
accessed by the operation. It can be a database, a table,
a view, an index or a database package. ConfPer is a set
of permissions that conflicts with the PermName in the
relation.
 For example, a staff member in a bank cannot have
both permissions of approval and funding as well

Figure 1: Role-based access control model

Figure 2: Administrative role and role
 Relationships in a bank

3

as both permissions of audit and teller. The relation of
PERM can be expressed as Table 3.

Table 3: An example of the relation PERM

 ROLE-PERM - is a relationship between the
ROLES and the PERM, listing what permissions are
granted to what roles. It has two attributes: RoleName
is a foreign key RoleName from the table ROLES.
PermName is a foreign key PermName from the table
PERM which is assigned to the role.
 Suppose the permission Approval is assigned to role
TELLER and the permission Funding to role
MANAGER, Table 4 expresses the permission-role
relationship.

Table 4: An example of ROLE-PERM table

 Based on these relations, we describe the
authorization granting algorithm and revocation
algorithms in this paper.
 The paper is organized as follows. We recall the
relational algebra-based authorization granting and
revocation algorithms developed in our previous work.
The extensions of the algorithms are described in
section 3. Comparisons with related work are discussed
in section 5 and the conclusions are in section 6.

2. Authorization granting and revocation
algorithms for PRA

We recall granting and revocation algorithms for
PRA based on relational algebra in this section. Details
can be found from [12]. The notion of a Prerequisite
conditionp, Can-assignp and Can-revokep mentioned
in the paper is a key part in the processes of
permission_role assignment. The Prerequisite
conditionp is used to test whether or not permission
can be assigned to roles while the Can-assignp is used
to verify what role range's permissions an administrator
can assign.

For a given set of roles R let CR denote all possible
prerequisite conditions that can be formed using the
roles in R. Not every administrator can assign
permission to a role. The relation of Can-assignp
⊆ AR×CR×2R provides what permissions can be
assigned by administrators with prerequisite conditions,
where AR is a set of administrative roles.

There are related subtleties that arise in RBAC
concerning the interaction between granting and
revocation of permission-role membership. A relation
Can-revokep ⊆ AR×2R provides which permissions in
what role range can be revoked. Table 5 gives an
example of the Can-revokep relation. We have two
revocation algorithms, one is a weak revocation
algorithm that is for explicit member of a role only, the
other one is a strong revocation algorithm that is used to
delete explicit memberships between permissions and
roles as well as implicit memberships.

Table 5: An example of Can-revokep

 The meaning of Can-revokep(BankSO, [Bank,
MANAGER)) in Table 5is that a member of the
administrative role BankSO can revoke the membership
of a permission from any role in [Bank, MANAGER).

 A role still owns a permission of a system, which
has been weakly revoked, if the role is senior to another
role associated with the permission. To solve the
authorization revocation problem, we need strong
revocation, which requires revocation of both explicit
and implicit membership. Strong revocation of a
permission's membership in role r requires that the
permission be removed not only from explicit
membership in r, but also from explicit and implicit
membership in all roles junior to r. Strong revocation
therefore has a cascading effect up-wards in the role
hierarchy.

3. Extensions of the algorithms with
mobility of permissions

 Similar to the mobility of user-role relationship,
permissions can also be assigned to roles as mobile and
immobile members [15]. There are four kinds of
permission-role membership for a given role x [11].
1: Explicit Mobile Member (EMPx)
 EMPx = {p, (p, Mx) ∈ PA }
2: Explicit Immobile Member (EIMPx)
 EIMPx = {p, (p, IMx) ∈PA }
3: Implicit Mobile Member (ImMPx)
 ImMPx = {p, ∃ x'<x, (p, Mx') ∈ PA }
 4: Implicit Immobile Member (ImIMPx)
 ImIMPx = {p, ∃ x'<x, (p, IMx') ∈ PA }

 A prerequisite conditionPM is evaluated for a
permission p by interpreting role x to be true if
p∈EMx∨ (p ∈ ImMx ∧ p ∉ EIMx)

and x to be true if
p ∉ EMx ∧ p ∉ EIMx ∧ p ∉ ImMx ∧ p ∉ ImIMx

4

 In other words x denotes mobile membership

(explicit or implicit) and x denotes absence of any kind
of membership.
 For a given set of roles R let CR denote all possible
prerequisite conditions with mobility of permission-role
relationship that can be formed using the roles in R. Not
every administrator can assign a role to a user. The
following relations provide what permissions an
administrator can assign as mobile members or
immobile members with prerequisite conditions.
 Can-assignp-M is a relation of AR×CR×2R , which
is used for permission-role assignments with mobile
members; where AR is a set of administrative roles.
Permission-role assignments with immobile members
are authorized by the relation Can-assignp-IM
⊆ AR×CR×2R .
 Permission-role assignment(PA) is authorized by
Can-assignp-M and Can-assignp-IM relations.
 Supposing an administrator role ADrole wants to
assign a permission pj to role r with a set of
permissions P which has mobile and immobile
memberships with r. The pj has mobile or immobile
membership with r if ADrole can assign without
conflicts. The following algorithm applies to both of
mobile and immobile members. P* is an extension of
P, P* = {p | p ∈P } ∪ {p | ∃ r', r'<r, (p, r') ∈ PA }.

Authorization granting algorithm
GrantMP(ADrole, P, pj)
Input: ADrole, role r and a permission pj .
Output: true if ADrole can assign the permission pj to r
with no conflicts; false otherwise.
Begin:
Step 1. /* Whether the ADrole can assign the
permission pj to r as mobile or immobile member or
not} */

Suppose SM1 = SM ∩ R and SIM1 = SIM ∩ R where
SM = ∏ Prereq.ConditionPM (σ admin.role = ADrole(Can-
assignp-M))
SIM = ∏ Prereq.ConditionPM (σ admin.role = ADrole(Can-
assignp-IM)),
R = ∏ RoleName (σ PermName = p j (ROLE-PERM)),

if pj is an mobile member of r and SM1 ≠ φ ,

then there exists role r 1 ∈ SM1, such that
r 1 ∈ ∏ Role Range (σ {ADrole, r} (Can-assignp-M))
and (pj, r 1∈ PA), /* { pj is in the range to be assigned
as a mobile member by ADrole in Can-assignp-M */

if pj is an immobile member of r and SIM1 ≠ φ ,

 then there exists role r i ∈ SIM1, such that
r i ∈ ∏ Role Range (σ {ADrole, r} (Can-assignp-IM))
and (pj, r i∈ PA).

 go to step 2 /* { pj is in the range to be assigned as an
immobile member by ADrole in Can-assign-IM} */

else
return false and stop. /*{the admini.role has no right to
assign the role r as a mobile or immobile member to R
}*/
Step 2. /*{whether the permission pj is conflicting with
permissions of r or not}*/

Let
ConfPermS = ∏ ConfPerm(σ PermName = pj (PERM))
/* {It is the conflicting permission set of the permission
pj } */
if ConfPermS ∩ P * ≠ φ ,

then
return false; /* {pj is a conflicting permission with role
r} */
else
return true. /* {pj is not a conflicting permission with
r}. ▲

This algorithm provides a way to decide whether a
permission can be assigned to a role as mobile or
immobile member. For mobile member, SM1 cannot be
empty, and for immobile member, SIM1 cannot be empty.
 Theorem 1: The authorization granting algorithm
can prevent conflicts when assigning a permission to a
role with mobile and immobile memberships.
 Proof Assuming an administrator role ADrole wants
to assign a permission pj as a mobile member to a role
which associates with a permission set P. Step 1 in the
algorithm has checked whether the ADrole can assign
pj as a mobile member to the role or not, and the second
step has decided whether the permission pj conflicts with
permissions in P* or not. Indeed, pj can be assigned to
the role if for all pi ∈ P* , pi is not in the conflicting
permission set of pj. Otherwise pj is a conflicting
permission with P*.

▲

 We have the following corollary without proof.
Corollary 1: The authorization granting algorithm has
time complexity O(n2) for the case of n roles in a
system. ▲

 Now we consider revocation of permission-role
membership. Similar to Can-assignp-M and Can-
assignp-IM relations in granting a permission to a role,
there are Can-revokep-M and Can-revokep-IM
relations.
 Relations Can-revokep-M ⊆ AR×CR×2R and
Can-revokep-IM ⊆ AR×CR×2R show which role
range of mobile membership and immobile membership
administrative roles can revoke respectively, where AR
is a set of administrative roles.
 The evaluation of a prerequisite condition for the
revoke model is different from the grant model. In the
revoke model a prerequisite conditionPRM is

5

evaluated for a permission p by interpreting role x to
be true if
p ∈ EMx ∨ p ∈ EIMx ∨ p ∈ ImMx ∨ p ∈ ImIMx

and x to be true if
p ∉ EMx ∧ p ∉ EIMx ∧ p ∉ ImMx ∧ p∉ ImIMx

 Due to role hierarchy, a role x' has all permissions of
role x when x'>x. A user with two roles {x', x } still has
the permissions of x if only to revoke x from the user.
To solve the authorization revocation problem along
with mobility of permission, we need to revoke the
explicit member of a permission first if a role is an
explicit member, then revoke the implicit member.
 Following are two algorithms for revocation of a
permission pj as mobile or immobile members from a
set of permission P by an administrative role ADrole,
where P is a set of permissions which are assigned to a
role r. The first one is the weak revocation algorithm
and the second is the strong revocation algorithm. The
weak revocation only revokes explicit mobile and
immobile memberships from r and does not revoke
implicit mobile and immobile memberships but the
strong revocation revokes both explicit and implicit
mobile and immobile members.

Weak revocation Algorithm
Weak_revokeMP(ADrole, r, pj)
Input: ADrole, a roles r and a permission pj.
Output: true if ADrole can weakly revoke role pj from r;
false otherwise.
Begin:
If pj ∉ P ={p | (p,r) ∈ PA } ,
return false; /* {there is no effect with the operation of
the weak revocation since the permission pj is not an
explicit member of the role r */

else /* { p j is an explicit member of r }*/
Case1: pj is an mobile member of r,
Roleswithpj
= ∏ RoleName(σ PermName = pj(ROLE-PERM))
 /* {Roles with permission pj } */
PreM =
∏ Prereq.ConditionPRM (σ admin.role = ADrole (Can-revokep-M))

/*{ Prerequisite condition with ADRole} */

if RP= Roleswith pj ∩ PreM ≠ φ ,

 RevokeRangeM
 =∏ Role Range(σ admin.role = ADrole (Can-revokep-M)),

if RR = Roleswith pj ∩ RevokeRangeM ≠ φ ,

 return, true. /* {the mobile member pj is revoked} */
else return false; /* {the mobile member pj cannot be
revoked since the role r is not in the role range to be
revoked }*/

else return false and stop. \\
 /*{The pj does not satisfy the prerequisite conditions}*/

Case 2: if pj is an immobile member of r
PreIM =
∏ Prereq.ConditionPRM (σ admin.role = ADrole (Can-revokep-IM))

/*{Prerequisite condition with ADRole}*/
If RPI= Roleswith pj ∩ PreIM ≠ φ ,

RevokeRangeIM
 =∏ Role Range(σ admin.role = ADrole (Can-revokep-IM)),

if RRI = Roleswith pj ∩ RevokeRangeIM ≠ φ ,

 return true, /* {the immobile member pj is revoked} */
else return false ; /* { the immobile member pj cannot
be revoked }*/
 else return false and stop.
/*{ p j does not satisfy the perrequisite conditions}*/ ▲

The weak revocation algorithm can be used to check
whether an administrator can weakly revoke mobile and
immobile memberships from roles or not. We have the
following result with the weak revocation algorithm.
 Theorem 2: A permission pj as mobile or
immobile member is revoked by the weak revocation
algorithm Weak_revoke(ADrole, r, pj) if the permission
is an explicit member of role r and the ADrole has the
right to revoke pj from the Can-revoke-M and
Can-revoke-IM relations. ▲

 A role still owns a permission of a system, which
has been weakly revoked, if the role is senior to another
role associated with the permission. To solve the
authorization revocation problem, we need strong
revocation, which requires revocation of both explicit-
implicit membership and mobile-immobile
memberships. Strong revocation of a permission's
membership in role r requires that the permission be
removed not only from explicit mobile and immobile
membership in r, but also from explicit, and implicit
mobile and immobile membership in all roles junior to
r.
 We do not present the Strong revocation algorithm
due to the length limits of the paper, instead of we
provide the following consequence.
 Theorem 3: The explicit mobile and immobile and
implicit mobile and immobile members of role pj are
revoked from a role by the Strong revocation algorithm.
 Corollary 2: The authorization revocation problem
is solved by the Weak revocation algorithm and Strong
revocation algorithm.

4. Related work

 There are several other related works on relational
databases [7, 10].
 The interaction between RBAC and relational
databases are presented in [7]. Two experiments are
described. One is a role-based front end to a relational
database with discretionary access control. The other is
a role graph to show the roles in a standard relational

6

database. Some relational concepts like roles, users
and permissions are provided. Our model also supports
such concepts even though it has a large variety.
However, the main difference between our algorithms
and the scheme in [7] is that we focus on the solutions
of the conflicts of roles and permissions, and the latter
focuses on the correlation of RBAC with discretionary
access controls. Their work discusses the relationship
between roles and discretionary access controls, they do
not address the allocation of permissions to roles
without conflicts. In our work, we developed detailed
algorithms for allocating roles and permissions and
checking their conflicts.
 An oracle implementation for permission-role
assignment has been proposed in [10]. In [10], the
difference between permission-role assignment
(PRA97) and Oracle database management system was
analyzed. Furthermore, through prerequisite conditions,
the paper has demonstrated how to use Oracle stored
procedures for implementation. However, the work in
this paper substantially differs from that proposal.
Differences are due to the consistency problem
that arises in [10]:
 It is very difficult to keep the consistency by
reflecting security requirements between global network
objects and local network objects if there are hundreds
of roles and thousands of users in a system.
 This problem is completely overcome in our
algorithms because the algorithms focus on the conflicts
between roles and permissions. The authorization
granting algorithms are used to find conflicts and
prevent some secret information from being derived
while the strong revocation algorithms are used to check
whether a role still has permissions of another role.

5. Conclusions

This paper has provided new authorization allocation
algorithms for mobility of permission-role assignments
that are based on relational algebra operations. They are
the authorization granting algorithm, weak revocation
algorithm, and strong revocation algorithm. The
algorithms can automatically check conflicts when
granting more than one permission to a role in a system.
They can prevent users associated with roles from
accessing unauthorized use of facilities when the
permissions of the roles are changed within the
organization and demand the modification of security
rights. The permissions can be allocated without
compromising the security in RBAC and provide secure
management for systems. Finally, we have discussed
the related work in this area.

References
[1] J. F. Barkley, K. Beznosov and J. Uppal, “Supporting
relationships in access control using role based access
control”, Third ACM Workshop on Role-Based Access
Control, 1999, pp. 55--65.

[2] F. F. David, M. G. Dennis and L.Nickilyn, “An
examination of federal and commercial access control policy
needs”, NIST NCSC National Computer Security
Conference, Baltimore, MD, 1993, pp.107--116.
[3] H. L. Feinstein, “Final report: Nist small business
innovative research (sbir) grant: role based access control:
phase 1. technical report”, SETA Corp. 1995.
[4] D. F. Ferraiolo and D. R. Kuhn, “Role based access
control”, The 15th National Computer Security Conference,
1992, pp. 554--563.
[5] D. F.Ferraiolo, J. F. Barkley and D. R Kuhn, “Role-based
access control model and reference implementation within a
corporate intranet”, TISSEC, Vol. 2, 1999, pp.34--64.
[6] D.Goldschlag, M.Reed, and P.Syverson, “Onion routing
for anonymous and private Internet connections”,
Communications of the ACM, 24(2), 1999, pp. 39--41.
[7] S. L.Osborn, L. K. Reid and G. J. Wesson, “On the
Interaction Between Role-Based Access Control and
Relational Databases”, IFIP WG11.3 Tenth Annual Working
Conference on Database Security, 1996, pp. 139--151.
[8] R. Sandhu, “Rational for the RBAC96 family of access
control models”, Proceedings of 1st ACM Workshop on Role-
based Access Control, ACM Press, 1997, pp.64--72.
[9] R. Sandhu, “Role activation hierarchies”, Third ACM
Workshop on Role-Based Access Control, ACM Press, 1998,
pp.33--40.
[10] R. Sandhu and V. Bhamidipati, “An oracle
implementation of the pra97 model for permission-role
assignment”, ACM} Workshop on Role-Based Access Control,
1998, pp.13--21.
[11] R. Sandhu and Q. Munawer, “The arbac99 model for
administration of roles”, The Annual Computer Security
Applications Conference, ACM Press, 1999, pp. 229--238.
[12] H. Wang, J. Cao and Y. Zhang, “Formal authorization
allocation approaches for permission-role assignments
using relational algebra operations”, Proceedings of the 14th
Australian Database Conference ADC2003, Adelaide,
Australia.
[13] H. Wang, J. Cao and Y. Zhang, “A flexible payment
scheme and its role based access control”, IEEE Transactions
on Knowledge and Data Engineering, 17(3), 2005, pp. 425--
436.
[14] H. Wang, L. Sun, J. Cao and Y. Zhang, “ Anonymous
access scheme for electronic-services”, Proceedings of the
Twenty-Seventh Australasian Computer Science Conference,
 Dunedin, New Zealand, 2004, pp.296--305.
[15] H. Wang, L. Sun, Y. Zhang and J. Cao, “Authorization
Algorithms for the Mobility of User-Role Relationship”,
Proceedings of the 28th Australasian Computer Science
Conference, Newcastle, Australia, 2005, pp.167--176.
[16] H. Wang, Y. Zhang, J. Cao and Y. Kambayahsi, “A
global ticket-based access scheme for mobile Users”, Special
Issue on Object-Oriented Client/Server Internet Environments,
Information Systems Frontiers, 6(1), 2004, pp. 35--46.
[17] H. Wang, Y. Zhang, J. Cao and V. Varadharajan,
“Achieving secure and flexible m-services throughTickets”,
IEEE Transactions on Systems, Man, and Cybernetics, Part
A , Special issue on M-Services, 2003, pp. 697--708.
[18] W. Yao, K. Moody and J. Bacon, “A model of oasis
role-based access control and its support for active security”,
Proceedings of ACM Symposium on Access Control Models
and Technologies, Chantilly, VA, 2001, pp. 171--181.

