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Abstract

Consider the flow of a thin layer of non-Newtonian fluid over
a solid surface. I model the case where the viscosity depends
nonlinearly on the shear-rate; power law fluids are an impor-
tant example, but the analysis here is for general nonlinear
dependence. The modelling allows for large changes in film
thickness provided the changes occur over a relatively large
enough lateral length scale. Modifying the surface boundary
condition for tangential stress forms an accessible foundation
for the analysis where flow with constant shear is a neutral
critical mode, in addition to a mode representing conserva-
tion of fluid. Perturbatively removing the modification then
constructs a model for the coupled dynamics of the fluid
depth and the lateral momentum. For example, the results
model the dynamics of gravity currents of non-Newtonian
fluids when the flow is not creeping.
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1 Introduction

Consider the two dimensional flow of a thin layer of fluid
over a flat substrate. The fluid of thickness n(x,t) spreads
with mean lateral velocity w(x,t). Suppose the fluid has
the non-Newtonian, power law, stress-strain relation that
the stress oc (strain-rate)® for some fixed exponent s: the
exponent s = 1 for a Newtonian fluid; s < 1 is shear thinning;
and s > 1 is shear thickening. Such a power law is sometimes
called Ostwald’s or Norton’s constitutive relation [5]. Then
the systematic analysis developed in this article supports the
nondimensional model of the flow
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where Re is the nondimensional Reynolds number, c is the
coefficient of proportionality in the nonlinear stress-strain
relation, and where g7 and g, are the nondimensional com-
ponents of gravity along and normal to the flat substrate,
respectively. This model generalises the model of Newto-
nian fluids [17]. Fluid is conserved through (1). The mo-
mentum equation (2) incorporates effects of inertia, i, self-
advection, ity and U?ny, bed drag, (ii/n)%, and gravita-
tional forcing, (g7 —g2nyx); the dependence of the coefficients
upon s models the subtle effects of the power law rheology.
For example, for flow down an inclined flat plate with lateral
gravity g1, the nonlinear bed friction may balance gravita-
tional forcing whence the above model predicts the equilib-
rium flow to have mean velocity
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Just as for the special case of Newtonian fluids [17, §6.1], the
model (1)—(2) also resolves instabilities from the equilibrium
flow (3) and the emergence and interaction, or otherwise,
of solitary waves on the falling fluid. Similarly, modulat-
ing gravity g, in time allows the above model to simulate
Faraday waves as previously displayed for Newtonian flu-
ids [17, §6.1]. Further, substituting the equilibrium mean
velocity (3) into the fluid conservation equation (1), mod-
elling the very slow dynamics at small Re, leads to an ac-
curate lubrication model for nonlinear fluids, one previously
approximated by others [10, 1, e.g.], and reducing to the
classic lubrication model for Newtonian fluids when expo-
nent s =1.

The model (1)—(2) not only applies to the flow of sim-
ple liquids, it applies to: gravity currents of suspensions
with medium to high volume fractions as these are non-
Newtonian [18]; ice flow as power law rheologies are often
used in models [9, 19, e.g.]—at even a few metres per year the
Reynolds number is significant for a thick glacier; and a mod-
ified model would apply to turbulent flow as the Smagorin-
sky large eddy closure of turbulence corresponds to the shear
thickening case of exponent s = 2 [8, Eqn. (6), e.g.]. This
article puts models such as (1)—(2) within the sound support
of modern dynamical systems theory, Section 3, to empower
us to systematically control error, assess domains of validity,
and to systematically account for further physical effects.
For example, this analysis in the special case of Newtonian
fluids is valid for free surface steepnesses 1M, up to about
one [17, Eqn. (62)].

The analysis here encompasses not only power law flu-
ids butalso a general nonlinear rheology with a general de-
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2 Differential equations to model non-Newtonian flow

pendence of the stress upon the strain-rate as described in
Section 2. In contrast, almost all previous thin fluid film
modelling use only a power law dependence. Some indus-
trial plastics have a complicated non-monotonic dependence
that cannot be represented by a simple power law [3]. Sim-
ilarly, dense suspensions often have non-monotonic depen-
dence [18]. The model derived in Section 4 applies to such
complicated industrial plastics and dense suspensions.

The lubrication approximation of very slow flow, negligi-
ble Reynolds number, underpins previous theoretical models
for non-Newtonian thin fluid films: Perazzo & Gratton [10]
and Betelu & Fontelos [1] examined flow with surface ten-
sion; this followed experiments comparing travelling waves
and similarity solutions by Gratton, Minotti & Mahajan [5].
Gratton et al. comment “the differences between Newtonian
and non-Newtonian currents are significant and can clearly
be observed in experiments”. But the lubrication approxi-
mation, that creates models expressed only in terms of the
fluid thickness n(x, t), does not model inertial dynamics and
so cannot resolve any wave-like dynamics. To model faster
flows, potentially with wave effects, we must resolve the dy-
namics of both the fluid thickness and a measure of hor-
izontal momentum [12, 17], we used 1 and u in (1)—(2).
For example, Harris et al. [6] modelled particle driven grav-
ity currents using shallow water equations that resolve the
dynamics of both the fluid thickness and the mean lateral
velocity. However, such modelling of essentially dissipative
flows, albeit dissipative via turbulence, by the laminar in-
viscid foundation of shallow water equations appears a con-
tradiction that demands resolution. This article shows how
models of non-Newtonian rheology fluid flow may be put on
a sound mathematical basis to empower accurate physical
forecasts.

2 Differential equations to model
non-Newtonian flow

Let the incompressible fluid have thickness n(x, t), constant
density p, a nonlinear rheology, and let the fluid flow with
some varying velocity field u = (u,v) = (u7,u;) and pres-
sure field p. In this letter we restrict attention to two di-
mensional fluid flow.

Nonlinear constitutive relation Define the strain-rate

tensor [5, 18]!
ouy oy
: 1
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where x; = x and x; =y are distances along and normal to
the solid substrate, respectively. Then the stress tensor for
the fluid is 013 = —pdi;+2pVéy; : the kinematic viscosity v is
constant for a Newtonian fluid; but when the kinematic vis-
cosity varies with strain-rate then we model shear thickening
or shear thinning non-Newtonian fluids.

The important class of non-Newtonian fluids that we ad-
dress has viscosity which depends only upon the magnitude é

(4)

LSome, such as Betelu & Fontelos [1], use double this tensor.

of the second invariant of the strain-rate tensor [1]:

=) &f. (5)
i,j

For example, Bird et al. [2, see [1]] report that a solution of
0.5% Hydroxyethylcellulose is shear thinning: at 20°C the
solution has viscosity p = més~! for exponent s = 1/1.96
and coefficient m = 0.84 Ns$ /m? .

Partial differential equations Make variables nondi-
mensional with respect to some velocity scale, a typical fluid
thickness, and the fluid density. The nondimensional PDEs
for the incompressible, two dimensional, fluid flow are firstly
the continuity equation
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and secondly the momentum equation

o (7)
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where Re is the appropriate Reynolds number, T is the
nondimensional deviatoric stress tensor, and g = (g1, 92)
is the nondimensional forcing of gravity. For a fluid with
a nonlinear stress-strain relation, the nondimensional devia-

toric stress tensor
+ auj
aXi ’

Boundary conditions Solve these PDEs with nondimen-
sional boundary conditions:

aui
an

T = 2v(8)éy = v(E) ( (®)

e on the bed of no-slip,?

u=0 on y=0;

e the kinematic condition on the free-surface of
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e the stress normal to the free surface comes from con-
stant environmental pressure and surface tension, that
is,

(T22 — 2nxT12 +M3T11)
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where We is a nondimensional Weber number charac-
terising the importance of surface tension;

2If modelling turbulent flows by a large eddy closure, we may justi-
fiably replace this no-slip bed condition by a mixed boundary condition
ou

on the lateral velocity: u oc v
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4 Low order models of the dynamics

e and there must be no tangential stress at the free sur-
face,

(T—nmz+nx(t22—T1)=0 on y=n. (12)
This boundary condition of zero tangential stress implic-
itly is effectively one of zero shear at the surface; this
zero shear would not be appropriate for material with

a finite yield stress. Here we assume the fluid yields for
arbitrarily small stress.

3 Centre manifold theory supports
the modelling

This section describes one approach to placing models such
as (1)—(2) on a sound theoretical base. Artificially modify
the zero tangential stress free surface condition (12) to have
an artificial forcing proportional to the local velocity, a forc-
ing which we later remove by evaluating at parameter y = 1:

(1= ) [0 =)z +nxl(T22 — T11)]

— (1M

v)Tu on y=1. (13)

Evaluated at y = 1 this artificial right-hand side becomes
zero so the boundary condition (13) reduces to the physical
boundary condition of zero tangential stress (12). However,
when the parameter y = 0 and the lateral gravity and lateral
derivatives negligible, g; = 0x = 0, a neutral mode of the
dynamics is the lateral shear flow u = v/2Ey where I define
E to be proportional to the mean lateral strain-rate:

E Uly—y, .

1rau _
vV2n Jo 9y V2

This neutral lateral shear mode arises because in pure shear
flow T12 = vuy and hence the artificial free surface condi-
tion (13) reduces to vuy = vu/n on y = 1. Conservation
of fluid provides a second neutral mode in the dynamics.
That is, when v = g1 = 9x = 0 then a two parameter
family of equilibria exists corresponding to some uniform
lateral shear flow, w = Ey, on a fluid of any constant thick-
ness 1. For large enough lateral length scales, these equilib-
ria occur independently at each location x [11, 13, e.g.] and
hence the space of equilibria are in effect parametrised by
E(x) and n(x). Provided we can treat lateral derivatives 0, as
a modifying influence, that is provided solutions vary slowly
enough in x, centre manifold theorems [4, 7, 14, e.g.] assure
us three vitally important properties:

1. this space of equilibria is perturbed to a slow mani-
fold, on which the evolution is slow, that exists for a
finite range of gradients 04, and parameters vy and g7,
and which may be parametrised by the mean lateral
shear E(x,t) and the local thickness of the fluid n(x, t);

2. the slow manifold attracts solutions from all nearby ini-
tial conditions; and that

3. a formal power series in the parameters vy, g1 and gra-
dients 05 approrimates the slow manifold to the same
order of error as the order of the residuals of the gov-
erning differential equations.

That is, the theorems support the existence, accurate rel-
evance and construction of slow manifold models such as
(1)-(2).

An alternative and powerful view of these theorems is that
they follow from a nonlinear, normal form, coordinate trans-
form that decouples the slow and fast modes in the fluid
dynamics [15, e.g.]. That is, the models we discuss are essen-
tially just a reparametrisation of the state space, restricted
to the slow dynamics.

4 Low order models of the
dynamics

The detailed and complicated algebra deriving a model is
of little interest to users of the model. Computer algebra
readily constructs slow manifold models [16, §3]. Those in-
terested should check the code and verify that the algorithm
solves the governing differential equations and boundary con-
ditions as specified [16, p.17-23]. The solution is valid for
in small lateral derivatives, small lateral forcing and small
perturbation of the free surface condition [Property 3]. Here
we focus on the resulting model and its interpretation.

4.1 Power law fluids

For simplicity, suppose the rheology is a nondimensional
power law for the kinematic viscosity, v = cg&5~".

Computer algebra [16, §3] derives that for such a power
law fluid, the evolution of the fluid thickness 11 and the stress
parameter E is
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The nonlinear rheology primarily appears in the first line
of (15) as a nonlinear drag on the bed. However, the different
power laws also change the vertical profiles of velocity and
pressure; these changes affect the coefficients of the model
(14)—(15) through their dependence upon exponent s.

In modelling the flow of thin fluid layers, we generally
prefer to use the mean lateral velocity or the lateral fluid
flux instead of the shear parameter E. Using the velocity
fields computed at the same time as the evolution (14)—(15),
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5 Conclusion

the computer algebra [16, §3] also derives the mean lateral
velocity

_ 1M _
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Reverting this series to express E in terms of u, and sub-
stituting into the model (14)—(15) leads to a model for the
coupled evolution of fluid thickness n(x,t) and mean lateral
velocity 1(x,t). Evaluating at the physically relevant y = 1,
to remove the artifice in the surface boundary condition (13),
then gives the model (1)—(2) discussed in the Introduction
of this article.

Computer algebra experiments [16, §1] suggest that the
convergence of the asymptotic series in y is markedly im-
proved by the factor (1 — %y) on the left-hand side of the
tangential stress boundary condition (13). This factor is
equivalent to an Euler transformation of the asymptotic se-
ries. As shown in other similar applications [12, 17, e.g.],
evaluation at y = 1 is physically valid.

Computer algebra [16, §3] may construct terms in the for-
mal power series solutions to higher order in the notionally
small parameters v, g7 and 04. Various truncations of the
multivariate power series generate many valid approxima-
tions of varying orders of accuracy. For example, to resolve
any effects of surface tension we need to compute terms in 92
that are neglected in (2) and (15). With the support of cen-
tre manifold theory, researchers may choose an approximate
model that suits the parameter regime of their application.

4.2 More general non-Newtonian fluids

We now return to the more general rheology where the vis-
cosity v of the fluid depends arbitrarily upon the magnitude
of the shear-rate ¢, instead of being a simple power law. In
this more general rheology the expressions for the modelling
are much more complicated. For conciseness define
V2u 1

, v=v(E) and Ry =

E= -,
| v+ EV/

(16)
where primes on v denote the derivatives d/dE of the vis-
cosity v(E) and evaluated at E = v/21i/n.

Theory [§3] supports a model obtained through solving
asymptotically the governing differential equations. The
procedure is as for the power law rheology: computer al-
gebra [16, §3] constructs the slow manifold and evolution
thereon to some order of error; then revert the asymptotic
series to find stress parameter E as a function of mean ve-
locity 1; and substitute to express the model in terms of
n and u. Conservation of fluid again derives (1) (to any
order of error). The momentum dynamics leads to
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As before, the terms on the right-hand side represent, re-
spectively, bed drag through the nonlinear rheology, self ad-
vection of momentum, and forcing due to gravity and hydro-
static pressure. Evaluate this equation at y = 1 to recover a
physically relevant model of the dynamics of lateral momen-
tum.

The power law model (2) is just one specific subclass of
the general model (17): obtain (2) by the specific choice of
a power law viscosity, V(&) = csé5 .

5 Conclusion

Following similar modelling for Newtonian thin films [12, 17],
this innovation of modifying the free surface condition to (13)
places the modelling of a physically important class of non-
Newtonian fluids upon the powerful and sound basis of cen-
tre manifold theory [4, 7, 14, e.g.]. This modern dynamical
system foundation empowers us to systematically derive the
novel and accurate models (2), (15) and (17) for the lateral
momentum of fluids with nonlinear rheology.

These models of thin fluid flow can be directly applied
to flows as diverse as those of industrial plastics [3, e.g.],
ice [9, 19, e.g.], and medium to dense suspensions [18, e.g.].
The models replace lubrication theory when inertia becomes
important n the flow. When you desire more accuracy
than that presented here, computer algebra readily computes
higher order approximations [16, §3]. Modifying the no-slip
boundary condition on the bed, (9), will empower the mod-
elling of turbulent layers of flow over a substrate via large
eddy closures. There are enormous applications for this ap-
proach to modelling the dynamics of relatively thin layers of
fluids flowing over substrates.
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