
Citation: Gu, J.; Jia, Z.; Cai, T.; Song,

X.; Mahmood, A. Dynamic

Correlation Adjacency Matrix Based

Graph Neural Networks for Traffic

Flow Prediction. Sensors 2023, 23,

2897. https://doi.org/10.3390/

s23062897

Academic Editors: Gwanggil Jeon

and Adam Krzyzak

Received: 21 January 2023

Revised: 21 February 2023

Accepted: 5 March 2023

Published: 7 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Dynamic Correlation Adjacency-Matrix-Based Graph Neural
Networks for Traffic Flow Prediction
Junhua Gu 1,†, Zhihao Jia 1,*,† , Taotao Cai 2, Xiangyu Song 3 and Adnan Mahmood 4

1 School of Artificial Intelligence, Hebei University of Technology, Tianjin 300000, China
2 School of Mathematics, Physics and Computing, University of Southern Queensland,

Toowoomba 4350, Australia
3 School of Software and Electrical Engineering, Swinburne University of Technology,

Melbourne 3122, Australia
4 School of Computing, Macquarie University, Sydney 2109, Australia
* Correspondence: 202032803061@stu.hebut.edu.cn
† These authors contributed equally to this work.

Abstract: Modeling complex spatial and temporal dependencies in multivariate time series data
is crucial for traffic forecasting. Graph convolutional networks have proved to be effective in
predicting multivariate time series. Although a predefined graph structure can help the model
converge to good results quickly, it also limits the further improvement of the model due to its
stationary state. In addition, current methods may not converge on some datasets due to the graph
structure of these datasets being difficult to learn. Motivated by this, we propose a novel model named
Dynamic Correlation Graph Convolutional Network (DCGCN) in this paper. The model can construct
adjacency matrices from input data using a correlation coefficient; thus, dynamic correlation graph
convolution is used for capturing spatial dependencies. Meanwhile, gated temporal convolution is
used for modeling temporal dependencies. Finally, we performed extensive experiments to evaluate
the performance of our proposed method against ten existing well-recognized baseline methods
using two original and four public datasets.

Keywords: graph neural networks; dynamic adjacency matrix; multivariate time series; traffic
prediction

1. Introduction

The transportation system is one of the most critical infrastructures in modern cities,
supporting the daily life of cities for millions of people to commute and travel. With rapid
urbanization and population growth, the transportation system has become more complex.
It includes road vehicles, rail transit, and various modes of shared travel (i.e., bike sharing)
that have emerged in recent years.

However, urban expansion also faces many corresponding problems, such as air
pollution, traffic congestion, etc. Early intervention based on traffic prediction is considered
to be key to improving the transportation system’s efficiency and alleviating the above
problems. With the development of smart cities and smart transportation systems, sensors
installed on roads (with regard to loop detectors) can sense traffic conditions and record
transactions on subway and bus systems, deriving from traffic surveillance videos and even
smartphones equipped with GPS receivers. Traffic forecasts are based on these historical
traffic data, as well as external factors that influence traffic conditions, such as weather
and holidays.

Example 1. As shown in Figure 1a, the road network in the map can be considered as a graph.
Sensors are nodes with time series of their states as shown in Figure 1b, and the road segments
are edges. Therefore, the datasets of the sensors can be thought of as multivariate time series that

Sensors 2023, 23, 2897. https://doi.org/10.3390/s23062897 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23062897
https://doi.org/10.3390/s23062897
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-1941-9269
https://orcid.org/0000-0003-3526-9037
https://doi.org/10.3390/s23062897
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23062897?type=check_update&version=1

Sensors 2023, 23, 2897 2 of 17

have long time spans. These kinds of data can easily print a heat map that shows the features of the
road segments. Current navigation applications are able to show a real-time heat map, but, using
the prediction of multivariate time series, we can create the heat map of the next hour. The feature
can be the flow, speed, or travel time that helps the driver to choose the faster route. It can also
be an advanced and composite index such as the passenger car unit (PCU) and saturation for
management control.

(a) (b)

Figure 1. Traffic data. (a) Road network. (b) Two nodes’ features in one day.

There are many practical application scenarios that can be studied in the field of traffic
prediction, such as the travel time [1–3], speed [4–8], congestion [9,10], and traffic flow,
which can be divided into taxi flow [11–14], bicycle flow [15,16], and highway flow [17–21],
which are all studied in this paper.

The traditional way to predict time series uses the whole datasets as the input, which
is slower and difficult to converge. Deep learning models such as graph convolutional
networks use the historical data to train themselves, and then use fewer data as the input
for the prediction. For example, if we train a model using 1 month of data, the model
is able to predict the next hour using only 1 hour of data. Once the training is carried
out, the model can be both faster and more accurate than the traditional method. Graph
convolutional networks have proved to be effective in predicting multivariate time series.
In addition to physical-level traffic networks, other latent graph structures can be found to
improve the prediction of multivariate time series that do not contain an obvious graph
structure. Graph structures that come with datasets are not easy to build, and are probably
not the most helpful way to express the graph. The DCRNN [22] uses diffusion convolution
on the graph to extract spatial dependencies and GRU to extract temporal dependencies,
and it also uses PeMS-BAY and METR-LA datasets for the first time. STGCN [23] uses
spectral graph convolution and gated one-dimension convolution to extract spatial and
temporal dependencies, respectively. They provide fundamental methods for this area in
the early stages.

Graph convolution requires an adjacency matrix, which is predefined in the datasets.
However, the predefined graph structure has its limitations: it makes the process of infor-
mation transfer on the graph fixed, but the spatial dependence is dynamic and changes with
time. Therefore, some methods, such as the attention mechanism, are introduced to capture
the dynamic dependence. The ASTGCN [24] adds spatial and temporal attention to capture
dynamics based on former studies. Graph Wavenet [25] constructs an adaptive adjacency
matrix through node embedding to assist the original matrix in the graph convolution.
Furthermore, the MTGNN [26] and AGCRN [27] abandon the original graph structure
and introduce a graph learning module to generate an adjacency matrix with random
node embedding.

When the learning environment is harsh, such as an extensive range of data and
insignificant node features, the above methods may face failure. Thus, we introduce a
new way to construct dynamic adjacency matrices and put them in the encoder–decoder
structure. The main contributions of this paper can be summarized as follows:

Sensors 2023, 23, 2897 3 of 17

• We propose a novel method for constructing an adjacency matrix using a correlation
coefficient for graph convolution.

• We constructed the adjacency matrix using input data accordingly and used a dynamic
correlation convolution module to capture spatial and temporal dependencies with an
improved GCN and TCN.

• We made new datasets based on raw traffic data, and experimental results on both
original and public datasets show that our model outperforms the baseline methods.

Organization. The remainder of this paper is organized as follows. First, we discuss
the related works in Section 2. Then, we present the preliminaries and formally define
our research problem in Section 3. We further propose the DCGCN model for traffic flow
prediction in Section 4. After that, the experimental evaluation and results are reported in
Section 5. Finally, we conclude this work in Section 6.

2. Related Work
2.1. Multivariate Time Series Prediction

After years of effort, the research on traffic prediction has made great progress. Ac-
cording to the processing, these methods can be roughly divided into two categories:
classical methods and deep-learning-based methods. Classical methods include statistical
methods and traditional machine learning methods. The statistical method is to build a
data-driven statistical model for prediction. The most representative algorithms are histori-
cal average (HA), auto-regressive comprehensive moving average ARIMA [28], and vector
auto-regression [29]. However, these methods require data to satisfy certain assumptions,
and time-varying traffic data are too complex to satisfy these assumptions. In addition,
these methods are only applicable to relatively small datasets. For traffic prediction, some
traditional machine learning methods are proposed. These methods have the ability to
process high-dimensional data and capture complex nonlinear relations.

The deep0learning-based approaches studies how to learn a layer model and transform
the original input directly into the expected output. Typically, deep learning models stack
up basic learnable blocks, or layers, to form a deep architecture that trains the entire network
end-to-end. Several architectures have been developed to handle large and complex spatial–
temporal data. Generally, a convolutional neural network (CNN) is used to extract the
spatial correlation of grid structure data described in images or videos. Graph convolutional
networks (GCNs) extend the convolution operation to more general graph structure data,
which are more suitable for representing the traffic network structure. In addition, recurrent
neural networks (RNNs) and their variants, LSTM [30] or GRU [31], are often used to model
temporal correlation.

2.2. Graph Adjacency Matrix for Traffic Forecasting

In former studies, the most common way to construct a predefined adjacency matrix
needs the distance between each pair of nodes using a threshold Gaussian kernel [32]:

Aij =

{
e−

d2
ij

σ2 , i 6= j and e−
d2

ij
σ2 ≥ α, 0, otherwise, (1)

where dij is the geometric distance or distance on the road network between node i and j,
σ is the standard deviation of distances, and α is the threshold that is used to control the
sparsity of the matrix.

Although a predefined graph structure can help the model converge to a good result
quickly, it also limits the further improvement of the model due to its stationary state,
which has two meanings: the existence of edges is fixed, as well as the weights of the
current edges. To address this problem, many methods have been brought up in former
studies that are able to construct an adjacency matrix in the model. These methods can be
divided into two parts, partly independent methods and completely independent methods,
according to whether they need the predefined existences of edges. Partly independent

Sensors 2023, 23, 2897 4 of 17

methods include those brought in the ASTGCN, STSGCN [33], and STFGNN [34], which
preserve the existences of edges and learn the weights with a masked matrix or attention
mechanism. Using a learnable matrix W ∈ RN×N is an obvious choice for completely
independent methods, but it is extremely difficult for a random matrix to converge to an
adjacency matrix that shows the graph structure correctly, so various methods that use node
embedding to construct the adjacency matrix have been brought up in AGCRN, Graph
Wavenet [25] and MTGNN, as shown in Table 1.

Using node embedding can decrease the number of learning parameters, thus lowering
the difficulty. It also uses a threshold to control the sparsity of the adjacency matrix. These
methods are able to learn the existences of edges, as well as the weight. Although a certain
effect is made, an assumption is also made, which is that the graph structures of all samples
are the same. The physical meaning of the differences between the samples is that the
beginning time of the time series is different, which means that the above assumption
can be interpreted as suggesting that the graph structure of multivariate time series is not
time-variant. This goes against well-known facts. For example, peak or off-peak hours, day
or night, sunny or rainy day, and workday or weekend and holidays are all time-variant
external factors that affect the features in the datasets of traffic domain; thus, it is probably
a better method for generating a dynamic adjacency matrix. Several methods that can
generate the adjacency matrix by multiplying input data with a smaller matrix in the
middle are brought up in the MTGNN and SLCNN [35], as shown in Table 1, where σ is
one of the more commonly used activation functions, such as ReLU, tanh, sigmoid, or their
combinations, and hyper-parameter α is used as a threshold to control the sparsity of the
matrix. Ws are learnable parameters, W1, W2 ∈ RN×K in the AGCRN, GWN, and MTGNN,
and W1, W2 ∈ RK×K in the SLCNN and MTGNN, where K � N is the preset dimension.

Table 1. Methods for constructing adjacency matrix.

Model Method Equation

- Global Adjacency Matrix A = σ(W)
AGCRN Undirected Adjacency Matrix A = σ

(
α
(
W1WT

1
))

GWN Directed Adjacency Matrix A = σ
(
α
(
W1WT

2
))

MTGNN Uni-directed Adjacency Matrix A = σ
(
α
(
W1WT

2 −W2WT
1
))

SLCNN Structure Learning Adjacency Matrix A = σ((XtW1)
(
WT

2 XT
t
)
)

MTGNN Dynamic Adjacency Matrix A = σ
(
XtW1XT

t
)

When the learning environment is harsh, such as when there is a large range of data
and insignificant node features, the above methods that generate the adjacency matrix by
learning the node feature with node embedding may face failure. In fact, the adjacency
matrix is just used to present spatial connections among nodes. Besides the given geological
information and learning from ground zero, we can also use a statistic method to measure
the correlation among nodes.

3. Preliminary

In this section, we introduce the statistical method that we used to construct an
adjacency matrix for graph convolution, and the problem definition of multi-time-series
forecasting using graph neural networks.

3.1. Correlation Matrix in Multiple Regression Analysis

In statistics, the Pearson correlation coefficient r can be used to measure the similarity
between two variables X, Y ∈ RN , where its value is between−1 to 1. The two variables are
positively correlated when r > 0, and negatively correlated when r < 0. The closer |r| gets
to 1, the stronger the correlation. Normally, it can be divided into three parts: the variables
have low correlation when |r| < 0.4, significant correlation when 0.4 ≤ |r| < 0.7, and high
correlation when 0.7 ≤ |r| < 1.

Sensors 2023, 23, 2897 5 of 17

Note that

Lxy =
n

∑
i=1

(xi − x̄)(yi − ȳ). (2)

Then, correlation coefficient r can be defined as

r =
Lxy√

Lxx
√

Lyy
=

∑n
i=1(xi − x̄)(yi − ȳ)√

∑n
i=1(xi − x̄)2

√
∑n

i=1(yi − ȳ)2
. (3)

When extended from two to multiple variables, the correlation coefficient between
each pair of variables Xi, Xj ∈ RN can be formulated as a correlation matrix. Firstly, it can
be defined as

rij =
Lxixj√

Lxixi

√
Lxjxj

=
∑n

k=1(xik − x̄i)
(

xjk − x̄j

)
√

∑n
k=1(xik − x̄i)

2
√

∑n
k=1

(
xjk − x̄j

)2
. (4)

Apparently, |rij| < 1. Then, the correlation matrix can be defined as

R = (rij)N×N =

r11 r12 · · · r1N
r21 r22 · · · r2N
...

...
. . .

...
rN1 rN2 · · · rNN

 (5)

3.2. Problem Definition

If the variable changes through time, its value can be formulated as a time series. This
variable can be one of the useful features in the traffic domain, such as the traffic flow of
specific road segments, the average speed of moving vehicles, the occupancy of the road
segment, etc. Each monitor or sensor is usually used to collect data for a unique road
segment in real life, and thus can be considered as a node, and the whole road network
can be considered as multiple time-variant variables X with a graph G. Denote the whole
time span of the datasets as T ; then, X ∈ RN×T ×F, where N, F stand for spatial nodes
and features, separately. Denote the history horizon of every sample as Tin, and predict
the horizon as Tout. Then, sample sets can be generated from datasets X , which contain
T − Tin samples noted as X = Xt−Tin+1:t, where t stands for the latest time slice of each
sample. The graph can be defined as G = (V, E, A), where V stands for spatial node sets, E
stands for edge sets, and A stands for the adjacency matrix of the graph, where the values
of the elements of A define both the existence and weight of the edges in E.

Definition 1. Given multiple time-variant variables X with a graph G, the problem of Tout steps
forecasting using Tin steps historical data of V time series can be defined as

X̂t+1:t+Tout = f
(
Xt−Tin+1:t;G

)
(6)

4. Dynamic Correlation Graph Convolutional Neural Networks

In this section, we introduce the DCGCN model proposed in this paper. First, we
construct a correlation adjacency matrix using the statistic method mentioned in Section 3.1.
Then, we put it in the graph convolution in the framework of the graph convolutional
neural networks.

4.1. Method Overview

When using graph convolutional neural networks to deal with traffic prediction
problems, a graph adjacency matrix is required to be input into graph convolution first.
The core idea of this paper is also related to the construction of a graph adjacency matrix.

Sensors 2023, 23, 2897 6 of 17

Due to the lack of a graph adjacency matrix in some data sets or the limitations of the
adjacency matrix itself, we extended the method of calculating the correlation coefficient in
statistics to constructing the adjacency matrix, and make it related to the input sample to
maintain its dynamics during construction. The above work is represented in the overall
structure by “dynamic correlation matrices”. After obtaining the adjacency matrix, dynamic
graph convolution and gated temporal convolution were carried out in the corresponding
modules in the dynamic correlation layer. Finally, the results of each layer were processed
through skip connection to complete the whole process.

4.2. Construction of Multiple Regression Dynamic Correlation Adjacency Matrix

The correlation matrix in multivariate time series can be formulated as

rij =
Lxixj√

Lxixi

√
Lxjxj

=
∑Tin

t=1(xit − x̄i)
(

xjt − x̄j
)√

∑Tin
t=1(xik − x̄i)

2
√

∑Tin
t=1
(
xjt − x̄j

)2
, (7)

R =
(
rij
)

N×N =

r11 r12 · · · r1N
r21 r22 · · · r2N
...

... · · ·
...

rN1 rN2 · · · rNN

, (8)

where t is the time slice in samples. Then, the correlation can be interpreted as similarity
among different trends of time series of different nodes. We also used α as a threshold to
control the sparsity.

ADR =

{
rij, rij ≥ α,
0, otherwise,

(9)

Since it is generated using input data X, ADR ∈ RB×N×N is sample-variant, which can
be called a dynamic correlation adjacency matrix. The generated progress is in the dynamic
correlation module (DCM) as shown in Figure 2.

Figure 2. DCM divides input X into N parts, where every pair of parts interact with each other,
formulated as a square matrix. Different input X turns into different ADR.

4.3. Graph Convolutional Neural Networks for Traffic Forecasting

The whole model has an encoder–decoder structure. It has a dynamic correlation
module to generate the adjacency matrices as shown in Figure 2, and a skip connection to
prevent smoothing. The encoder and decoder are simple linear layers used to transform the
shape of data. The hidden layers are several DCLayers, where each one contains a dynamic
graph convolution module (DGCM, as shown in Figure 3), the difference between dynamic
convolution and static convolution is shown in Figure 4. The DClayer also contains a gated

Sensors 2023, 23, 2897 7 of 17

temporal convolution module (GTCM, as shown in Figure 5), and the DClayer itself is
shown in Figure 6. In addition, the whole structure is shown in Figure 7.

Figure 3. DGCM has a dynamic correlation graph convolution and an adaptive graph convolution
that use adjacency matrices ADR that DCM generated and adaptive adjacency matrix A, respectively.
DGCM combines the result of the two operations so that the shape of the input and output stays
the same.

4.3.1. Dynamic Graph Convolution Module

After generating the dynamic correlation adjacency matrix, it can be used for graph
convolution to extract the spatial dependency between nodes. This kind of dynamic graph
convolution can be defined as

H′ = DGC(H, A) = ADRHW + b, (10)

where A ∈ RB×N×N , H ∈ RB×N×T×C, and B is the batch size, which is the number of
samples that are actually put in the model in a single iteration. W and b are learnable
parameters. In comparison, as shown in Figure 4b, normal graph convolution (with regard
to not being dynamic) can be defined as

H′ = GC(H, A) = AHW + b, (11)

where A ∈ RN×N , which means that it is the same in every sample in the iteration due to
lacking the B dimension.

(a) (b)

Figure 4. Dynamic and static convolution. Dynamic convolution uses a different adjacency matrix A
that is generated from different input X, whereas static convolution uses the same A that is predefined
or trained. ⊕ stands for the Einstein summation convention used in the multi-dimensional operation.
(a) Dynamic. (b) Static.

Sensors 2023, 23, 2897 8 of 17

DGCM as shown in Figure 3 can be defined as

H′ = DGCM(H, A) = ADRHW1 + b1 + AAHW2 + b2, (12)

where AA is generated using the methods in Table 1.

4.3.2. Gated Temporal Convolution Module

After using graph convolution to extract the spatial dependency, gated temporal
convolution was used to extract temporal dependency as shown in Figure 5. It can be
defined as

H′′ = GTCM
(

H′
)
= σ1(H′W1 + b1)⊗ σ2(H′W2 + b2), (13)

where σ1, σ2 activate functions tanh and sigmoid, ⊗means the Hadamard product, and W
and b are learnable parameters. During gated temporal convolution, parameter matrix W1,
W2 ∈ RTl×Tl+1 are used to transform the amount of time slice Tl in the current hidden layer
to the next hidden layer Tl+1. Without padding, Tl+1 = Tl − 2 after 1-D convolution.

Figure 5. GTCM.

4.3.3. Layer Model and Overall Structure

After a graph convolution through the spatial dimension and gated convolution
through the temporal dimension, we added a residual connection to avoid over smoothing,
constituting a DCLayer in hidden layers as shown in Figure 6, which can be defined as

Hl+1 = GTCM(DGCM(Hl)) + H′l , (14)

where H′l ∈ RB×N×Tl+1×C is the middle Tl+1 time slices from Hl ∈ RB×N×Tl×C.

Figure 6. DCLayer.

The overall structure of the model is the encoder–decoder structure. The encoder
is an input layer that transforms the input feature F to hidden channel C, which can be
defined as

H1 = encoder(X) = XW + b. (15)

Sensors 2023, 23, 2897 9 of 17

After the encoder, L DCLayers were used to extract spatial and temporal dependencies.
To acquire the result from different time scales to prevent over smoothing, a skip connection
was added, which can be defined as

H′L =
L

∑
l=1

H′l , (16)

where H′l ∈ RB×N×TL×C is the middle Tl+1 time slices from Hl ∈ RB×N×Tl×C.
Finally, the decoder has two output layers, used to transform the time slice T and

hidden channel C, which can be defined as

Y = X̂ = decoder
(

H′L
)
=
(

H′LW1 + b1
)
W2 + b2, (17)

where W1 ∈ RTL×1, b1 ∈ R, W2 ∈ RC×Tout , b2 ∈ RTout are learnable parameters.
Thus, the whole model as shown in Figure 7 can be defined as

Y = X̂ = decoder((DGCM ◦ GTCM)L(encoder(X))). (18)

Figure 7. Overall structure.

5. Experiment

We conducted an extensive experimental study to evaluate the effectiveness and
efficiency of the proposed DCGCN models. The following sections are introduced in
the following order. An introduction to the generated original data set is described in
Section 5.1. In Section 5.2, experimental indicators, a comparison model, experimental
results, and a comparative analysis are introduced in detail. All of these experiments were
tested on Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz and NVIDIA GeForce RTX 2060.
The algorithms were implemented using Python 3.7 with PyTorch 1.7 and CUDA 10.1.

5.1. Generating Datasets
5.1.1. Calculation of Features from Traffic Stream

The traffic stream has a certain pattern that is influenced by the roads’ status, space,
and time. Typically, speed, flow, and density are used to describe traffic streams. These
basic features can decrease the influence of roads, thus focusing more on space and time.
The public datasets from PEMS [22] have all of these features, where the occupancy is
similar to the density. The most common experiment from the traffic domain are speed
prediction and flow prediction. Due to the easier and more accurate method of calculation,
we chose flow as the feature of datasets.

The raw data of the original datasets are from an expressway networking toll data
transmission system. The whole system produces millions of data per day, and each item

Sensors 2023, 23, 2897 10 of 17

has a large amount of specific information of vehicles, gantries, time stamps, etc. Thus, we
cannot publish the datasets due to customers’ and geometric information. The calculation
of traffic flow does not need specific data, but only the number of items, because flow is
defined as the number of vehicles passing through a cross-section in the interval of time.
The system has gantries to play the role of the cross-section, and the interval can be set to
5 min, which is the same as PEMS datasets. We named them HBD2 and HBD5.

The datasets of the experiment consisted of original datasets and public datasets. We
introduce how we generated the original datasets in the next section. The statistics of the
datasets are given in Table 2.

Table 2. Statistics of datasets.

Dataset Time Slices Space Vertices Feature Time Span Number of Days Source

HBD2 8928 159 Volume 1 January 2021–31
January 2021 31 Original

HBD5 8928 213 Volume 1 January 2021–31
January 2021 31 Original

PEMS03 26208 358 Volume 1 September 2018–30
November 2018 91 STSGCN

PEMS04 16992 307 Volume, Density, Speed 1 January 2018–28
February 2018 59 ASTGCN

PEMS07 28224 883 Volume 1 May 2017–31
August 2017 approximately 123 STSGCN

PEMS08 17856 170 Volume, Density, Speed 7 July 2016–31
August 2016 62 ASTGCN

As shown in Table 2, we constructed the original dataset according to the standards of
public data sets, and compared it in terms of several aspects: time slices, spatial vertices,
features, the time span of the data source, included days, and the source. The number
of time slices of the original data set is twice that of the public data set. This is because
the data source of the original data set has a maximum time span of one month, but we
make full use of it. They maintain the same order of magnitude in space vertices and the
same feature.

5.1.2. Calculation of Adjacency Matrix

Regarding the matrix or tensor of features, datasets used for graph convolution may
also need an adjacency matrix. Although we do not have the distance on the graph to
calculate the connectivity shown in Formula (6), we have the location of the gantries to
calculate the distance between each pair of gantries using the haversine formula:

dij = 2R arcsin(

√
sin2(

δθ

2
) + cos(θi) cos(θj) sin2(

δφ

2
)), (19)

where δθ = |δi − θj| is the longitude difference, δφ = |φi − φj| is the latitude difference, and
R is the radius of the Earth, which is set to 6371 km. After calculating the distance matrix,
we used Formula (19) to generate adjacency matrix A.

5.2. Experimental Studies
5.2.1. Experimental Setting

Mean absolute error (MAE):

MAE(x, x̂) =
1
Ω ∑

i∈Ω
|Xi − x̂i|, (20)

Sensors 2023, 23, 2897 11 of 17

Root mean square error (RMSE):

RMSE(x, x̂) =

√
1
Ω ∑

i∈Ω
(Xi − x̂i)2, (21)

where Ω is the set that participates in the averages, and changes in different situations, such
as |Ω| = N or |Ω| = N × T, which confuses the prediction of whether it is the average of
all nodes from a single time slice or the average of nodes from multiple time slices. The
experiments in this paper belong to the latter situation. Another commonly used evaluation
matrix is the mean average percentage error (MAPE):

MAPE(x, x̂) =
1
Ω ∑

i∈Ω
|Xi − x̂i

xi
|. (22)

However, the feature of the datasets is the flow, which contains many zeros caused by
rainy days, holidays, and other special circumstances (e.g., COVID-19 lockdown). Some of
the codes of baseline models have not managed the dividing zero error, so the results only
use the former two evaluation matrices.

5.2.2. Baseline Models

Baseline models are listed by the published time as follows:

• DCRNN [22]: diffusion convolution recurrent neural network, which integrates graph
convolution into an encoder–decoder gated recurrent unit.

• STGCN [23]: spatio-temporal graph convolutional network, which integrates graph
convolution into a 1D convolution unit.

• ASTGCN [24]: attention-based spatial temporal graph convolutional network, which
introduces spatial and temporal attention mechanisms into a model.

• GWN [25]: Graph WaveNet, which combines an adaptive adjacency matrix and 1D
dilated convolution, which can handle long sequences.

• STSGCN [33]: spatial–temporal synchronous graph convolutional network, which
uses localized spatial–temporal graphs to model localized correlations independently.

• MTGNN [26]: multivariate time series graph neural network, which uses graph learn-
ing, graph convolution, and temporal convolution modules to extract uni-directed
relations in an end-to-end framework.

• AGCRN [27]: adaptive graph convolutional recurrent network, which uses node adap-
tive parameter learning module to capture node-specific patterns, and data-adaptive
graph generation module to infer the inter-dependencies among different series.

• STFGNN [34]: spatial–temporal fusion graph neural network, which generates a
“temporal graph” to compensate for correlations that spatial graphs may not reflect,
and uses the fusion operation of various spatial and temporal graphs to learn hidden
spatial–temporal dependencies.

• ST-Norm [36]: spatial and temporal normalization, which separately refine the high-
frequency component and the local component underlying the raw data. Both modules
can be integrated into other architectures.

• STGODE [37]: spatial–temporal graph ordinary differential equation network, which
captures spatial–temporal dynamics through a tensor-based ordinary differential equation.

All of the results on the PEMS datasets of the above models come from papers in
AAAI-21 and AAAI-22 [34,38].

5.2.3. Main Results

The results of the original datasets, HBD2 and HBD5, are in Table 3. The results
on public datasets, PEMS datasets, are in Table 4, where 15/30/60 means the number of
minutes after the current time in the prediction, and the results in Table 4 are all predictions
after one hour. We ran the codes that were provided by papers with original datasets; those

Sensors 2023, 23, 2897 12 of 17

with * mean that their model does not need a predefined adjacency matrix. GWN* is a
special version of the ablation study in its paper. Although those models with * may have
worse results, their requirements for datasets are lower, and the range of applications is
expanded. Unless conditions such as AGCRN with HBD2 occur, the model is unavailable
in this datasets because the results do not converge. In this case, the possible disadvantages
of learning the graph structure completely through randomly initialized node embedding
are reflected, which is not as stable as a predefined or calculated graph structure. Our
model has two ways to choose from, so we can determine the approach based on the results.
The STGCN and ST-Norm achieved better results on the HBD5 dataset than other datasets,
comparing HBD2 with the public datasets in their respective papers, but this may be a
special case. Their codes split the datasets by days, resulting in the need to drop part of
the dataset to make the number of items divisible in order to run correctly. In addition, it
can be divided into a training set, validation set, and test set with a correct ratio of 7:1:2.
However, the economy and traffic of HBD5 may be easily affected by short-term external
factors, or the excluded data may be be unstable data with large fluctuations. In short, this
phenomenon makes this part of the results less credible, but should not affect the overall
experimental results. The results on original datasets show that our model is better than
baseline models, and the results on public datasets show that our model is 2% to 14% better
than baseline models except for the AGCRN. Due to the condition mentioned above, the
DCGCN has a wide application range, and is thus a better model. To summarize the results,
we recognize that the DCGCN did not perform as well in the Table 3 original dataset as it
did in the Table 4 public dataset with the best results from the DCGCN* or DCGCN in all
datasets. However, the advantage of our model is that it has two choices. On the one hand,
it can achieve the best accuracy on two original data sets, whereas the GWN, AGCRN, and
ST-Norm can only achieve it on one data set. On the other hand, it can achieve good results
even without an input of the adjacency matrix.

Table 3. Experiment results on original datasets.

Model
HBD2(159) HBD5(213)

15 30 60 15 30 60
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

STGCN 4.9870 7.1400 5.2850 7.9950 6.1800 10.2320 4.3160 6.6310 4.6250 7.2320 5.3260 8.4350
GWN * 4.7039 6.9059 4.8391 7.2365 5.0874 7.8387 4.4142 6.5950 4.5325 6.8892 4.7487 7.3685
GWN 4.6813 6.8511 4.8089 7.1535 5.0429 7.6974 4.4265 6.5593 4.5687 6.8731 4.7967 7.3375

MTGNN * 4.8073 7.0080 4.9065 7.2461 5.1076 7.7167 4.4166 6.5704 4.5198 6.7981 4.6964 7.1670
AGCRN * 6.3733 11.5733 6.5017 11.8567 6.6717 12.1825 4.3233 6.6133 4.3833 6.7717 4.5167 7.0683
STSGCN 5.8982 8.7210 5.9318 8.7839 6.0038 8.9148 6.0371 8.9229 6.0644 8.9839 6.1335 9.1175
STFGNN 4.9325 7.2288 4.9877 7.3545 5.0805 7.5689 5.3253 8.1867 5.3429 8.2264 5.3857 8.3056

ST-Norm * 4.8563 6.9447 4.9343 7.1255 5.1332 7.5475 4.3227 6.4130 4.4518 6.6590 4.7009 7.0890

DCGCN * 4.7465 6.9822 4.8633 7.2755 5.0765 7.7819 4.3930 6.5613 4.5147 6.8348 4.7323 7.2662
DCGCN 4.6937 6.9157 4.8217 7.2329 5.0547 7.7841 4.3619 6.4932 4.4890 6.7795 4.6909 7.1848

Those models with * mean that they don’t need a predefined adjacency matrix.

Sensors 2023, 23, 2897 13 of 17

Table 4. Experiment results on public datasets.

Model PEMS03 PEMS04 PEMS07 PEMS08
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

DCRNN 18.18 30.31 24.70 38.12 25.30 38.58 17.86 27.83
STGCN 17.49 30.12 22.70 35.55 25.38 38.78 18.02 27.83

ASTGCN 17.69 29.66 22.93 35.22 28.05 42.57 18.61 28.16
GWN 19.85 32.94 25.45 39.70 26.85 42.78 19.13 31.05

STSGCN 17.48 29.21 21.19 33.65 24.26 39.03 17.13 26.80
LSGCN 17.94 29.85 21.53 33.86 27.31 41.46 17.73 26.76

STFGNN 16.77 28.34 19.83 31.88 22.07 35.80 16.64 26.22
STGODE 16.50 27.84 20.84 32.82 22.59 37.54 16.81 25.97
AGCRN 15.98 28.25 19.83 32.26 22.37 36.55 15.95 25.22

DCGCN * 15.41 26.03 19.81 31.11 24.51 37.75 16.49 25.46
DCGCN 15.29 25.98 20.28 31.65 22.06 34.66 15.68 24.39

Those models with * mean that they don’t need a predefined adjacency matrix.

5.2.4. Component Analysis

To verify the effectiveness of the components of the proposed model, we conducted a
component analysis on the PEMS08 dataset to validate the effectiveness of key components.
The models without different components are as follows:

• Without PA: the model without a predefined matrix uses a dynamic correlation matrix
in the DGCM.

• Without DC: the model without a dynamic correlation matrix uses a predefined matrix
instead in the DGCM.

• Without GC: the model without graph convolution uses a linear layer instead.
• Without TC: the model without gated temporal convolution uses a linear layer instead.
• Without SP: the model without special connections, such as residual connection.
• Final: the final model with all components.

The roles of each components in DCLayer are shown in Figure 8, and the results in the
component analysis of each model are shown in Table 5. We can draw three conclusions:
(1) the model without PA performs better than the model without DC, which means that
the dynamic correlation matrix can play the role of a predefined matrix when the latter is
unavailable under certain circumstances without affecting the performance of the model;
(2) the models without GC or TC perform far worse than other models because these two
are key components in most GNN models in the traffic domain. Furthermore, we can see
from the comparison of the results of the train loss, valid loss and test MAE that the former
model is under-smooth and the latter is over-smooth; (3) the train loss and valid loss of the
model without SP are similar to the final model, but the test MAE is approximately 17%
higher, which means that the model is severely over-smooth. This verifies the effectiveness
of special connections to prevent over-smoothing.

Figure 8. The role of each components in DCLayer.

Sensors 2023, 23, 2897 14 of 17

Table 5. Results of component analysis.

Model Training Loss Validation Loss Test MAE

without PA 15.1482 15.4286 16.4865
without DC 17.2296 16.885 16.7511
without GC 19.3766 19.4391 19
without TC 16.1691 17.6542 20.4214
without SP 14.8499 15.0907 17.4012
Final 15.0424 15.2778 15.9937

More details of the results of the above models are shown in Figure 9. (1) The curves
of the model without PA are similar to the final model, which shows that the DCGCN can
achieve a certain effect without a predefined adjacency matrix. In comparison, the model
without DC only use a predefined matrix, which limits the spatial dependencies to have
inferior results. (2) Both models without GC or TC cannot have good results, but their
curves are very different due to the different circumstances of under-smoothing and over-
smoothing. The former’s curves are gentle and slow to converge whereas the latter’s curves
are fast to converge in training loss and validation loss but unstable in test MAE. (3) The
model without SP is severely over-smooth; thus, its curve in test MAE becomes unstable
after only 30 epochs, which shows that special connections are crucial as well.

(a) (b)

(c)

Figure 9. Rate of convergence in component analysis. (a) Training loss. (b) Validation loss.
(c) Test MAE.

6. Conclusions

In this paper, we studied the multivariate time series prediction problem and present a
novel framework for spatial–temporal traffic data forecasting. The core idea of the model is
to construct different similarity adjacency matrices according to different dynamic samples
to carry out graph convolution, so as to capture the dynamics of space variably. Our model

Sensors 2023, 23, 2897 15 of 17

can deal with the dataset regardless of whether it has a predefined graph structure or not.
By combining a predefined adjacency matrix, dynamic correlation matrix, and adaptive
matrix, the DCGCN can learn global and localized spatial–temporal dependencies through
spatial graph convolution and temporal convolution. The extensive tests on two original
datasets and four public datasets verified the superiority of the proposed solutions in this
paper. In the future, we can try to extend this method to the time dimension to further
capture the dynamics of space–time in all aspects.

Author Contributions: Conceptualization, J.G. and Z.J.; methodology, Z.J.; software, Z.J.; validation,
Z.J., T.C. and A.M.; formal analysis, Z.J.; investigation, Z.J.; resources, J.G.; data curation, Z.J.; writ-
ing—original draft preparation, Z.J.; writing—review and editing, T.C., X.S. and A.M.; visualization,
Z.J.; supervision, J.G.; project administration, J.G.; funding acquisition, J.G. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Due to the nature of this research, participants of this study did not
agree for their data to be shared publicly, so supporting data are not available.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fang, X.; Huang, J.; Wang, F.; Zeng, L.; Liang, H.; Wang, H. ConSTGAT: Contextual Spatial-Temporal Graph Attention Network for

Travel Time Estimation at Baidu Maps; KDD ’20; Association for Computing Machinery: New York, NY, USA, 2020; pp. 2697–2705.
[CrossRef]

2. Shao, K.; Wang, K.; Chen, L.; Zhou, Z. Estimation of Urban Travel Time with Sparse Traffic Surveillance Data; HPCCT & BDAI ’20;
Association for Computing Machinery: New York, NY, USA, 2020; pp. 218–223. [CrossRef]

3. Shen, Y.; Jin, C.; Hua, J.; Huang, D. TTPNet: A Neural Network for Travel Time Prediction Based on Tensor Decomposition and
Graph Embedding. IEEE Trans. Knowl. Data Eng. 2022, 34, 4514–4526. [CrossRef]

4. Zhang, C.; Yu, J.J.Q.; Liu, Y. Spatial-Temporal Graph Attention Networks: A Deep Learning Approach for Traffic Forecasting.
IEEE Access 2019, 7, 166246–166256. [CrossRef]

5. Guo, J.; Song, C.; Wang, H. A Multi-step Traffic Speed Forecasting Model Based on Graph Convolutional LSTM. In Proceedings
of the 2019 Chinese Automation Congress (CAC), Hangzhou, China, 22–24 November 2019; pp. 2466–2471. [CrossRef]

6. Geng, X.; He, X.; Xu, L.; Yu, J. Graph Correlated Attention Recurrent Neural Network for Multivariate Time Series Forecasting.
Inf. Sci. 2022, 606, 126–142. [CrossRef]

7. Lu, Z.; Lv, W.; Xie, Z.; Du, B.; Huang, R. Leveraging Graph Neural Network with LSTM For Traffic Speed Prediction. In
Proceedings of the 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scal-
able Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Leicester, UK, 19–23 August 2019; pp. 74–81. [CrossRef]

8. Zhang, T.; Jin, J.; Yang, H.; Guo, H.; Ma, X. Link speed prediction for signalized urban traffic network using a hybrid deep
learning approach. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New
Zealand, 27–30 October 2019; pp. 2195–2200. [CrossRef]

9. Qin, K.; Xu, Y.; Kang, C.; Kwan, M.P. A graph convolutional network model for evaluating potential congestion spots based on
local urban built environments. Trans. GIS 2020, 24, 1382–1401.

10. Mohanty, S.; Pozdnukhov, A.; Cassidy, M. Region-wide congestion prediction and control using deep learning. Transp. Res. Part
C: Emerg. Technol. 2020, 116, 102624. [CrossRef]

11. Chen, K.; Chen, F.; Lai, B.; Jin, Z.; Liu, Y.; Li, K.; Wei, L.; Wang, P.; Tang, Y.; Huang, J.; et al. Dynamic Spatio-Temporal Graph-Based
CNNs for Traffic Flow Prediction. IEEE Access 2020, 8, 185136–185145. [CrossRef]

12. Peng, H.; Wang, H.; Du, B.; Bhuiyan, M.Z.A.; Ma, H.; Liu, J.; Wang, L.; Yang, Z.; Du, L.; Wang, S.; et al. Spatial temporal incidence
dynamic graph neural networks for traffic flow forecasting. Inf. Sci. 2020, 521, 277–290. [CrossRef]

13. Wang, S.; Miao, H.; Chen, H.; Huang, Z. Multi-Task Adversarial Spatial-Temporal Networks for Crowd Flow Prediction. In
Proceedings of the 29th ACM International Conference on Information & Knowledge Management, Online, 19–23 October 2020;
CIKM ’20; Association for Computing Machinery: New York, NY, USA, 2020; pp. 1555–1564. [CrossRef]

14. Qiu, H.; Zheng, Q.; Msahli, M.; Memmi, G.; Qiu, M.; Lu, J. Topological Graph Convolutional Network-Based Urban Traffic Flow
and Density Prediction. IEEE Trans. Intell. Transp. Syst. 2021, 22, 4560–4569. [CrossRef]

15. Sun, J.; Zhang, J.; Li, Q.; Yi, X.; Liang, Y.; Zheng, Y. Predicting Citywide Crowd Flows in Irregular Regions Using Multi-View
Graph Convolutional Networks. IEEE Trans. Knowl. Data Eng. 2022, 34, 2348–2359. [CrossRef]

http://doi.org/10.1145/3394486.3403320
http://dx.doi.org/10.1145/3409501.3409539
http://dx.doi.org/10.1109/TKDE.2020.3038259
http://dx.doi.org/10.1109/ACCESS.2019.2953888
http://dx.doi.org/10.1109/CAC48633.2019.8997248
http://dx.doi.org/10.1016/j.ins.2022.04.045
http://dx.doi.org/10.1109/ SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00056
http://dx.doi.org/10.1109/ITSC.2019.8917509
http://dx.doi.org/10.1016/j.trc.2020.102624
http://dx.doi.org/10.1109/ACCESS.2020.3027375
http://dx.doi.org/10.1016/j.ins.2020.01.043
http://dx.doi.org/10.1145/3340531.3412054
http://dx.doi.org/10.1109/TITS.2020.3032882
http://dx.doi.org/10.1109/TKDE.2020.3008774

Sensors 2023, 23, 2897 16 of 17

16. Zhou, Q.; Gu, J.J.; Ling, C.; Li, W.B.; Zhuang, Y.; Wang, J. Exploiting Multiple Correlations Among Urban Regions for Crowd
Flow Prediction. J. Comput. Sci. Technol. 2020, 35, 338–352. [CrossRef]

17. Kong, X.; Xing, W.; Wei, X.; Bao, P.; Zhang, J.; Lu, W. STGAT: Spatial-Temporal Graph Attention Networks for Traffic Flow
Forecasting. IEEE Access 2020, 8, 134363–134372. [CrossRef]

18. Fukuda, S.; Uchida, H.; Fujii, H.; Yamada, T. Short-term prediction of traffic flow under incident conditions using graph
convolutional recurrent neural network and traffic simulation. IET Intell. Transp. Syst. 2020, 14, 936–946.

19. Zhang, T.; Guo, G. Graph Attention LSTM: A Spatiotemporal Approach for Traffic Flow Forecasting. IEEE Intell. Transp. Syst.
Mag. 2022, 14, 190–196. [CrossRef]

20. Boukerche, A.; Wang, J. A performance modeling and analysis of a novel vehicular traffic flow prediction system using a hybrid
machine learning-based model. Ad Hoc Netw. 2020, 106, 102224. [CrossRef]

21. Tang, C.; Sun, J.; Sun, Y.; Peng, M.; Gan, N. A General Traffic Flow Prediction Approach Based on Spatial-Temporal Graph
Attention. IEEE Access 2020, 8, 153731–153741. [CrossRef]

22. Li, Y.; Yu, R.; Shahabi, C.; Liu, Y. Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. In
Proceedings of the International Conference on Learning Representations (ICLR ’18), Vancouver, BC, Canada, 30 April–3 May 2018.

23. Yu, B.; Yin, H.; Zhu, Z. Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecast-
ing. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, Stockholm,
Sweden, 13–19 July 2018; International Joint Conferences on Artificial Intelligence Organization: San Francisco, CA, USA , 2018;
pp. 3634–3640.

24. Guo, S.; Lin, Y.; Feng, N.; Song, C.; Wan, H. Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow
Forecasting. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–
1 February 2019; AAAI Press: Palo Alto, CA, USA, 2019; pp. 922–929.

25. Wu, Z.; Pan, S.; Long, G.; Jiang, J.; Zhang, C. Graph WaveNet for Deep Spatial-Temporal Graph Modeling. In Proceedings of
Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI, Macao China, 10–16 August 2019; pp. 1907–1913.

26. Wu, Z.; Pan, S.; Long, G.; Jiang, J.; Chang, X.; Zhang, C. Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks. In Proceedings of the KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, Virtual Event, CA, USA, 23–27 August 2020; pp. 753–763.

27. Bai, L.; Yao, L.; Li, C.; Wang, X.; Wang, C. Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting. In
Proceedings of the Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing
Systems, NeurIPS, Virtual, 6–12 December 2020.

28. Williams, B.M.; Hoel, L.A. Modeling and Forecasting Vehicular Traffic Flow as a Seasonal ARIMA Process: Theoretical Basis and
Empirical Results. J. Transp. Eng. 2003, 129, 664–672. [CrossRef]

29. Zivot, E.; Wang, J. Vector autoregressive models for multivariate time series. In Modeling Financial Time Series with S-PLUS®;
Springer: New York, NY, USA , 2006; pp. 385–429.

30. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
31. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv

2014, arXiv:1412.3555.
32. Shuman, D.I.; Narang, S.K.; Frossard, P.; Ortega, A.; Vandergheynst, P. The emerging field of signal processing on graphs:

Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Processing Magazine 2013, 30,
83–98. [CrossRef]

33. Song, C.; Lin, Y.; Guo, S.; Wan, H. Spatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for
Spatial-Temporal Network Data Forecasting. In Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence,
New York, NY, USA, 7–12 February 2020; AAAI Press: Palo Alto, CA, USA, 2020; pp. 914–921.

34. Li, M.; Zhu, Z. Spatial-Temporal Fusion Graph Neural Networks for Traffic Flow Forecasting. In Proceedings of the Thirty-Fifth
AAAI Conference on Artificial Intelligence, Online, 2–9 February 2021; AAAI Press: Palo Alto, CA, USA, 2021; pp. 4189–4196.

35. Zhang, Q.; Chang, J.; Meng, G.; Xiang, S.; Pan, C. Spatio-Temporal Graph Structure Learning for Traffic Forecasting. In
Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; AAAI
Press: Palo Alto, CA, USA, 2020; pp. 1177–1185.

36. Deng, J.; Chen, X.; Jiang, R.; Song, X.; Tsang, I.W. ST-Norm: Spatial and Temporal Normalization for Multi-variate Time
Series Forecasting. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual,
14–18 August 2021; pp. 269–278.

http://dx.doi.org/10.1007/s11390-020-9970-y
http://dx.doi.org/10.1109/ACCESS.2020.3011186
http://dx.doi.org/10.1109/MITS.2020.2990165
http://dx.doi.org/10.1016/j.adhoc.2020.102224
http://dx.doi.org/10.1109/ACCESS.2020.3018452
http://dx.doi.org/10.1061/(ASCE)0733-947X(2003)129:6(664)
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1109/MSP.2012.2235192

Sensors 2023, 23, 2897 17 of 17

37. Fang, Z.; Long, Q.; Song, G.; Xie, K. Spatial-Temporal Graph ODE Networks for Traffic Flow Forecasting. In Proceedings
of the KDD ’21: The 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, Singapore,
14–18 August 2021; ACM: New York, NY, USA, 2021; pp. 364–373.

38. Choi, J.; Choi, H.; Hwang, J.; Park, N. Graph Neural Controlled Differential Equations for Traffic Forecasting. In Proceedings of
the Thirty-Sixth AAAI Conference on Artificial Intelligence, Online, 22 February–1 March 2022; AAAI Press: Palo Alto, CA, USA,
2022; pp. 6367–6374.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Related Work
	Multivariate Time Series Prediction
	Graph Adjacency Matrix for Traffic Forecasting

	Preliminary
	Correlation Matrix in Multiple Regression Analysis
	Problem Definition

	Dynamic Correlation Graph Convolutional Neural Networks
	Method Overview
	Construction of Multiple Regression Dynamic Correlation Adjacency Matrix
	Graph Convolutional Neural Networks for Traffic Forecasting
	Dynamic Graph Convolution Module
	Gated Temporal Convolution Module
	Layer Model and Overall Structure

	Experiment
	Generating Datasets
	Calculation of Features from Traffic Stream
	Calculation of Adjacency Matrix

	Experimental Studies
	Experimental Setting
	Baseline Models
	Main Results
	Component Analysis

	Conclusions
	References

