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Abstract 

Automated visual assessment of plant condition, specifically foliage wilting, reflectance and 

growth parameters, using machine vision has potential use as input for real-time variable-rate 

irrigation and fertigation systems in precision agriculture. This paper reviews the research 

literature for both outdoor and indoor applications of machine vision of plants, which reveals 

that different environments necessitate varying levels of complexity in both apparatus and 

nature of plant measurement which can be achieved. Deployment of systems to the field 

environment in precision agriculture applications presents the challenge of overcoming image 

variation caused by the diurnal and seasonal variation of sunlight.  

 

From the literature reviewed, it is argued that augmenting a monocular RGB vision system 

with additional sensing techniques potentially reduces image analysis complexity while 

enhancing system robustness to environmental variables. Therefore, machine vision systems 

with a foundation in optical and lighting design may potentially expedite the transition from 

laboratory and research prototype to robust field tool. 

 

1. Introduction 
Farm managers typically include visual assessment of crop condition to inform management 

decisions (e.g. irrigation timing) and treat the whole field uniformly based on their manual 

observations. For example, internode length measurement (i.e. the distance between branch 

junctions) is part of a plant-based water stress monitoring regime for cotton suggested for 

growers (Milroy et al., 2002). A machine vision system with access to a large proportion of 

the field potentially enables automatic condition assessment for different plants at high spatial 

frequency in the field. Such sensing capability, in conjunction with the implementation of 

appropriate variable-rate application hardware, potentially enables agricultural fields to be 

treated as a conglomerate of control units for operations such as irrigation and fertigation 
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(e.g. Smith et al., 2009). Over a decade ago it was recognised that sensors are required to be 

developed to use as input for variable rate systems (Evans et al., 1997b) and machine vision-

based sensing systems are a major part of this development. Other potential applications of 

machine vision systems in the field cropping environment include yield estimation and 

species identification.  

 

As a potentially low-cost technology with low risk of mechanical failure, machine vision is 

particularly suited to the agricultural environment in which large numbers of sensors may be 

needed to cover an area of the field and robustness and ease of replacement are forefront 

design factors. In its simplest form, the conceptual vision system may consist of a single 

monochrome or colour camera with image analysis algorithms developed to identify the crop 

feature of interest under a range of environmental (e.g. lighting) conditions. However, 

refinements to the vision system such as stereo vision, multispectral imaging and range 

sensing potentially enable accentuation of features of interest in captured data while reducing 

the effect of environmental factors on image quality. Potential advantages of this are simpler 

and more reliable data processing.  

 

The design of a vision system for the measurement of plant attributes is affected by many 

factors, such as the scale of the plant measurement (i.e. leaf- or canopy-level) and the 

measurement environment (e.g. a laboratory or in the field). Outdoor and indoor 

environments are distinguished in this review to enable comparison of systems subject to 

variable natural daylight with the (significantly lesser) challenges for systems operating in 

controlled-illumination environments.  

 

1.1 Outdoor vision systems 

Vision systems developed for measuring plants in agricultural fields are commonly required 

to analyse spatial patterns, i.e. discriminate differences, at the field scale, and hence are 

required to perform with high resolution. The goals of such analyses include yield 

prediction/monitoring and the evaluation of crop management practices. The task of 

measuring an adequately representative sample of plants within a field implies the acquisition 

of considerable quantities of data.  Whilst this no longer presents computational difficulties, 

both the complexity and the speed of data acquisition usually required implies complete 

automation of the sensing task. However, the outdoor agricultural environment presents 

complexities that make such automation challenging. These complexities include variable 

natural lighting, both intensity and direction, and the occlusion and obscuration of plant 

features by foliage from neighbouring plants and background material. 

 

Early vision systems for agriculture involved automation of fruit identification for harvesting, 

possibly because fruit was distinctly coloured and thus readily distinguishable from foliage 

(Tian & Slaughter, 1998). However, broad spectral wavebands are not as useful for 

discriminating objects in scenes comprising predominantly green foliage. Du et al. (2007) 

concurred that for species identification, environmental factors caused leaf colour to be of 

low reliability. Subsequently, Du et al. only used leaf shape features in an automatic species 
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classifier. Similarly, Jimenez et al. (2000) reported that vision systems based on shape were 

less sensitive to variation in target object colour, but that shape analysis algorithms were 

more time-consuming. This suggests that where possible, vision systems designed for the 

outdoor environment should consider methods of automatically controlling and calibrating 

colour measurements and/or accentuating shape features to enhance reliability. 

 

1.2 Indoor vision systems 

Controlled indoor environments (e.g. laboratories and factories) remove many of the 

variables that complicate outdoor agricultural machine vision systems. Applications of 

machine vision systems to plants in the greenhouse/laboratory environment include automatic 

irrigation management, fruit harvesting and flower grading. Under laboratory conditions, 

lighting and positioning of free-standing individual plants may be controlled, so the 

drawbacks of variable natural sunlight, irregular spacing/location of plants and complicated 

image backgrounds are often minimal. As a result, the ability to control the environmental 

conditions in an automated laboratory irrigation system means that small changes in intricate 

plant geometric relationships can be detected on a continuous time scale and attributed to a 

particular cause (such as water stress), capabilities which have not yet been successfully 

transferred to the outdoor environment.  

 

1.3 Paper overview 

This paper firstly reviews the literature of machine vision-based plant sensing techniques for 

automation of measurements of living plants in both outdoor and indoor environments: the 

literature is considerable, hence only those considered significant by the present authors are 

cited. The work reviewed is considered by division into four broad sensing techniques, 

namely: 

 monocular vision with an RGB camera; 

 stereo vision and 3D structure;  

 multispectral imaging; and  

 range sensing.  

 

The paper then proposes that intuitive sensor combinations and lighting design in a machine 

vision system may accentuate features of interest in the captured image and greatly enhance 

system robustness in the outdoor environment. In general this necessitates additional optical 

and/or mechanical components be added to the system to condition the scene, but this 

increase in system complexity is balanced by the benefit of reduced complexity and enhanced 

reliability in the subsequent image analysis. The paper concludes with a summary of potential 

methods to enhance the machine vision system design for application to the agricultural field 

environment. 

 

2. Monocular vision with an RGB camera 
In its simplest form, a vision system consists of a single camera capturing a naturally-

occurring scene, such that the captured image resembles the scene as visible to a human.  
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It follows that there is potential for image analysis algorithms to extract objects in the image 

that are identifiable by humans. This entails implementation of colour and shape detection 

algorithms, and almost always adaptive optimisation procedures in situations where constant 

and uniform algorithm parameters do not perform adequately on images subject to varying 

illumination. 

 

2.1 Outdoors 

Common outdoor applications for machine vision of plants using monocular vision include 

plant counting, biomass estimation and species identification. These applications require that 

plant pixels be reliably extracted from non-plant or background pixels. Segmentation may be 

achieved by a variety of methods, from analysis of natural scenes to analysis of scenes 

conditioned by additional mechanical and optical components, for the purpose of less 

complicated segmentation algorithms. Shape and size algorithms may be applied to describe 

individual leaves following the segmentation process, as reviewed below. 

 

In the following subsections, a ‘natural’ scene refers to one in which the image objects appear 

as they do everyday to humans. A ‘conditioned’ scene refers to one in which additional 

mechanical and/or optical components have been used to accentuate features of interest and/ 

or remove background elements in the scene, such that the captured, unprocessed image no 

longer looks ‘natural’ – to a human, at least. 

 

2.1.1 Segmentation in natural outdoor scenes 

Segmenting foliage from background soil (in top-view images) is an important first step in 

the automated image analysis of crops (e.g. measurement of lettuce head diameter, Hussain et 

al., 2008). In images captured of natural scenes, objects and their backgrounds often exhibit 

common intensities which reduce the effectiveness of a monochrome threshold (Tian & 

Slaughter, 1998). Ewing & Horton (1999) speculated that diffuse lighting from cloudy days 

may provide better illumination of leaves which would otherwise be in shadow on a clear 

day. Methods of segmenting vegetation in outdoor scenes using visible colour include those 

developed by Woebbecke et al. (1995), Tang et al. (2000) and Steward et al. (2004).  

 

Multiple small plants are generally extracted as a single object if the foliage of neighbouring 

plants is touching. However, Soille (2000) extracted clusters of leaf vein regions from top 

view images to isolate individual plants with overlapping leaves; whereas Jin & Tang (2009) 

used stereo vision to isolate individual plants by attributing different leaf heights to different 

plants. Individual leaves are potentially extracted from leaf clusters using methods based on 

shape (e.g. using the ‘watershed algorithm’, Lee & Slaughter, 2004) and colour (e.g. using 

genetic algorithms – Neto, Meyer & Jones, 2006). Shearer & Holmes (1990) used texture 

analysis of plant top views to achieve canopy characterisations without extracting individual 

leaves. 

 

In some situations the camera can be positioned to take advantage of naturally-occurring 

silhouettes of crop canopies. For example, leaf area index (LAI) measurements using 
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hemispherical photography (e.g. Jonckheere et al., 2004) consist of a skyward-facing camera 

placed beneath the canopy, such that the foliage is backlit from the sky and clouds. The 

segmentation task involves methods such as automatic thresholding and edge detection 

(Ishida, 2004; Nobis & Hunziker, 2005). In a vineyard, Williams & Ayars (2005) estimated 

overall canopy dimensions and crop coefficients from images of the ground. Row spacing 

enabled observation of the shadows of individual rows cast onto the ground at solar noon and 

shadow pixels were counted (with a manual threshold on pixel intensity) as an indication of 

canopy biomass. The success of these systems is dependent on specific meteorological 

conditions but the applications demonstrate effective use of natural lighting to reduce 

complexity of image analysis. 

 

McCarthy et al. (2009) relied on natural lighting conditions to estimate cotton plant internode 

length in a maturing crop and found that the system performed most reliably under diffused 

afternoon sunlight with the camera facing a direction perpendicular to the sun’s rays. The 

system featured a plant-contacting camera enclosure that non-destructively forced the plant’s 

main stem into a fixed object plane (i.e. the front of the camera enclosure) such that 

geometric distances could be automatically measured. Shape-based image analysis techniques 

were used to discriminate branches of individual plants and node positions were confirmed 

by analysing candidate node positions over multiple sequential frames. In this situation, use 

of a time series of images enhanced the system’s accuracy. 

 

2.1.2 Segmentation in conditioned outdoor scenes 

Modification of a standard CCD camera to remove the infrared-cut filter presents another 

alternative for segmentation of vegetation from background soil. Vegetation pixels can be 

estimated using NDVI (Normalised Difference Vegetation Index) because vegetation has a 

higher reflectance than soil in near-infrared wavelengths (Kumar et al., 2001). The use of 

low-cost components potentially contributes to the appeal of this approach. Noh et al. (2005) 

also reported that the infrared channel was useful for segmenting vegetation.  

 

The software segmentation task may potentially be simplified with the addition of mechanical 

components, particularly for cameras imaging the side view of canopies. A mature vineyard 

canopy is particularly suited to on-the-go machine vision measurement with sideways-facing 

cameras due to the spacing between rows, which enables a camera and backing board to fit 

comfortably on either side of the canopy, such that a side view of the foliage can be obtained. 

Such a system was implemented by Praat et al. (2004), with biomass being estimated by 

counting green vine pixels and discounting the distinctly-coloured background board. 

 

Implementing an on-the-go infield vision system with controlled background is more difficult 

for individual larger plants in row crops. In a developed rice canopy, Casady et al. (1996) 

manually positioned a portable frame and shroud about each plant to segment foliage pixels 

and successfully measure biomass.  In view of these difficulties Tarbell & Reid (1991) chose 

to transport mature individual corn plants from the field to a laboratory to conduct image 

capture. In a system collecting top view images of corn, Noh et al. (2005) performed colour 
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calibration of foliage in the field by including a reference panel in the field of view of the 

image. The reference panel was painted with grey shades of known reflectance for 

comparison with the foliage and permitted nitrogen deficiency to be estimated under a range 

of natural lighting conditions. 

 

For small plants, lighting conditions can be artificially controlled by mounting a lightproof 

cover from a tractor or mobile robot, in order to control lighting conditions of the plants 

under the cover during imaging in the field (e.g. Edan et al., 2000; Hemming & Rath, 2002). 

This is more difficult for larger plants, since apparatus that sufficiently encloses each plant 

will potentially restrict on-the-go operation of the device. Therefore, it may be expected that a 

shade structure for larger canopies will potentially dominate, but not completely eliminate, 

the effect of external lighting conditions. 

 

2.2 Indoors 

In a controlled indoor environment, single-camera systems can potentially identify small 

changes to foliage orientation and colour in plant canopies. This has potential application to 

irrigation scheduling. Identification of different plant parts in cuttings can also potentially be 

achieved with application to the estimation of plant quality attributes such as stem-to-leaf 

ratio. 

 

Canopy changes due to induced stresses can also be isolated by signal processing from plant 

diurnal movement and growth. Irrigation scheduling systems have been developed using leaf 

tip tracking for wilt detection (Seginer et al., 1992) (manual system), change in side projected 

area (Murase et al., 1997) and change in top projected area (Kacira & Ling, 2001; Kacira et 

al., 2002). In these applications, the plant parameter of interest is isolated from a binary 

image in which the plant is segmented from the background. These systems tend to focus on 

detecting small differences in geometry such as leaf inclination. Similarly, Zeng et al. (2008) 

used a backlighting board mounted behind individual grapefruit to continuously monitor 

diameter changes. Techniques devised for automated laboratory systems have potential 

application in sustainable biosystems for space, e.g. research to develop automatic irrigation 

and management systems for crops on space missions (Fleisher et al., 2006). 

 

Identifying the onset of water stress using petiole wilt detection in a vine canopy was 

evaluated by Waksman & Rosenfeld (1997). The average petiole angle was extracted from 

greyscale vine images using line detection techniques and results from images with the light 

source in different positions were combined in order to reduce occlusion by shadows. Kurata 

& Yan (1996) calculated the average incline angle of rachis (the central axis of compound 

leaves) lines in tomato plants to estimate water potential. Waksman & Rosenfeld (1997) also 

studied colour distribution in plant leaves to identify paleness, and hence the onset of stress. 

Tarbell & Reid (1991) conducted a laboratory study to compare foliage colour of mature corn 

plants with colour charts and to measure leaf area from plant silhouettes on a light stage. 
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Machine vision research for grading of plant cuttings in the geranium (Humphries & 

Simonton, 1993; Singh & Montemerlo 1997) and sugar cane (Wang et al., 1998) industries 

demonstrate plant part identification in controlled imaging environments. Both colour and 

binary shape relationships can be used to identify flowers, leaves, petioles and stems in plant 

cuttings for the purpose of determining flower size and stem-to-leaf area ratio, for example. 

For larger plants, Hemming et al. (2005) used an air blower system to distinguish leaves, fruit 

and stems in a tomato canopy with a distinctly-coloured background. Leaves were identified 

as those objects which moved with the air stream, while fruit and stems remained relatively 

motionless. 

 

2.3 Discussion 

Automated machine vision sensing of individual plants in the field is at present mostly 

limited to early stage crops (where neighbouring plants are too small to be touching or 

overlapping); or, for more mature canopies, to whole-plant characteristics such as plant 

biomass. Use of near-infrared imaging, background boards and/or shade structures with 

artificial illumination reduce the complexity of the segmentation process but add extra 

components and potentially physical bulk to the overall measurement system.  

 

In the indoor environment, a monocular vision system can identify small canopy changes for 

irrigation scheduling purposes. However, it is likely that additional sensing techniques and 

technologies are required to make equivalent on-the-spot irrigation scheduling judgements in 

the outdoor field environment. 

 

3. Stereo vision and 3D structure 
Stereo vision can be used to monitor plant parameters including height, leaf shape and leaf 

area for young plants and overall canopy dimensions for larger crops. Automated 

measurement of 3D plant structure has application to crop and plant growth monitoring and 

species discrimination.  
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3.1 Outdoors 

Differentiation of distinct plants (e.g. crops and weeds) is a difficult task in 2D that requires 

delicate image analysis but is greatly simplified with depth information (Jin and Tang, 2009).  

Three-dimensional maps of canopy structure were obtained by Rovira-Mas et al. (2005) using 

aerial stereoimages captured from a remote-controlled helicopter with GPS. The generated 

maps contained information about the distance between crop rows, the location of crop rows 

and the height of the crop. This application potentially enables appraisal of crop condition at 

high spatial resolution. Over a large area, a single high-resolution image of the field can be 

accumulated by image mosaicing. Image mosaicing or sequencing involves a moving camera 

capturing top view images (for example) of a crop row and then automatically identifying 

where consecutive images ‘stitch’ together, using matching algorithms (e.g. Kise & Zhang, 

2006).  

 

Methods of inferring 3D plant structure without image matching have been demonstrated in 

the literature. Images of trees captured from multiple angles are used to reconstruct 3D 

bounding geometry, also known as the visual hull (e.g. Shlyakhter et al., 2001). However, the 

method does not provide information about the plant structure deeper within the canopy. Dror 

& Shimshoni (2005) demonstrated the potential to infer within-canopy 3D structure of a palm 

tree from a single image using plant phyllotaxis. Plant phyllotaxis is the arrangement of 

repeating units in a plant, such as the divergence angle of consecutive leaves or branches. 

Therefore, image-based identification of plant phyllotaxis has potential to assist real-world 

plant geometry calculation. 
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3.2 Indoors 

Typically smaller plants with less dense canopies have greater success of detailed automated 

3D measurement. Andersen et al. (2005) generated 3D reconstructions of young wheat plants 

automatically from stereoimages. Chien et al. (2004) and Chien & Lin (2005) used three 

mutually perpendicular views (two sides and one top) of vegetable seedlings to measure 3D 

plant structure including leaf area, leaf number and internode length. This enabled the 

generation of continuous growth curves under various conditions. The top view provided the 

most information but the side views permitted correction to leaf area estimation where leaves 

were tilted. 

 

Stereo matching for plant structure at post-seedling stage is limited even with a plain image 

background in controlled indoor conditions. Pan et al. (2004) created a semi-automated 

stereoscopic matching algorithm in which corresponding points were automatically identified 

by image analysis but were required to be refined by a human operator. However, Takizawa 

et al. (2005) enhanced automation by extracting leaf and stem regions and then using those 

regions to perform matching between stereoimages. Matching of stem regions for rose plants 

was restricted when stems were in front of leaves instead of the plain background or when the 

stem was visible only in one image of the stereoimage pair (Noordam et al., 2005). 

 

3.3 Discussion 

As with monocular imaging, identification of plant structure using stereo vision enjoys 

greater success for smaller plants. Applications in the outdoor environment typically provide 

overall canopy geometry which is useful for monitoring crop growth in areas of a paddock or 

identifying plant height changes, for example between different species (i.e. weed and crop).  

 

Determination of leaf and branching structure of individual plants is limited even in indoor 

environments and relies on the image having a plain background. Knowledge of plant growth 

patterns (e.g. phyllotaxis) potentially assists measurement by image analysis. 

 

4. Multispectral imaging 
The sensing and image analysis task may potentially be simplified by imaging in part of the 

electromagnetic spectrum which accentuates features of interest more effectively than the 

broad visible bands provided by standard RGB cameras. Sensing of different regions of the 

electromagnetic spectrum potentially enable discrimination of plant materials based on colour 

(visible), cellular structure (near-infrared, NIR), thermal (mid-infrared, MIR) or hardness (X-

ray) properties.  

 

4.1 Outdoors 

4.1.1 Species identification 

Humans perceive colour in three broad channels of red, green and blue, whereas plant species 

may potentially be discriminated by higher-precision colour measurements. Significant 

discriminatory wavelengths between weeds and crop can be used in a classification model to 

achieve recognition (e.g. Vrindts & de Baerdemaeker, 1997). The sensing system may be in 
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the form of a point, line or imaging sensor. Wang et al. (2001) implemented a five-

wavelength system using phototransistors to measure reflected light. 

  

4.1.2 Plant material identification 

Sophisticated multispectral imaging technologies have been applied to machine vision 

research in agriculture. Stajnko et al. (2004) identified apples in orchards using thermal 

imaging of trees in the late afternoon to achieve a temperature gradient between the fruit and 

the background whereas Safren et al. (2007) used a hyperspectral image acquisition system 

featuring an acousto-optical tunable filter (AOTF) and principal component analysis to 

identify fifteen spectral bands from 500 to 900 nm that adequately discriminated green apples 

from leaves in an apple orchard. This research provides useful information about spectral 

properties but the expense of the sensing systems limits its routine deployment on-farm. 

 

A portable X-ray source was used by Haff & Slaughter (2009) to successfully identify stems 

through leaves of standing plants in a tomato plantation. The X-ray source and detector were 

mounted on either side of the crop row and inside a metal ‘tunnel’ which provided directional 

X-ray protection for personnel and enabled the apparatus to move continuously along the row 

of plants. 

 

4.1.3 Stress detection 

Carter & Miller (1994) found that herbicide-induced stress could be detected with colour and 

narrowband digital imagery. They captured digital images of soybeans around midday and 

included five grey reference cards to calibrate each image. Narrowband interference filters 

were used to isolate spectral bands in the images.  

 

Colaizzi et al. (2003) developed a spectral reflectance and infrared thermometer sensing 

system on a track on a linear move span to deliver spectral images at four bands and high 

spatial resolution. Leinonen & Jones (2004) combined visible and thermal imaging to identify 

regions of interest in a thermal image of plants (e.g. by isolating plant from soil pixels). 
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4.2 Indoors 

4.2.1 Species identification 

Komi et al. (2007) combined spatial information from a low-cost RGB camera with spectral 

data from a line scan spectral camera (400-1000 nm) to classify the detached leaves of six 

plant species under halogen lighting with a shaded enclosure. Whilst LEDs provide 

monochromatic light, halogen lamps provide a continuous spectrum of light from visible to 

near-infrared wavelengths, thereby making it a suitable illuminator for spectral 

measurements.  

 

4.2.2 Plant material identification 

Applications of machine vision of plant structures include robotic harvesting of fruit in 

greenhouses. A differential two-waveband infrared vision system was designed and tested 

that made use of the spectral differences in fruit and leaves at 850 and 970 nm wavelengths to 

identify cucumbers on a vine (van Henten et al., 2002). This spectral difference also occurs 

between stems and leaves (Kondo & Ting, 1998). Additional image analysis enabled 

selective harvesting of only ripe or mature fruit by modeling the fruit size or volume. 

 

Noordam et al. (2005) presented a comparison of a variety of methods for locating a cutting 

position on a rose stem, for the purpose of automation in the cut flowers industry. One of the 

methods evaluated was X-ray imaging and it was demonstrated that thin leaves were 

completely invisible in X-ray images. However, the approach was limited by stems occluding 

other stems and by the severe safety regulations of X-ray usage. 
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4.2.3 Stress detection 

Potential multispectral imaging technologies for detecting plant water stress include visible, 

IR, NIR, UV and microwave radiation (Takakura et al., 2002). Bacci et al. (1998) showed 

that in a growth chamber, colorimetric techniques could be used to detect plant stress and 

Chaerle et al. (2003) used time-lapse thermal, fluorescence and video imaging of leaves to 

detect herbicide damage. 

 

4.3 Discussion 

Multispectral imaging provides information about properties of plants that are not visible to 

humans. The techniques potentially discern stress level or plant materials without requiring 

complex image analysis algorithms to replicate a human’s visual appraisal of plant 

appearance. However, the expense of systems such as X-ray, tunable filters and thermal 

cameras restricts their application on-farm. Low-cost cameras are potentially sensitive to the 

visible and near infrared regions of the electromagnetic spectrum. Therefore, the addition of 

narrowband illumination or interference filters to a low-cost vision system has potential to 

accentuate plant features of interest at discriminatory wavelengths. 

 

5. Range sensing 
Range sensors are commonly ‘active’ sensor systems in which illumination is supplied as part 

of the system. The sensing systems are more robust to variations in ambient lighting than 

‘passive’ sensor systems comprising only cameras. Similar to the visual hull method 

(Shlyakhter et al., 2001) using multiple camera images, range sensing provides information 

about the canopy bounding geometry. 
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5.1 Outdoors 

Range sensing is typically used for generating maps of overall canopy size at high spatial 

resolution in the field. Geiger (2004) used an array of infrared emitters on either side of a 

cotton row to measure cotton plant height on-the-go. Tumbo et al. (2002), Wei & Salyani 

(2004) and Schumann & Zaman (2005) all used laser scanning and/or ultrasound to estimate 

the volume of trees in a citrus orchard.  

 

5.2 Indoors 

Range sensing using active sensor systems is not typically used indoors for measurement of 

living plants or canopies. This suggests that the technique is principally employed as a robust 

means of acquiring overall canopy geometry in the field environment and that a ‘passive’ 

camera-based system is sufficient or superior in controlled indoor environments for making 

equivalent measurements. 

 

5.3 Discussion 

Active sensing systems are effective for generating overall canopy dimensions without 

requiring complex stereo matching algorithms. However, at present, the method’s ability to 

provide more detailed information about canopy architecture appears limited. 

 

6. Lighting design considerations for outdoor machine 

vision of plants 
It is widely recognised (e.g. Slaughter et al., 2008) that machine vision systems for field use 

need to be designed to be robust to sunlight variations. As noted above, active sensing 

systems are less susceptible to ambient sunlight than passive sensing systems.  However, 

low-cost (passive sensor) cameras with simple imposed illumination may also have reduced-

dependency on sunlight (e.g. Edan et al., 2000).   

 

Images collected by a camera do not need to look appealing to a human, but be in a format 

which simplifies processing for the computer (Harding, 2003). It follows that the imaging 

environment should be conditioned where possible to enable reliable and repeatable 

accentuation of the features of interest, which is desirable for automatic software algorithms.   

 

In practical, application-driven research, prototype development is most rapidly expedited by 

concurrent design of the imaging apparatus and the image analysis algorithm/s. The 

following components have been identified from the preceding literature review as potential 

methods of enhancing machine vision system robustness in the field, particularly with respect 

to use of cameras: 

 Shade structures mounted on on-the-go vision systems potentially inhibit movement of 

the system, particularly in mature canopies. Small, early-stage plants may potentially be 

completely enshrouded (e.g. Edan et al., 2000; Hemming & Rath, 2002). However, 

shading is necessary only to enable the artificial illumination scheme to be dominant (i.e. 

complete elimination of external lighting may not be required).  
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 Colour/reflectance reference panels presented in every image and under the same 

illumination condition as the imaged plant area may provide a constant reference of 

colour which potentially enables colour comparison under varying sunlight (e.g. Noh et 

al., 2005). 

 Differential narrowband imaging provides spectral information with a dynamic spectral 

reference so that discrimination based on absolute reflectance thresholds can be reduced. 

For example, robust discrimination under varying lighting may potentially be achieved if 

imaging occurs simultaneously at a discriminatory wavelength (i.e. a band where the 

plant materials exhibit different spectral properties) and at a reference wavelength (e.g. a 

band where the plant materials exhibit similar spectral properties) (e.g. van Henten et al., 

2002). Standard silicon-based camera technology provides NIR sensitivity up to 

approximately 1000 nm wavelength when the infrared-cut filter is removed. Narrowband 

imaging may potentially be achieved using narrowband optical filters or illumination (e.g. 

Carter & Miller, 1994).  

 Artificial illumination applied intuitively to a scene potentially enables accentuation of 

shape properties, e.g. by use of silhouettes (e.g. Zeng et al., 2008) or by structured 

lighting (e.g. Waksman & Rosenfeld 1997; Noordam et al., 2005).   

 Use of a mechanical agitator (e.g. an air stream or non-destructive contact with the 

foliage) potentially enables vision of parts of a plant that may be occluded by other 

foliage under static conditions (e.g. Hemming et al., 2005). Plant movement implies rapid 

image acquisition to ‘freeze’ the motion, but the standard video frame rate of 25 Hz is 

usually adequate. However, plant contact inherently reduces the speed at which the 

system can operate and increases the bulk of the mechanical structure in the field (e.g. 

McCarthy et al., 2009).   

 Other technologies such as stereoimaging (e.g. Jin & Tang, 2009) and multispectral 

sensors (e.g. X-ray in Haff & Slaughter, 2009 and hyperspectral in Safren et al., 2007), 

potentially provide information that could augment a camera system. 

 

Robust performance of the machine vision system may enable integration of the system with 

an existing farm operation. For example, attaching a machine vision system to the gantry of a 

centre pivot or lateral move irrigation machine potentially enables crop condition to be 

measured in real-time as the irrigation machine moves across the field (e.g. Colaizzi et al., 

2003; McCarthy et al., 2009). Alternatively, tractor-mounting of the system may be desirable 

so assessments can be made as the tractor moves alongside the field. In this case, the sensed 

data may potentially be used to generate a map of plant attributes for use in informing 

management decisions. 

 

7. Conclusions 
On-the-go infield sensing of geometric crop plant parameters is currently limited to leaf 

shape identification and biomass estimation in the foliage of small plants, or plant height and 

biomass estimation in fully developed canopies. The desire to measure plant leaf-level 

attributes (e.g. internode length and leaf shape) in maturing field plants requires the design of 
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a robust outdoor machine vision system that achieves detailed structure sensing. These 

systems have so far only been reported for automated laboratory or greenhouse systems on a 

limited number of crops under controlled lighting and environmental conditions. The 

literature to date indicates that achieving robust machine vision solutions in the field 

environment may require intuitive lighting and optical design earlier in the development of 

the system. Certainly, robust operation is required for the machine vision system to be used 

routinely in farming operations. 
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