

Knowledge management, sensing and control tools for irrigated broadacre cropping

<u>Dr Alison McCarthy</u>, Michael Scobie, Dr Malcolm Gillies, Lidya Agustina and Dr Joseph Foley

National Centre for Engineering in Agriculture Institute for Agriculture and the Environment University of Southern Queensland

NCEA's irrigation research

- Knowledge Management System for Irrigation (KMSI)
- SISCO surface irrigation modelling
- Automation through commercial control systems (Rubicon, WiSA, Valmont, Lindsay-Zimmatic)
- VARIwise, site-specific irrigation decision making

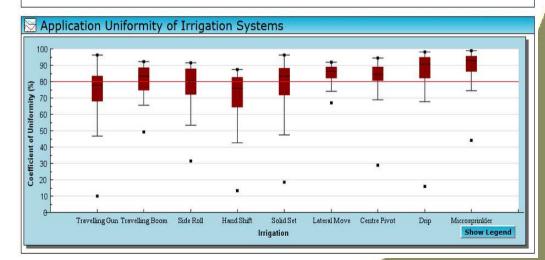
Department of Natural Resources and Mines

- Suite of tools funded by the Queensland Government as part of the South East Queensland Irrigation Futures project
- Centralised online decision support tools for irrigation, nutrient and energy calculators with benchmarking function to compare across catchments, systems and industries
- Also has simple calculator tools with simple input/output interface
- For growers and industry consultants

kmsi.usq.edu.au

KMSI - IPART

Irrigation Performance Audit and Reporting Tool (IPART)


Assist in the evaluation and collation of infield irrigation application system performance data

Statistics of Total (All cans):					
Distribution Uniformity (%)	81.35				
Coefficient of Uniformity (%)	88.45				
Minimum Depth Applied (mm)	5.7				
Maximum Depth Applied (mm)	12.0				
Average Depth Applied (mm)	8.8				
Average Depth Applied in Lowest Quarter (mm)	7.2				

Solid Set

There are currently 1358 records in the database collected between 27-11-1995 and 27-11-2016

Region	No. of Records	Application System	No. of Records	Crop (Top 10)	No. of Records
Qld	849	Travelling Gun	120	Pasture - Dairy	191
NSW	28	Travelling Boom	34	Nursery - Other	124
Vic	14	Side Roll	34	Lucerne	72
WA	б	Hand Shift	31	Turf - Couch	50
NZ	0	Solid Set	287	Nursery - Protected	39
SA	0	Lateral Move	42	Flowers - Other	30
Tas	0	Centre Pivot	232	Cotton	26
		Drip	60	Tree - Avocado	26
		Microsprinkler	103	Sugarcane	20
				Grain	19

Statistics of Total (Effective cans):

Distribution Uniformity (%)	81.60
Coefficient of Uniformity (%)	88.44
Minimum Depth Applied (mm)	5.7
Maximum Depth Applied (mm)	12.0
Average Depth Applied (mm)	8.7
Average Depth Applied in Lowest Quarter (mm)	7.1

KMSI - IPERT

Irrigation Pump Evaluation and Reporting Tool (IPERT)

Assist in the evaluation and collation of on-farm irrigation pumping system performance data

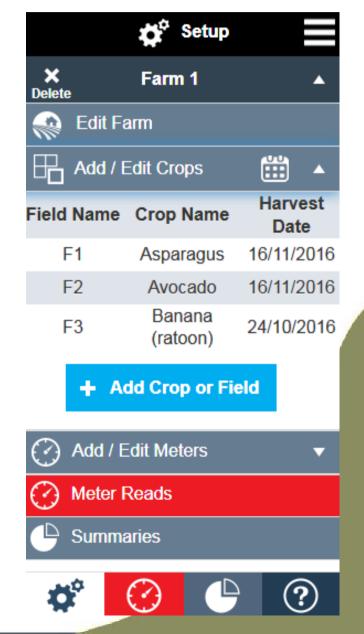
SEA	RCH RESULTS:
Org	anisations:
AL	L
Cate	thments:
AT	1

Growers: ALL Crops: ALL

Pump & Motor Combination: ALL Collection Date: from 1-1-1995 to 8-9-2015

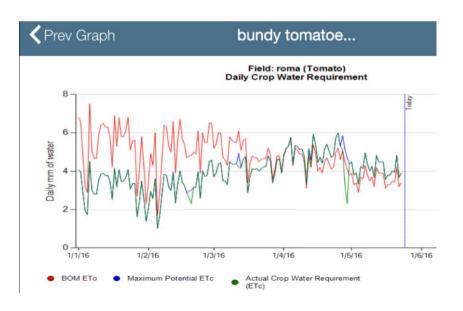
891 matches found

Name					Flow Rate (1/s)	Total Dynamic Head (m)	Energy Consumption (kWh)	Overall Efficiency (%)	Comparison Cost (\$/ML)	Energy Consumption (kWh/ML/m
Minimum					0.14	1.87	6.78	2,42	2,44	0.41
Maximum					1759	372.07	2222.22	100	688.1	65.74
Mean					93.1	57.34	356.67	44.86	74.82	6.92
Median					20.56	54.84	324.08	45.72	66.06	5.52
Standard Deviation					279.88	36.45	233.59	18.66	53.2	5.56
Report ID	Grower <u>Name/ID</u>	Organisation	Crop	Site	Catchment	Date	Rate Dyn	o <u>tal</u> Ener namic Consur sod (kW m)	nation Efficient	
		Organisation Egg place	Crep Egg plant	Site Creek Pump	Catchment Qld, BorderRivers	interior .	Rate Dyn (1/sec) H	amic Consur	nation Efficient (h) (%)	y <u>Cost</u>
<u>ID</u>	Name/ID					14-10-2000	How Dyn Rate Hi (I/sec) Hi (1/sec) 22 8 6.2 52	amic the sad <u>Consur</u> m) (kW	nation Efficience (h) (%) .84 21.76	Y <u>Cost</u> (<u>\$/ML</u>)


KMSI - MIM

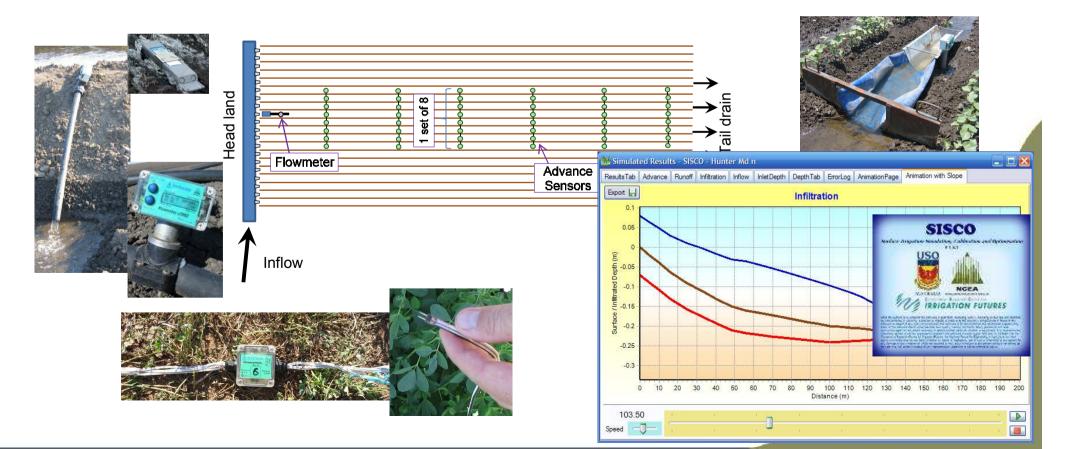
Metering & Irrigation Management Tool (MIM)

- Assists farmers in managing their metered water usage through provision of meter readings, farm and field information.
- Mobile friendly


	Field(s) summary Water year					
2016						
F1	i					
Crop	Asparagus					
Depth water applied	83 mm					
Rainfall	143 mm					
Crop water requirement	714 mm					
6	CŴR					

KMSI – SID

- Irrigation recording and scheduling features based on evapotranspiration (ET)
- Web based tool, also available in iOS and Android with the Augmented Reality feature
- There will be demo during the field day

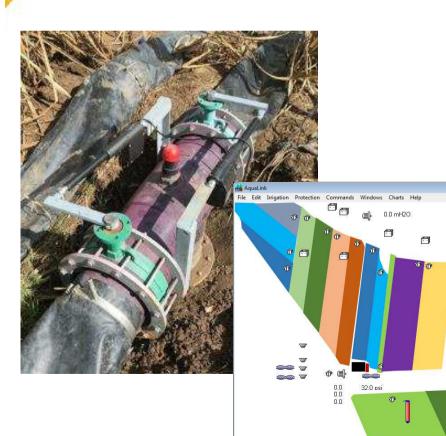

SISCO - surface irrigation

Tool for modelling furrow & border check irrigation
Needs good field measurements

Can predict distribution of water across field

Enables users to optimise performance

Automation systems


- First step = Remote control
- Second step = Automated control

Flow - RATE : ~ 0.0 / 17132971 Flow - TOTAL : ~ 0.0 / 1713293

Third Step = Smart automated control

1

Last Undate: 20 May 12

Furrow in Sugarcane

Using WiSA control systems

- a) Linear actuators on valves
- b) Pressure sensor in cylinder/pipe

Buried

adorarre e

Advance nodes (b)

c) Buried end of row sensors

6

5

4

3

2

1

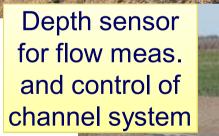
d) Flowmeters

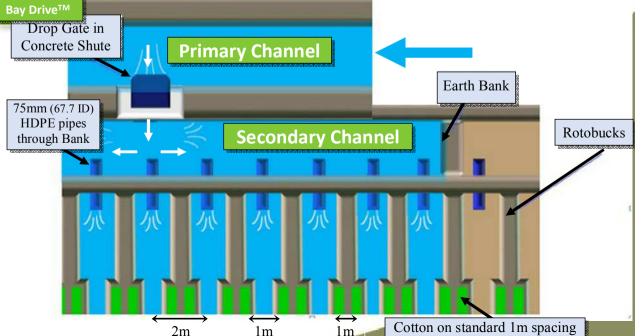
ontrol nod

Scheme

channel

(a)


Furrow in Cotton



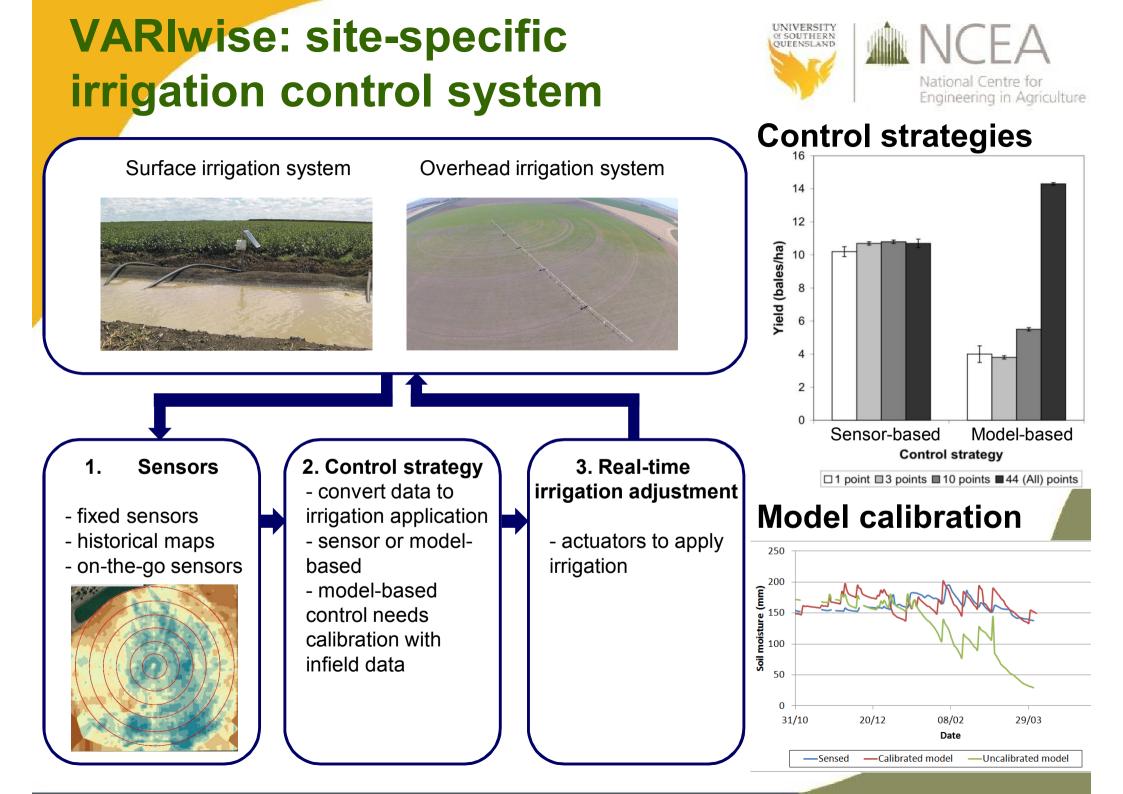
Using Rubicon control systems

Furrow in Cotton

Current Questions?

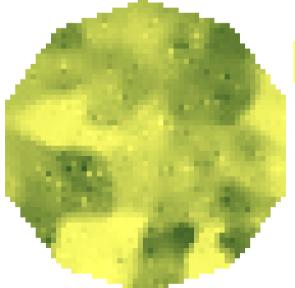
- Channel and pump control
- How to estimate spatial soil moisture?
- Spatial variability of rain?
- Sensing advance?

Irrigation advance monitoring

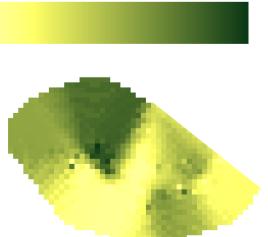

Thermal and visible camera on 10 m tower
Upload image on motion detection

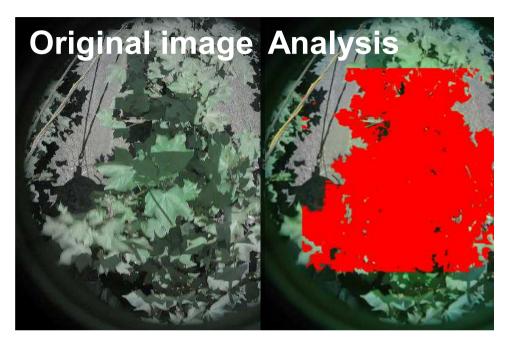
Camera tower

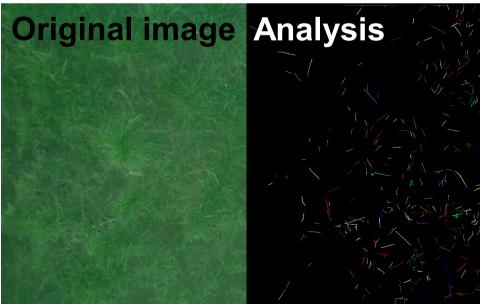
Thermal images from head ditch



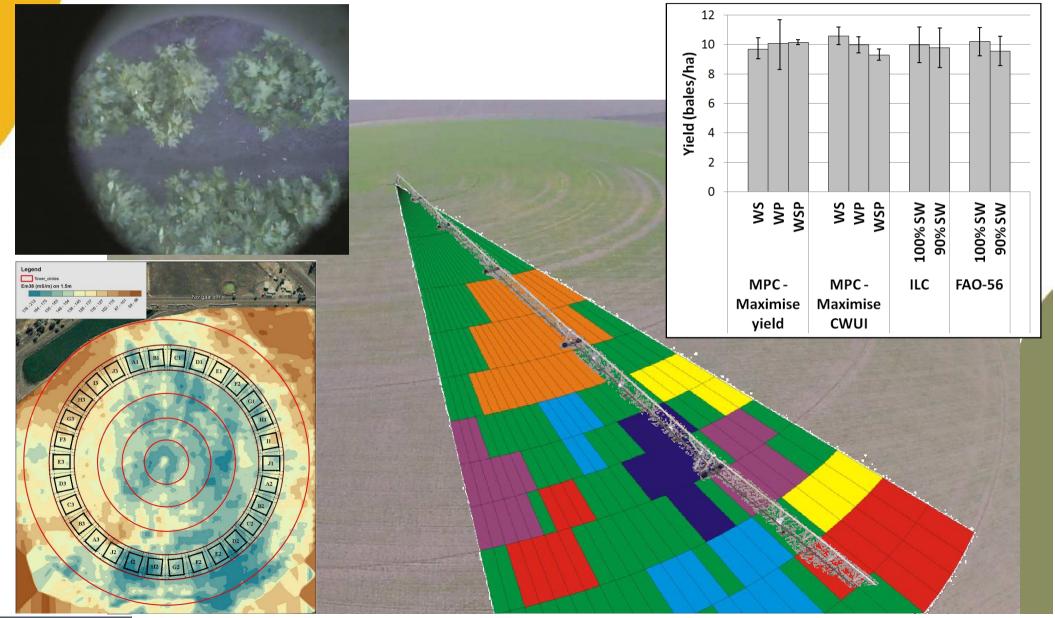
Camera-based sensors


Smartphone camera


Height from quad Canopy cover bike sensor from cameras



0 Height (mm) 250



Control system implementation on centre pivot

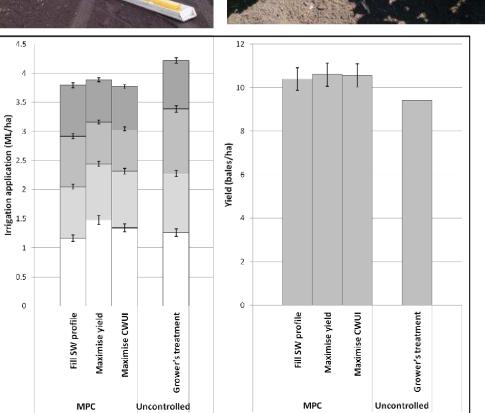
National Centre for

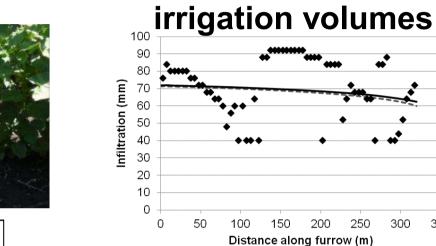
Engineering in Agriculture

Control system implementation for surface irrigation

250

300


- Fitted


350

Crop growth and fruiting

----Predicted

Optimal

Conclusions

- Tools developed for growers, consultants and automated irrigation data management and processing
- Used for manual or automated management
- Next steps:
 - Evaluation of SISCO and VARIwise control strategies at cotton, sugarcane and dairy pasture over next two years

Acknowledgements

Cotton Research and Development Corporation, Federal Government Rural R&D for Profit Program, Queensland Government, TIA, Dairy Australia, Sugar Research Australia and Queensland Department of Natural Resources for funding support

Cotton growers Lindsay Evans and Neil and Lachlan Nass for providing field trial sites