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Local Moving Least Square - One-Dimensional IRBFN
Technique: Part | - Natural Convection Flows in
Concentric and Eccentric Annuli

D. Ngo-Congd-?, N. Mai-Duy?!, W. Karunasena and T. Tran-Cong':3

Abstract:  In this paper, natural convection flows in concentric ancertiic an-
nuli are studied using a new numerical method, namely loaaling least square
- one dimensional integrated radial basis function net&@ttVILS-1D-IRBFN).
The partition of unity method is used to incorporate the mgveast square (MLS)
and one dimensional-integrated radial basis function [RBFN) techniques in an
approach that leads to sparse system matrices and offegh delvel of accuracy
as in the case of 1D-IRBFN method. The present method passadsronecker-
Delta function property which helps impose the essentiahidary condition in an
exact manner. The method is first verified by the solution efttto-dimensional
Poisson equation in a square domain with a circular holey épplied to natural
convection flow problems. Numerical results obtained amgoiod agreement with
the exact solution and other published results in the libeea

Keywords: Natural convection, concentric annulus, eccentric arsyuiiegrated
radial basis functions, moving least square, partitionrifiy Cartesian grids.

1 Introduction

Natural convection has been investigated both experirtgrtad numerically by
many researchers for its wide applications, including eaickeactor designs, so-
lar energy systems, cooling of electronic equipments aadhl storage systems.
Banerjee, Mukhopadhyay, Sen, and Ganguly (2008) condwxtstlidy of heat
transfer in a square enclosure with two discrete heat ssummminted on its bot-
tom wall using finite volume method (FVM). Their work is uskiiuthe design of
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efficient heat-removal systems in electronics and MEMSiegiibns. Jubran, Al-

Abdali, Al-Hiddabi, Al-Hinai, and Zurigat (2004) simulateconvective layers on
solar pond walls using three-dimensional FVM for solvinggervation equations
for mass, chemical species, momentum and energy. Theytigaesl the effects of
wall tilt angle and salt concentration on the charactesstif the convective layers.
Costa and Raimundo (2010) numerically studied a mixed agiore in a heated

square enclosure with a rotating cylinder within it. Theysetved that the size
of the inner cylinder strongly affects the resulting flow dweht transfer process.
Their simulation can be used to model real situations wheotaging shaft is used
to control the performance of natural convection in an enale.

Kuehn and Goldstein (1976) conducted experimental andékieal studies to in-
vestigate the natural convection within an annulus betwemizontal concentric
cylinders. Their experimental results showed that the flevsteady for small
Rayleigh numbers. Their numerical results were in goodeagent with their ex-
perimental data. Moukalled and Acharya (1996) studied #teral convection in a
annulus between concentric horizontal circular and squdieders using a control
volume-based method. Shu and Zhu (2002) employed the dliffiet quadrature
(DQ) method to simulate the natural convection in a conéemimnulus between
a cold outer square cylinder and a heated inner circulandgti The DQ method
can yield very accurate numerical results owing to its dl@pgroximation. How-
ever, the irregular physical domain must be transformead @ntegular computa-
tional domain, and the governing equations as well as thadsy conditions are
also transformed into relevant forms in the computatiopaks. Sarler and Perko
(2004) presented a radial basis function collocation nekfbosolving natural con-
vection problems in porous media in terms of primitive vialés. Recently, Kim,
Lee, Ha, and Yoon (2008) employed an immersed boundary m€tBi) based
on FVM with non-uniform Cartesian grid distribution for tkenulation of natural
convection between an inner circular cylinder and an owteare enclosure.

When dealing with incompressible viscous flows in multipganected domains
using stream function-vorticity formulation, the streanmdtion value on the in-
ner boundaries are unknown and can be determined througigla-sialued pres-
sure condition [Lewis (1979)]. Tezduyar, Glowinski, ancli(1988) proposed
a streamline-upwind/Petrov-Galerkin finite element pduce for a computation
of two-dimensional fluid flow involving multiply-connectetbmains based on the
vorticity-stream function formulation. The stream fuctivalues at the internal
boundaries were determined through additional equatibteired by integrating

the equation of motion along those boundaries. Shu, XueZand2001) applied

the DQ method to the natural convective transfer in an edceainulus between
a circular inner cylinder and a square outer cylinder. lirtiverk, an explicit for-
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mulation of the stream function value on the inner cylindatlwas derived from
the single-valued pressure condition.

In the past decades, meshfree methods have become a vessiimg research
topic as they might have certain advantages over convaitiement-based meth-
ods. Some of their appealing properties are (i) a significaditiction in discreti-
sation complexity and (ii) suitability for solving problermvith moving boundaries
and complicated geometry. However, global meshfree metlaod not suitable
for simulating large-scale problems because they prodecg dense system ma-
trices, which leads to the ill-conditioning problem, lagferage requirement and
a long computational time [Kansa (1990); Zerroukat, Djidgnd Charafi (2000);
Sarler and Perko (2004)]. In order to overcome this disaiéem local mesh-
free methods have been proposed. Shu, Ding, and Yeo (2068¢mied a local
RBF-based differential quadrature method (local RBF-Ddp Bfsimulation of nat-
ural convection in a square cavity. In their study, threestayof orthogonal grid
near and including the boundary were generated for the parpbimposing the
Neumann condition for temperature and vorticity on the walhe derivatives of
the field variables in the boundary conditions were thenrdised by the con-
ventional one-sided second order finite difference schebiag, Shu, Yeo, and
Lu (2005) employed the local RBF-DQ method for simulatiomafural convec-
tion in a horizontal eccentric annulus. In their work, théeefs of eccentricity
and angular position on the flow and thermal fields for medispeat ratios were
studied. The local RBF-DQ method was also used for solviagrimpressible flow
problems including the driven-cavity flow, flow past one &et cylinder and flow
around two staggered circular cylinders [Shu, Ding, and {@895)]. Sarler and
Vertnik (2006) proposed an explicit local radial basis fiimt collocation method
for diffusion problems. The method appeared efficient, beedt does not deal
with a large system of equations like the original Kansa metfiKansa (1990)].
The method was then extended to solve many other problenhsasuconvection-
diffusion problems with phase change [Vertnik and Sarl@06)], a solution of
conjugate heat transfer [Divo and Kassab (2007)], and aisnlof incompress-
ible turbulent flow [Vertnik and Sarler (2009)]. Recentlyac( Sarler, and Chen
(2011) presented a comparison of three explicit local nesshinethods includ-
ing a local method of approximate particular solutions (LR), a local direct
radial basis function collocation method (LDRBFCM), andbedl indirect radial
basis function collocation method (LIRBFNCM). Three mathavere applied to
a simple diffusion equation with Dirichlet jump boundaryndition based on both
uniform and non-uniform node distributions. Their numaiesults showed that
all methods have high accuracy and improvement of the aciesravith increasing
node density and decreasing time step. For random nodegareamt, the LMAPS
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and the LDRBFCM are more stable than the LIDRBFCM. Some otheshfree

methods based on local approximations include meshless Retrov Galerkin

method (MLPG) [Atluri and Zhu (1998)], a point interpolationeshless method
based on combining radial and polynomial basis function lapgvand Liu (2002),

local multiquadric (LMQ) and local inverse multiquadriclflQ) approximation

methods by Lee, Liu, and Fan (2003), a moving IRBFN-basee@®&ial meshless
method proposed by Le, Rabczuk, Mai-Duy, and Tran-CongQR01

A different approach for solving PDEs is the so-called Gaate grid method where
the governing equations are discretised by a Cartesiamgpich does not conform
to the immersed boundaries. This significantly reduces tie generation cost
and has a great potential over the conventional body-fittethaas when solving
problems with moving boundaries and complicated geom&wyMittal, Udayku-
mar, and Shyy (1999) developed a finite-volume based Cantagid method for
simulating two-dimensional unsteady, viscous, incomgitds flows with complex
immersed boundaries. In their method, the immersed bowridaepresented by
a series of piecewise linear segments. Based on these sigrencontrol vol-
ume near the immersed boundary is reformed into a body-fitegkzoidal shape.
Russell and Wang (2003) presented a Cartesian grid methadlfong 2D incom-
pressible viscous flows around multiple moving objects tasestream function-
vorticity formulation.

As an alternative to the conventional differentiated radasis function network
(DRBFN) method [Kansa (1990)], Mai-Duy and Tran-Cong (28)0firoposed the
use of integration to construct the RBFN expressions (tH@FIR method) for
the approximation of a function and its derivatives and fa $olution of PDEs.
The numerical results showed that the IRBFN method achisuggrior accu-
racy [Mai-Duy and Tran-Cong (2001a); Mai-Duy and Tran-Cqag01b)]. A
one-dimensional integrated radial basis function netwaEx-IRBFN) collocation
method for the solution of second- and fourth-order PDEs pvasented by Mai-
Duy and Tanner (2007). Along grid lines, 1D-IRBFN are comstied to satisfy
the governing differential equations with boundary caodi in an exact manner.
In the 1D-IRBFN method, the Cartesian grids were used torelise both rect-
angular and non-rectangular problem domains. The 1D-IRBfethod is much
more efficient than the original IRBFN method reported in Ndaly and Tran-
Cong (2001a). Le-Cao, Mai-Duy, Tran, and Tran-Cong (20ipleyed the 1D-
IRBFN method to simulate unsymmetrical flows of a Newtoniaidfin multiply-
connected domains using the stream-function and temperfitmulation. Ngo-
Cong, Mai-Duy, Karunasena, and Tran-Cong (2011) exterfusdrtethod to inves-
tigate free vibration of composite laminated plates basefirst-order shear defor-
mation theory. Ngo-Cong, Mai-Duy, Karunasena, and Trangd@012) proposed
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a local moving least square - one dimensional integrateidlrbdsis function net-
work method (LMLS-1D-IRBFN) for simulating 2-D steady imopressible vis-
cous flows in terms of stream function and vorticity. The rodtlis based on the
partition of unity framework to incorporate the moving lesguare and 1D-IRBFN
techniques in an approach that produces a very sparse sys@in and offers as
a high level of accuracy as that of the 1D-IRBFN. Moreover, L$41D-IRBFN
shape function possesses the Kronedkeroperty which helps impose the essen-
tial boundary condition in an exact manner. In this artithe LMLS-1D-IRBFN
is applied to the solution of the stream-function, vorti@hd temperature formula-
tion of the natural convection in concentric and eccentmicudi. For the concentric
case, the stream function values at the inner and outer boiesdare taken to be
zero. For the eccentric case, the stream function valueeabtiter boundary is
taken to be zero, while the stream function at the inner dglins unknown and
calculated based on the single-valued pressure condition.

The paper is organised as follows. Section 2 describes ttatiomms. The LMLS-
1D-IRBFN method is presented in Section 3. The governinggos for natural
convection flows are given in Section 4. Several numericahgles are investi-
gated using the proposed method in Section 5. Section 6udesithe paper.

2 Notations

In the remainder of the article, we use

« the notation[ | for a vector/matrix ] that is associated with a segment of a
grid line;

o~

* the notation | for a vector/matrix ] that is associated with a grid line;

« the notation| | for a vector/matriX | that is associated with the whole set of
grid lines;

« the notation[ |, ¢y to denote selected rows and columns9 of the matrix

BE
» the notation ], to denote selected componentsf the vector |;

+ the notation[ | ¢y to denote all rows and selected colunthef the matrix
[]; and

« the notation[ ], .y to denote all columns and selected royef the matrix

[]-
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3 Local moving least square - one dimensional integrated rddl basis func-
tion networks technique

A schematic outline of the LMLS-1D-IRBFN method is depiciedrig. 1. The
proposed method with 3-node support domaims:-@3) and 5-node local 1D-IRBF
networks (s = 5) is presented here. On argrid line [I], a global interpolant for
the field variable at a grid poing is sought in the form

i U[J] 1)

where{(ﬁj}” is a set of the partition of unity functions constructed gsLS

approximants [Liu (2003)]ulil(x;) the nodal function value obtained from a local
interpolant represented by a 1D-IRBF netwdjk n the number of nodes in the
support domain ok. In (1), MLS approximants are presently based on linear
polynomials, which are defined in terms of 1 andt is noted that the MLS shape
functions possess a so-called partition of unity propsie follows.

5,90

Relevant derivatives af atx; can be obtained by differentiating (1)

(@)

‘$ I

dux) & [ap(x) i — oulil(x)

i) _ le(#um(wcmxo U ) ®
o2ux) & (*G(%) gy L0@(x)dull(x)  —  9%ull(x)

0x2 _le< di(z wix) +2 ax oax (%) 0x2 )’ ()

where the valuesl!(x),dulll (x) /dx and %ulll (x) /@x? are calculated from 1D-
IRBFN networks withng nodes.

3.1 Onedimensional IRBFN

Consider a segmenf][with ns nodes on amx-grid line [I] as shown in Fig. 1. The
variation of the nodal functionll! along this segment is sought in the IRBF form.
The second-order derivative of! is decomposed into RBFs; the RBF network is
then integrated once and twice to obtain the expressiorikddirst-order derivative
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of ulll and the functiorull! itself as follows.
dzu[j](x) Ns Ng K)

- KNG (x) = (K
e kZ WG (x) = kle Hy (%), (5)
oull(x)
— (K) 1y (K)
. kZlW H[l] (X) +c1, (6)
U[J] Z —I—C]_X—I— Co, (7)
(K) sy 1™
where{wk }k ,are RBF Welghts to be determln@ k 1= {H[Z] (x)}ki1

known RBFSH[ ]( )= fH ( )dx; H I‘)( X) = fH ( )dX' andc; andc; integra-

tion constants which are aIso unknown An example of RBRJ urs¢his work, is

the multhuadrlcsG<">( X) = /(x—x®)2 1 ak2 ak - the RBF width determined
asa® = pd®™, B a positive factor, and¥ the distance from th&™ center to its

nearest neighbour.

It is more convenient to work in the physical space than innbgvork-weight
space. The RBF coefficients including two integration camtst can be transformed
into the physically meaningful nodal variable values tlgiothe following relation

l]“]:H_(\g>, (8)

whereH is anng x (ns+ 2) matrix and given by

1 2 s
Ho 0w H'0w) . HgP(a) xa 1
(1) @) 1y (9
H— H[O] (Xz) H[O] (Xz) [0] (Xz) X2 1 : (9)
1 2 s
Ho 06) HE 00 oo H[(O?)(xns) Xp, 1

all = (u®,u@ . um) T w= (WD, w@ . w)T andc= (c1,¢2)". There are
two possible transformation cases.

For a segment [j] with only interior points: The direct use of (8) leads to an under-
determined system of equations

( "g ) =c il (11)
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whereC = H is the conversion matrix whose inverse can be found usingitigel-
lar value decomposition (SVD) technique.

For a segment [j] with interior and boundary points: Owing to the presence @f
andcp, one can add an additional equation of the form

f:K<§> (12)

to equation system (8). In the case of Neumann boundary tomsli this subsys-
tem can be used to impose a derivative boundary value-at,

_(?U(Xb)
o >0, (13)
<= [ Moo HT0e) - o) 1 0], @

The conversion system can be written as

(% )-[K](E)-e(%) s

or

W — il
(2)-e(%)

It can be seen that (11) is a special case of (16), wthieiesimply set to null.
By substituting Equation (16) into Equations (5)-(7), tleeand- and first-order
derivatives and the function of the variahlé! are expressed in terms of nodal
variable values as

T = (M 0.0, 1.0 0) (%) “
auglx( ) _ HE (09, HE (9., Hig™ (x ( w > (18)
ull(x) = (H[g?(x),H[gz])(x),...,H[g] J(x),%, 1)6 ( ‘ﬁf” > (19)
or

% = 3, 00+ ko (%), (20)
% = d 0t + key(%), (21)

ull(x) = dd ol + kox(x), (22)
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wherekoy, kix andkyy are scalars whose values depenckamd the boundary value
f; anddoy, dix andd,y known vectors of lengtins.

By application of Equations (20) and (21) tg nodes on the segmenj]| the
second- and first-order derivativesof at nodex are determined as

22ulll(x — B
75)(2( ) 2x(iak) U + Kax(ick (23)
oulll(x; — L

ai ) = B 0+ i (24)
Ul (%) = Dioxgiakesy 0 + Koxiaky = ik UV, (25)

where 51X and 52X are known matrices of dimensiaR x ns; kix andkyx known
vectors of lengtins; andidk the index number indicating the location of node

in the local networkKj]. It is noted thaDox = I, wherel is an identity matrix of
dimensionns x ns andkgy = 0. Therefore, the 1D-IRBFN shape function possesses
the Kroneckerd function properties.

3.2 Incorporation of MLSand 1D-IRBFN into the partition of unity framework

By substituting Equations (23)-(25) into Equations (1)-#e functionu(x;) and
its derivatives are expressed as

Z —U] It (26)
‘912(?) _ J; (ki k). o
Tl (i ), ©8)
where
Ty = (Ej(_xi)_(idk,:)a (29)
My, = a(pajiXi) gk + @ (%) Dixiick.) (30)
il - 62;px(zxa)|—(ldk ) +25fpa§( X;) Daxgiak:) + @ (%) Daxgici.) (31)
ki = @ (Xl)klx(ldk) (32)
ke, = dq;( )klx k) + @06 Kax(iak) - (33)
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From Equations (2), (26) and (29), one can see that the LMRIRIBFN shape
function possesses the Kroneckefunction properties. Equations (27) and (28)
can be expressed as

Ou(X) _ i) i), i
o~ M +kiv, (34)
02u(X) _ il ] i
5 = Motk (35)

whereu = (u<1),u(2),...,u(”r))T; n is the number of nodes in the netwdik kﬂ
and kgi known scalars; anm[l'xi'andm'gl( known vectors of length,, defined by

rﬁ[&(idj) = _m(idj) +rﬁ[1’)](, i=12..,n (36)
m[ZIl((idj) = m[2>< (idj) +rﬁ[21>](7 j=12..n (37)

in whichidj is the index vector mapping the location of nodes of the laeaork
[j] to that in the LMLS-1D-IRBF networki].

The values of first- and second-order derivatives wfith respect toc at the nodal
points on the grid lingl] are given by

% — Ml + ] (38)
020~ A
2=V ball 4 i) (39)
where

.
0= <u(1),u(2), ...,u(”')> , (40)
o 1] _ Al
M i idiy = My (41)
il _ Al
M o idiy = My, (42)
Ai]((i) = kﬁo (43)
@(i) = kgi, (44)

in which n; is the number of nodes on the grid lifié, andidi the index vector
mapping the location of nodes of the local netwiko that in the grid lin€l].

The values of first- and second-order derivatives wfith respect toc at the nodal
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points over the problem domain are given by

o0f ~ . -

ax Motk (45)
0% . . -

e~ Mad+ ke (46)
where

(= (u(l),u(z),...,u(Nip))T’ (7)
aa aud au@  guNe)

&_<dx’dx’ TaX ’ (48)
o2 (o2 o2 g

a2\ o2 ok T 0 ’ (49)

andM 1, andM 5, are known matrices of dimensidd, x Nip; kix andkoy, known
vectors of Iengtm.p, andN;p the total number of interior nodal points. The matri-
cesM 1, andM 5, and the vectorklx and kzX are formed as follows.

M 1xid ial) = M n (50)
M axiid idl) = M o (51)
Kaxia) = ki, (52)
Koxial) = Kb (53)

in whichidl is the index vector mapping the location of nodes on the gmal[l] to
that in the whole grid.

Similarly, the values of the second- and first-order deirrest of u with respect to
y at the nodal points over the problem domain are given by

— =My 4
dy ]_yu+ 1y (5)
%0 ~ . -

4 Governing equations for natural convection flows

Fluid properties are assumed to be constant except thatetigtyl changes with
temperature, which is represented by using the Boussingsmxdmation. The
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dimensionless governing equations, expressed in terntseains functiony, vor-
ticity w and temperatur&, are written as

o’y %y

W+d—)/2__w’ (56)
0w d°w 1w 0T 1 [(dYdw IdYiw
W+d—y2_5rﬁ__RaW+Er(d_yW_Wd_y>’ ®7)
0°T 0°T 0T oOYoT oyoT

ol o1 o _owol owol (58)

ox2  9y2 9t  dy dx Ix dy’

wherePr is the Prandtl number defined Bs = uC,/k, Ra the Rayleigh number
defined aRa= (CppogBoLAT) / (kv), U the viscosityC,, the specific heat at con-
stant pressurek thermal conductivitypg the reference densitg the gravitational
accelerationf3y the thermal expansion coefficierit,the side length of the square
outer cylinder, AT the temperature difference between inner and outer cyknde
v the kinematic viscosityt the time, andx,y)" the position vector. Th& andy
components of the velocity vector can be defined in termsen$tream function as

_dy

u= ay’ (59)
_ oy

V__W' (60)

The computational boundary conditions for vorticity cancbenputed as

(% | O
(%) o

where the subscriplv is used to denote quantities on the boundary. For curved
boundaries, a formula reported in [Le-Cao, Mai-Duy, andni@ong (2009)] is
employed here to derive the vorticity boundary conditioniscaindary points ox-
andy-grid lines as follows.

t\ 2] 92

[ (5] ]
t,\?] 92

w! =— |1+ (t—y> ]—a;gw—qm (63)
X
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whereqy andgy are known quantities defined by

ty %Y | 107
=2 = 64
O t2 dyds 'ty Oxds’ (64)
ty 02 102
= — l.UW+ Y (65)

Y7 12 0xds 'ty dyds’

in which t, = dx/ds,ty = dy/ds ands is the direction tangential to the curved
surface.

Boundary conditions for stream function and temperatueesaecified in the fol-
lowing examples.

5 Numerical results and discussion

The present method is applied to obtain the solution of timeedsional Poisson
equation in a square domain with a circular hole, and theralatonvection in con-
centric and eccentric annuli. The problem domains are elised using Cartesian
grids. By using the LMLS-1D-IRBFN method to discretise tbft hand side (LHS)
of governing equations and the LU decomposition techniqusolve the resultant
sparse system of simultaneous equations, the computhtiosizand data storage
requirements are reduced. In the analyses of natural chondows, the diffusion
terms are discretised using the LMLS-1D-IRBFN method, wherthe nonlinear
convection terms are explicitly calculated using the 1BHRl method. As shown
in the previous work [Ngo-Cong, Mai-Duy, Karunasena, andnf€ong (2012)],
this approach yields more accurate solutions than the oimg tise LMLS-1D-
IRBFN to discretise both diffusion and convection termstha following Exam-
ples 2-4, computational boundary conditions for vorti@tg determined by Equa-
tions (61)-(65).

5.1 Example 1. Two-dimensional Poisson equation in a square domain with a
circular hole

The present method is first verified through the solution eftfiowing 2D Poisson
equation
d%u 9%
e Ty O (66)

defined on a square domain with a square hole as shown in Figd 2ubject to
Dirichlet boundary conditions. The problem has the follegvexact solution

ug = (1/sinh(m)) sin(7x) sinh(y), (67)
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from which the boundary values afcan be derived.

It is noted that the accuracy of RBF-based solution dependh® RBF width,
small or large values of the RBF width make the response ofometoo peaked

or flat, respectively [Haykin (1999)]. Fig. 3 presents {B@adaptivity study of
relative error normNe) and condition numbercond) in a range of 4< 3 < 10 by
using the LMLS-1D-IRBFN method. It appears that the acoutiacreases with
increasing value of3 for coarse grids. However, the solution becomes unstable
at large values of8 for dense grids. Therefore, proper valuesBoére required

to obtain good numerical solutions. The condition numbérhe system matrix
remains unchanged for different valuesftaind are slightly different from those

of the 1D-IRBFN method.

Tab. 1 describes the grid convergence study of relative aoons (Ne), condition
number ¢ond) and percentage of nonzero elements of the system majrof the
present method wit|p = 6 in comparison with those of 1D-IRBFN method. Both
methods yield highly accurate results and converge wel imicreasing node den-
sity. It is observed that the convergence order of LMLS-HRBFN (error norm
of O(h1?9)) is smaller than that of 1D-IRBFN (error norm 6fh*10)), however,
the accuracy of former is better than that of the latter atvarggrid size. In addi-
tion, the present method is more efficient than the 1D-IRBF&thmod in terms of
memory requirements (e.g., 12.6 times for a grid of £0D5).

5.2 Example 2: Concentric annulus between two circular cylinders

The present method is applied to the solution of natural ection in a concentric
annulus between two circular cylinders. The problem gepneaatd boundary con-
ditions are described in Fig. 4. The parameter values useddne:Pr = 0.7,L =
1.0 andL/D; = 0.8, whereL is the annulus width, anD; the inner cylinder diam-
eter. The average equivalent conductivity is given by

_ _in(Dy/Dy) [ OT
keg = 21 %ds,

whereDy, is the diameters of the outer cylinder; andhe direction normal to the
cylinder surfaces.

(68)

Tab. 2 shows the grid convergence study of average equivadaluctivity on the
outer and inner cylinders for Rayleigh numbers from @7 x 10*. Three levels
of grid density including 4k 41,51 x 51 and 61x 61 are considered. The present
numerical results are compared with the 1D-IRBFN, FDM and\vDf@sults ob-
tained by Le-Cao, Mai-Duy, and Tran-Cong (2009); Kuehn antd&ein (1976);
and Shu (1999), respectively. It can be seen that the pressults converge to
those reference values with increasing grid density.
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Figs. 5 and 6 show the influence of Rayleigh number on the algurity conductivi-
ties on the inner and outer the cylinders, respectively. fiuges indicate that heat
is being convected from the lower portion of the inner cydindo the top of the
outer cylinder.

Figs. 7 and 8 present the contours of temperature and str@aetidn of the flow
in the annulus for Rayleigh numbers from?1® 7 x 10*. Those contours are
symmetric with respect to the vertical center line. At lowyRégh numbers (say
< 107), the flow appears almost symmetric about the horizontalecdime since
convection is quite small. As the Rayleigh number increabescenter of rotation
moves upwards and the temperature distribution becomertidf resulting in an
increase in overall heat transfer. The highest local heatftgurs at the stagnation
point while the smallest local heat flux occurs at the sefmrgtoint. For the inner
cylinder, the stagnation point is at the bottom while theasafion point is at the
top. For the outer cylinder, the stagnation point is at theevitiile the separation
point is at the bottom.

5.3 Example 3: Concentric annulus between a sguare outer cylinder and a
circular inner cylinder

This example is concerned with the natural convection inreentric annulus be-
tween a square outer cylinder and a circular inner cylinfiee problem geometry
and boundary conditions are depicted in Fig. 9. The paranvetaes used here
are:Pr =0.71 andL/2R = 2.5, wherelL is the side length of the outer square, and
Rthe radius of the inner cylinder. The average Nusselt nunistdgfined by

1 /0T
Nu= K %ds, (69)
wherek is the thermal conductivity.
Tab. 3 presents the grid convergence study of the averageeNlnsimber on the in-
ner and the outer cylinders for different Raleigh numbersukélled and Acharya
(1996) studied this problem by solving the governing dlligtonservation equa-
tions in a boundary-fitted coordinate system using a conhime-based proce-
dure. The governing equations were solved for only one-tfathe physical do-
main since the flow is symmetric about the vertical axis. kb pinesent study, a
whole of the physical domain is considered. Therefore, Hlegame Nusselt num-
bers obtained are divided by 2 for the purposes of comparig@man be seen that
the present results converge to the 1D-IRBFN [Le-Cao, May;[and Tran-Cong
(2009)] and FDM [Moukalled and Acharya (1996)] results witlcreasing grid
density.

Fig. 10 shows the contours of temperature, stream functidrvarticity of the flow
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field inside the enclosure for different Rayleigh numbettse umerical results ob-
tained are symmetric about the vertical center line. Theéowos of stream function
shows that the flow moves up along the inner cylinder wall dedvertical axis to

reach the top of the outer cylinder, and then moves down alea@uter cylinder

wall. There are boundary layers near the bottom of the inylarder and near the
top of the outer cylinder, while a flow separation occurs ribartop of the inner

cylinder which forms a thermal plume. Those behavioursegrel with published

results in the literature.

54 Example 4. Eccentric annulus between a square outer cylinder and a cir-
cular inner cylinder

Natural convection heat transfer between a heated circylarder placed eccen-
trically inside a square cylinder is studied. The streancfion value on the outer
wall is taken to be zero, while the stream function value anitmer wall (4ya)
is unknown, which can be determined by using a single-vapredsure condition
through the following equation.

0341 2y
dydxzd +7{ 3 d 7{ dx@y2 dy=0. (70)

whererl is the inner boundary. The reader is referred to the work e€he, Mai-

Duy, Tran, and Tran-Cong (2011) for further details. Thergetsy and boundary
conditions of the present problem are described in Fig. Xerew is the angular
position of the center of the inner cylindd®,the radius of the inner cylinder and

L the side length of the outer square. The dimensionless euignis defined by

& = €/(L/2—R), wheresg is the distance between the centers of the inner and outer
cylinders. The simulation is conducted with the parametduesPr = 0.71,Ra =

3x 10° andL/2R = 2.6.

The comparison of the maximum stream-function valugy, the stream-function
values on the inner cylindety and the average Nusselt number among the
present method and the other methods for different valuegarfid¢ are shown in
Tabs. 4, 5 and 6, respectively. A grid of 10808 is taken for the caseg = 0.75
and¢ = 0,—90,90, while a grid of 82 82 is used for the other cases. The present
results are in good agreement with those of the MQ-DQ [Dirwy, ¥Yeo, and Lu
(2005)] and 1D-IRBFN [Le-Cao, Mai-Duy, Tran, and Tran-Caf2§11)] meth-
ods. The differences afinax between the present method and the MQ-DQ and the
1D-IRBFN are less than.@% and 19%, respectively. The differences of Nusselt
numbers between the present results and the MQ-DQ resaltiess than 1%.

The differences offg between the present results with the other results are quite
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large due to the sensitivity in the determination of streamcfion value on the
inner cylinder wall, which is also mentioned by Ding, ShupYend Lu (2005).
Figs. 12, 13, 14, 15, and 16 present the contours of temperattream function
and vorticity of flow field inside the eccentric annuli withffédrent values ofey
and¢. These contours agree well with those in [Ding, Shu, Yeo, land2005);
Le-Cao, Mai-Duy, Tran, and Tran-Cong (2011)].

6 Conclusions

The local MLS-1D-IRBFN method is developed and successapiplied to simu-
late the natural convection flows in multi-connected domairhe governing equa-
tions are formulated in terms of stream function, vortiatyd temperature. The
unknown stream function value on the inner boundary is detexd by using the
single-valued pressure condition. The diffusion termsdiseretised by using the
LMLS-1D-IRBFN while the nonlinear terms are calculated l@ifty by using the
1D-IRBFN method. Uniform Cartesian grids are employed taresent all the
problem domains. The numerical results showed that the LIMDSRBFN ap-
proximation produces a very sparse system matrix whichshedge a lot of mem-
ory, while offers a high level of accuracy as that of the 1IBHN method. The
numerical results obtained for a wide range of Rayleigh rensiland various ge-
ometry parameters are in good agreement with the numeritalayailable in the
literature.
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Table 1: Poisson equation in a square domain with a circuler $ubject to Dirich-
let boundary conditions: comparison of relative error n@gm®), condition number
(cond) and percentage of nonzero elements of the system majrixiging3 =1
for 1D-IRBFN andg = 6 for the present method (LMLS-1D-IRBFN).

Grid Ne cond £(%)

1D-IRBFN Present 1D-IRBFN Present 1D-IRBFN  Present
25x 25 3.38E-05 5.82E-06 3.31E+02  3.32E+02 7.79 2.48
33x 33 1.34E-05 3.05E-06 3.56E+02 3.74E+02 5.79 1.43
41x 41 6.65E-06 2.00E-06 5.96E+02 6.06E+02 4.55 0.92
49x 49 3.87E-06 1.42E-06 9.00E+02 8.97E+02 3.84 0.64
57x 57 2.38E-06 1.05E-06 1.66E+03 1.68E+03 3.26 0.47
65x 65 1.58E-06 7.97E-07 2.28E+03  2.38E+03 2.88 0.36
73x 73 1.09E-06 6.33E-07 2.99E+03  3.07E+03 2.54 0.29
81x 81 7.89E-07 5.18E-07 4.06E+03 4.17E+03 2.27 0.23
89x 89 5.90E-07 4.19E-07 4.05E+03 4.10E+03 2.09 0.19
97 x 97 4.48E-07 3.62E-07 4.50E+03  4.54E+03 1.90 0.16
105x 105 3.53E-07 3.03E-07 6.02E+03  6.30E+03 1.77 0.14

Table 2: Concentric annulus between two circular cylindegsid convergence
study of the average equivalent conductivity on the outerianer cylinderskego
andky;, respectively, for different Rayleigh numbers.

Ra 107 10° 3x10° 6x10° 100 5x100 7x10f
Grid Keqi
41x 41 1.002 1.083 1.397 1716 1.983 3.107 3.462
51x51 1.001 1.083 1.399 1719 1984 3.017  3.288
61x 61 1.001 1.083 1.398 1.717 1.982 2983  3.238
1D-IRBFN® 1.000 1.083 1.396 1.709 1.975 2.962 3.207
FDMP 1.000 1.081  1.404 1.736 2.010 3.024 3.308
DQMC 1.001 1.082 1.397 1.715 1.979 2.958

Keqo
41x 41 1.001 1.083 1.399 1.715 1.969 3.264  3.733
51x51 1.001 1.083 1.399 1718 1979 2.996  3.394
61x 61 1.001 1.083 1.398 1717 1981 2.927  3.218
1D-IRBFN®  0.999 1.080 1.393 1712 1970 2.942 3.246
FDMP 1.002 1.084  1.402 1.735 2.005 2.973 3.226
DQM¢E 1.001 1.082 1.397 1715 1979 2.958

a[Le-Cao, Mai-Duy, and Tran-Cong (2009)]
b [Kuehn and Goldstein (1976)]
¢ [Shu (1999)]
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Table 3: Concentric annulus between a square outer cylagra circular inner
cylinder: Grid convergence study of the average Nusseltb&uron the inner and
outer cylindersNu; andNug, respectively, for different Rayleigh numbers.

Ra 100 5x100 10° 5x10° 10°
Grid NU;
43x 43 323 405 490 7.58 9.00
53x 53 323 405 491 756 894
63x 63 323 406 492 755 890
1D-IRBFN®& 3.21 404 489 751 885
FDMP 3.24 4.86 8.90
DQM¢® 3.33 5.08 9.37
NUO
43x 43 322 403 486 7.31 915
53x 53 322 405 489 7.38 876
63x 63 323 405 491 743 867
1D-IRBFN® 3.22 404 489 7.43 8.70
FDMP 3.24 4.86 8.90
DQM¢® 3.33 5.08 9.37

a[Le-Cao, Mai-Duy, and Tran-Cong (2009)]
b [Moukalled and Acharya (1996)]
¢ [Shu and Zhu (2002)]



Manuscript submitted to CMES

25

Table 4: Eccentric annulus between a square outer cylinggraacircular inner
cylinder: Comparison of the maximum stream-function valye.y for different
values ofgg and¢.

Wimax
) & DQ* MQ-DQ® 1D-IRBFN® Present
—90° 0.25 18.67 18.64 18.63 18.64
0.50 21.43 21.29 21.30 21.34
0.75 24.07 23.52 23.47 23.68
—45° 0.25 18.84 18.50 18.50 18.53
0.50 19.75 20.03 20.09 20.11
0.75 20.65 21.01 21.02 21.06
0.95 21.68 21.59 21.61 21.63
0° 0.25 17.15 17.00 17.00 17.01
050 18.77 16.97 16.99 16.99
0.75 16.83 16.84 16.87 16.89
45 025 1556 15.32 15.31 15.33
0.50 14.60 14.35 14.23 14.49
0.75 13.94 13.61 13.52 13.56
095 12.96 12.98 12.91 13.02
90° 0.25 12.55 12.39 12.37 12.41
050 11.32 11.38 11.36 11.41
0.75 10.26 10.09 10.10 10.11

a[Shu, Xue, and Zhu (2001)]
b [Ding, Shu, Yeo, and Lu (2005)]
¢ [Le-Cao, Mai-Duy, Tran, and Tran-Cong (2011)]
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Table 5: Eccentric annulus between a square outer cylinggraacircular inner
cylinder: Comparison of the stream-function values on timer cylindery, for
different values oty and¢.

Ywall
) £ DQ? MQ-DQ° Present
—90° 025 <10% <103 <10°
050 <10* <103 <103
075 <104 <10°% <103

—-45 0.25 0.11 0.04 0.02
0.50 0.47 0.46 0.80

0.75 1.46 1.46 1.09

0.95 1.80 1.64 1.80

0° 0.25 0.15 0.20 0.27
0.50 1.64 0.94 0.97

0.75 1.05 1.35 1.35

45 0.25 0.12 0.21 0.09
0.50 0.84 0.69 1.01

0.75 1.25 1.19 0.87

0.95 0.93 1.29 1.43

90° 025 <104 <103 <103
050 <10% <103 <108
075 <10%* <103 <108

a[Shu, Xue, and Zhu (2001)]

b [Ding, Shu, Yeo, and Lu (2005)]
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Table 6: Eccentric annulus between a square outer cylinggraacircular inner
cylinder: Comparison of the average Nusselt numiderfor different values ofy
and¢.

Nu
) & DQ* MQ-DQ° Present
—90° 0.25 6.75 6.74 6.71
0.50 6.98 6.92 6.88
0.75 7.95 7.63 7.52
—45 025 6.90 6.64 6.63
050 6.92 6.68 6.62
0.75 7.06 6.78 6.76
095 7.61 7.29 7.28
0° 0.25 6.73 6.48 6.46
0.50 6.72 6.42 6.41
0.75 7.40 7.03 7.03
45  0.25 6.48 6.29 6.29
0.50 6.25 6.01 5.99
0.75 6.23 5.96 5.97
0.95 6.45 6.36 6.36
90° 0.25 7.05 6.74 6.72
0.50 6.17 6.15 6.15
0.75 6.90 6.62 6.62

a[Shu, Xue, and Zhu (2001)]
b [Ding, Shu, Yeo, and Lu (2005)]
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Figure 1: LMLS-1D-IRBFN scheme] a typicalj] node.

Figure 2: A square domain with a circular hole.
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Figure 3: Poisson equation in a square domain with a cirdutde subject to
Dirichlet boundary conditionsf3-adaptivity study for the present method (LMLS-
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Figure 4. Concentric annulus between two circular cylisdgproblem geome-
try and boundary conditions. Angular positions are meabsualeckwise from the
positivey-axis. Note that computational boundary conditions fottiedy are de-

termined by Equations (61)-(65).
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Figure 7: Concentric annulus between two circular cylisderontours of tem-
perature (left) and stream function (right) for differentyReigh numberdRa =
107,10°%,3 x 10° and 6x 10°, from top to bottom, using a grid of 6161. Each
plot contains 21 contour levels varying linearly from thenimium value to the
maximum value.
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Figure 8: Concentric annulus between two circular cylisderontours of tem-
perature (left) and stream function (right) for differenayReigh numberdRa =
10*,5 x 10* and 7x 10%, from top to bottom, using a grid of 6461. Each plot
contains 21 contour levels varying linearly from the minimualue to the maxi-
mum value.
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Figure 9: Concentric annulus between a square outer cylemid a circular inner
cylinder: problem geometry and boundary conditions. Nbgg tomputational
boundary conditions for vorticity are determined by Eqomdi (61)-(65).
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Figure 10: Concentric annulus between a square outer eyliadd a circular in-
ner cylinder: contours of temperature (left), stream fiomc{middle) and vorticity
(right) for different Rayleigh numbeiRa =5 x 10%,10°,5x 10° and 16, from top

to bottom, using a grid of 63 63. Each plot contains 21 contour levels varying
linearly from the minimum value to the maximum value.
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Figure 11: Eccentric annulus between a square outer cylauue a circular inner
cylinder: problem geometry and boundary conditions. Thguéar positiong of
the center of the inner cylinder is measured counterclosi&viiom the positivex-
axis. Note that computational boundary conditions foriedyt are determined by

Equations (61)-(65).
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Figure 12: Eccentric annulus between a square outer cyliade a circular in-
ner cylinder: contours of temperature (left), stream fiomct({middle) and vor-
ticity (right) for the cases oy = 0.25,0.50,0.75 and 095, from top to bottom,
Ra=3x10°,L/2R=2.6,¢ = —45°, using a grid of 82 82. Each plot contains
21 contour levels varying linearly from the minimum valughe maximum value.
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Figure 13: Eccentric annulus between a square outer cyliade a circular in-
ner cylinder: contours of temperature (left), stream fiomc{middle) and vortic-
ity (right) for the cases o0&y = 0.25,0.50 and 075, from top to bottomRa =
3x 10°,L/2R=2.6,¢ = 0°, using a grid of 10& 108 for the casey = 0.75 and a
grid of 82x 82 for the others. Each plot contains 21 contour levels wgriinearly
from the minimum value to the maximum value.
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Figure 14: Eccentric annulus between a square outer cyliade a circular in-

ner cylinder: contours of temperature (left), stream fiomct({middle) and vor-

ticity (right) for the cases oy = 0.25,0.50,0.75 and 095, from top to bottom,

Ra=3x 10 L/2R=2.6,¢ = 45, using a grid of 8% 82. Each plot contains 21
contour levels varying linearly from the minimum value te tmaximum value.
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Figure 15: Eccentric annulus between a square outer cyliade a circular in-
ner cylinder: contours of temperature (left), stream fiomc{middle) and vortic-
ity (right) for the cases o0&y = 0.75,0.50 and 025, from top to bottomRa =
3x 10°,L/2R = 2.6,¢ = 90", using a grid of 108 108 for the case&y = 0.75
and a grid of 82 82 for the others. Each plot contains 21 contour levels waryi
linearly from the minimum value to the maximum value.
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Figure 16: Eccentric annulus between a square outer cyliade a circular in-
ner cylinder: contours of temperature (left), stream fiomc{middle) and vortic-
ity (right) for the cases ofy = 0.25,0.50 and 075, from top to bottomRa =
3x10°,L/2R=2.6,¢ = —9C°, using a grid of 108 108 for the cas&y = 0.75
and a grid of 82 82 for the others. Each plot contains 21 contour levels waryi
linearly from the minimum value to the maximum value.



