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Major Depressive Disorder (MDD) is a neurohormonal disorder that causes

persistent negative thoughts, mood and feelings, often accompanied with

suicidal ideation (SI). Current clinical diagnostic approaches are solely based

on psychiatric interview questionnaires. Thus, a computational intelligence

tool for the automated detection of MDD with and without suicidal ideation

is presented in this study. Since MDD is proven to a�ect cardiovascular and

respiratory systems, the aimof the study is to automatically identify the disorder

severity in MDD patients using corresponding multi-modal physiological

signals, including electrocardiogram (ECG), finger photoplethysmography

(PPG) and respiratory signals (RSP). Data from 88 subjects were used in this

study, out of which 25 were MDD patients without SI (MDDSI−), 18 MDD

patients with SI (MDDSI+), and 45 normal subjects. Multi-modal physiological

signals were acquired from each subject, including ECG, RSP, and PPG signals,

and then pre-processed. Discrete wavelet transform (DWT) was applied to the

signals, which were decomposed up to six levels, and then eleven nonlinear

features were extracted. The features were ranked according to the analysis

of variance test and Marginal Fisher Analysis was employed to reduce the

feature set, after which the reduced features were ranked again to select the

most discriminatory features. Support vector machine with polynomial radial

basis function (SVM-RBF) as well as k-nearest neighbor (KNN) classifiers were

used to classify the significant features. The performance of the classifiers was

evaluated in a 10-fold cross validation scheme. The best performance achieved

for the classification of MDDSI+ patients was up to 85.2%, by using selected

features from the obtained multi-modal signals with SVM-RBF, while it was

up to 96.6% for the detection of MDD patients against healthy subjects. This

work is a step toward the utilization of automated tools in diagnostics and

monitoring of MDD patients in a personalized and wearable healthcare system.
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1. Introduction

Suicidal ideations, negative feelings, persistent feelings of

sadness and worthlessness or a sense of abyss, are all tell-tale

signs of an underlying medical condition known as depression.

Depression is a mental disorder defined by the thoughts, feelings

and behavior of a person. Depression is multifactorial and is

thus triggered by a wide range of factors including genetics,

hormonal, environmental, influence of family and socio-cultural

aspects (1, 2). The World Health Organization states that

depression is a common illness worldwide, where approximately

280 million people of all ages are affected, and it is reported

to be leading causes of ill-health and disability (3). The gold

standard for depression diagnosis involves a combination of

questionnaires and clinical interviews. The interviews range

from the composite international diagnostic interview (4),

to structured clinical interview for diagnostic and statistical

manual of mental disorders. However, this instrument is long-

winded and hence undesirable for administration. On the other

hand, norm-referenced scales that link score ranges to the

severity of symptoms are being used. However, these measures

are identified to have poor discriminative ability (5). Hence, a

Computational Intelligence Tool (CIT) that is more competent

in the accurate and rapid diagnosis of depression is desired.

Various metabolic or neurological disorders such as

depression are linked to changes in the functions of the

cardiovascular and respiratory systems (6). In our previous

study (7), higher breathing frequency and lower amplitude of

Respiratory Sinus Arrhythmia (RSA) were found in the MDD

patients with SI as compared to the MDD patients without SI,

as well as the healthy subjects. Therefore, the resting mental

state in MDD patients exerts an influence on RSA oscillations

with respect to respiratory movements. Additionally, suicidal

ideation in depression was reported to be linked with arterial

stiffness as measured by PPG wave parameters that were

extracted from fingertip PPG signals (8). The effectiveness of

multi-lag Tone–Entropy analysis in identifying MDD patients

with Suicidal Ideation was also demonstrated and the alteration

in autonomic nervous system modulation of the heart rate

related to depression and suicidal ideation was highlighted0in

another previous study (9).

Thus, in this work, we uniquely propose to combine

three types of signals: electrocardiograms (ECGs), pulse

or photoplethysmography (PPG), and respiratory signals

(RSP) for the detection of depression in a multi-modal

classification framework. This study hypothesizes that patients

can be classified based on suicidal ideation presence using a

multi-modal classification model with combination of ECG,

respiration, and PPG signals. This is validated through

automated classification of subjects into three classes of MDDSI

± and Healthy using SVM-RBF and nonlinear features in

subject independent manner. The comparative study of the

proposed method proves the superiority of the multi-modal

method in comparison to the commonly used ECG based single-

modal methods. The developed technique can be employed with

wearable technology as a diagnostic device to help physicians in

the diagnosis of MDD with SI and without SI.

2. Background

Table 1 presents a summary of literature works using

CIT with physiological signals for automated detection and

classification of depression. Puthankattil and Joseph (10)

employed discrete wavelet transform (DWT) to pre-processed

electroencephalogram (EEG) signals and decomposed them to

eight levels. Relative wavelet energy features were extracted from

the decomposed signals and were used to train and test the

artificial neural network, achieving a classification accuracy of

98.11%. Ahmadlou et al. (11) employed the wavelet filter bank

(WFB) to decompose the acquired EEG signals, after which

the Katz and Higuchi fractal dimensions were computed. The

fractal dimension that reflected the greatest difference was fed

to a probabilistic neural network (PNN) classifier, yielding to

an accuracy of 91.3%. In another study, Ahmadlou et al. (12)

similarly decomposed the acquired EEG signals of male and

female depressed patients into 5 sub-bands. Spatiotemporal

analysis of relative convergence(STARC) was performed to

compute the union of loci pair EEGs in the sub-bands and full

bands. Large differences in relative convergence of EEG signals

were reported in the intra left temporal and front to left temporal

lobes between male and female patients. Hosseinifard et al. (13)

computed the power of four EEG bands and nonlinear features

such as correlation dimension, Higuchi, detrended fluctuation

analysis, and large Lyapunov exponent. The resulting feature

vector was fed to a KNN classifier, as well as linear discriminant

analysis (LDA) and logistic regression classifiers. The highest

accuracy of 90% was achieved with the logistic regression

classifier combined with the nonlinear features.

Faust et al. (14) selected suitable frequency bands from

EEG signals using wavelet packet decomposition. Nonlinear

parameters were subsequently computed from these bands. The

significant parameters were selected using t-test and then fed to

several classifiers. PNN outperformed the other tested classifiers,

achieving a classification accuracy of 99.5%. Acharya et al. (15)

used brain signals to extract 15 nonlinear parameters and then

ranked them through a t-test. The optimal features were then

fed to SVM, KNN, Naïve Bayes (NB), PNN, and decision tree

(DT) classifiers. SVM with polynomial kernel of order 3 yielded

the highest accuracy of 98%. A depression diagnosis index

was also developed using the discriminatory nonlinear features.

An orthogonal WFB with three channels was developed by

Sharma et al., to decompose processed EEG signals into seven

wavelet sub-bands. Subsequently, L2 norm was estimated for

each wavelet sub-band. The resulting feature set was ranked

using t-test and fed to several classifiers. The SVM classifier
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TABLE 1 Summary of literature works in automated detection and classification of depression.

Work Features (number) Methodology Dataset Results (accuracy)

Khandoker et al. (9) Tone, entropy features

Mann–Whitney test

Classification-regression tree

Leave-one-out validation

Healthy: 29 subjects

Depression:

16 SI+ & 16 SI- patients

94.83% (SI+)

Puthankattil and

Joseph (10)

Nonlinear relative wavelet energy

features, (20)

EEG signals

Feedforward neural network

DWT

Depression: 30 patients 98.11%

Ahmadlou et al.

(11)

Katz’s fractal dimension and Higuch’s

fractal dimension nonlinear features, (3)

EEG signals

PNN, ANOVA test, WFB

Random selection

Healthy: 12 subjects

Depression: 12 patients
92.30%

Ahmadlou et al.

(12)

Nonlinear spatiotemporal analysis of

relative convergence features, (4)

EEG signals

WFB
Depression: 22 patients Differences in relative

convergence in intraleft

temporal and front to left

temporal lobes between

genders.

Hosseinifard et al.

(13)

Detrended fluctuation analysis, Higuchi

fractal, correlation dimension and

Lyapunov exponent nonlinear features

Power of EEG bands

Logistic regression classifier

Healthy: 45 subjects

Depression: 45 patients
90.00%

Faust et al. (14) Nonlinear parameters

EEG signals frequency bands

Wavelet packet decomposition

T-test

PNN

Depression: 30 patients 99.50%

Acharya et al. (15) Nonlinear features, (15)

EEG signals

T-test

SVM classifier

Healthy: 15 subjects

Depression: 15 patients

Development of

diagnosis index

98.00%

Sharma et al. (16) Wavelet sub-band features, (7)

EEG signals

Orthogonal WFB

T-test

SVM classifier

Healthy: 15 subjects

Depression: 15 patients
99.58%

Bairy et al. (17) Nonlinear features with skewness,

standard deviation, (7)

EEG signals

DWT

T-test

SVM-RBF classifier

Healthy: 2,159 samples

Depression: 2,400 samples
88.90%

Cai et al. (18) Linear and nonlinear features, (270)

EEG signals

DWT

KNN classifier

Healthy: 121 subjects

Depression: 92 patients
79.27%

Li et al. (19) Nonlinear features, (9)

EEG signals

Autoregressive model

Differential evolution

KNN classifier

Healthy: 10 subjects

Depression: 10 patients
96.00%

Mantri et al. (20) Q,S,T features of ECG signal, (3)
ECG signals

Principal component analysis

Depression into

4 classes of stress

Kan and Kashihara

(21)

ECG signals

Spline interpolation

Linear onterpolation

ST depression: 25 samples

9 Right before VF

8 During VF

8 Abnormal T waves

cc was higher than T

wave abnormality,

but lower, before and

during VF

(Continued)
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TABLE 1 (Continued)

Work Features (number) Methodology Dataset Results (accuracy)

Hartmann et al.

(22)

Time and frequency domain features
HRV signals

ANOVA test

Healthy: 65 subjects

Depression: 62 patients
HRV features are related to

depression

Byun et al. (23) Nonlinear and Poincare plot features,

(20)

HRV signals

Recursive feature elimination

Statistical filter

SVM classifier

Healthy: 41 subjects

Depression: 37 patients
74.40%

Ay et al. (24) Deep local features from EEG signals
EEG signals

CNN-LSTMmodel

Healthy: 15 subjects

Depression: 15 patients

Left hemisphere: 99.12%

Right hemisphere: 97.66%

Acharya et al. (7)
EEG signals

CNN model

Healthy: 15 subjects

Depression: 15 patients
96.00%

Čukić et al. (25) Higuchi’s Fractal Dimension, Sample

Entropy, (2)

EEG signals

Seven conventional classifiers

Healthy: 20 subjects

Depression: 23 patients
90.24–97.56%

Bachmann et al.

(26)

Spectral asymmetry index, detrended

fluctuation analysis, (2)

EEG signals, Single channel

Linear discriminant analysis

Healthy: 17 subjects

Depression: 17 patients
91.2%

Avots et al. (27) Linear, nonlinear EEG features
EEG signals

Ensemble classifier

Healthy: 10 subjects

Depression: 10 patients
90.24–97.56%

Bachmann et al.

(28)

Linear, (3), nonlinear, (3), EEG features
EEG signals

Logistic regression classifier

Healthy: 13 subjects

Depression: 13 patients
Leave-one-out cross

validation, 77–92%

performed the best with an accuracy of 99.58% in comparison

to other tested techniques.

Bairy et al. (17) employed DWT up to two levels to the

acquired EEG signals and then Linear features were extracted.

T-test was used to select a set of highly significant features. The

feature set was fed to an SVM-RBF classifier. SVM-RBF yielded

to a classification accuracy of 88.92%. Cai et al. (18) employed

DWT to pre-processed EEG signals, after which 270 linear and

nonlinear parameters were extracted. The minimal redundancy

maximal relevance feature selection technique was subsequently

utilized for dimensionality reduction. The reduced feature set

was fed to four classifiers, wherein, the highest accuracy of

79.27%was achieved using KNN classifier. Li et al. (19) extracted

nine nonlinear features and nine linear features from pre-

processed of EEG, using auto regressive model. Differential

evolution (DE) was then employed to optimize the features,

after which, they were fed to a KNN classifier. DE coupled with

KNN yielded an average accuracy of 96%, which was a great

improvement in comparison to using only KNN. Mantri et al.

(20) computed the Q, S, and T signals from the R peaks of

the collected ECG signal. Principal component analysis (PCA)

was implemented to extract features from the signals. The

extracted values were compared against the expert values for

the classification of depression. The proposed method was for

classifying depression into four classes of stress, namely hyper

acute, acute, hyper chronic and chronic stress.

Cross validation analysis was performed in (21) to compute

correlation coefficient (cc) between ST depression and other

maladies of varying data points. Through spline interpolation,

the cc in the ST depression was found to be higher in

T wave abnormality, but lower, in the case of before and

during ventricular fibrillation (VF). Additionally, by using linear

interpolation, the cc before or during VF was lower than

that in ST depression. Hartmann et al. (22) computed time

and frequency domain features from pre-processed heart rate

variability (HRV) signals using linear and spectral analyses.

Nonlinear HRV parameters were estimated using Poincare plots.

Analysis of variance (ANOVA) was utilized feature ranking. The

proposed method reports a link between HRV parameters and

depression, where obvious distinction exists between depressed

and healthy individuals. Byun et al. (23) estimated 20 HRV

parameters (6 time domain, 7 frequency domain, 5 nonlinear,

and 2 Poincare plot features) from the EEG recordings. SVM-

recursive feature elimination and statistical filter were used

to select the significant features, after which, SVM classifier

was used achieving an accuracy of 74.4%. Ay et al. (24) used

a developed convolutional neural network (CNN) with raw

EEG signals to extract feature maps. The resulting feature

maps were fed to the long short-term memory(LSTM) model.

Random splitting and 10-fold cross validation techniques were

employed to evaluate the CNN-LSTM model, achieving a

high accuracy of 99.12 and 97.66% for depression detection

in the right and left hemispheres, respectively. Khandoker

et al. (9) computed tone and entropy values for multiple

logs, from pre-processed HRV signals. The Mann-Whitney

test was subsequently employed to compare between healthy
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and depressed patients. A classification and regression tree

was then built for classification. A performance of 94.83%

was achieved for the prediction of MDDSI+ patients. Acharya

et al. (7) proposed an end-to-end CNN based framework,

using raw EEG signals for training and testing. The achieved

accuracy was 96% for classifying EEG signals from the right

hemisphere. Čukić et al. (25) investigated the effectiveness of

applying two nonlinear measures on EEG, including Higuchi’s

Fractal Dimension and Sample Entropy, for detection of

patients diagnosed with depression. Seven classifiers were

considered, and the results indicated that good classification

was achievable with a small number of principal components,

where Sample Entropy had the better performance. Llamocca

et al. (29) combined the data from regular reports from standard

psychiatric interviews, self-reported daily questionnaires, and

data obtained from smart watches to train machine learning

models for crisis in bipolar depression prediction. Since

bipolar depression have more complex dynamics, it was

concluded that a personalized approach is needed. Bachmann

et al. (26) investigated using linear, spectral asymmetry index,

and nonlinear, detrended fluctuation analysis, for detection

of depressed subjects with single EEG channel, where up-

to 91.2% classification accuracy was achieved. Avots et al.

(27) trained various binary classifiers using linear (relative

band power, alpha power variability, spectral asymmetry

index) and nonlinear (Higuchi fractal dimension, Lempel–

Ziv complexity, detrended fluctuation analysis) EEG features,

to study the classification of the long-lasting effects of

depression. Bachmann et al. (28) analyzed 30-channel EEG

signal using linear methods (spectral asymmetry index, alpha

power variability, relative gamma power) and nonlinear

methods (Higuchi’s fractal dimension, detrended fluctuation

analysis, Lempel–Ziv complexity). Logistic regression analysis

was used for depressive subjects classification with leave-one-out

cross-validation. Classification accuracy of 92% was achieved

with mixed combination of three linear and three nonlinear

measures.

Brain signals, such as EEG and Functional Magnetic

Resonance Imaging (fMRI), are deemed the most effective bio-

markers for MDD (30), since they are brain disorders. However,

as far as the implementation of these physiological signal-

based diagnostic platforms in psychiatry is concerned, wearable

technology is the most desirable and feasible option. The

physiological relationships of multi-modal signals (ECG, PPG,

and RSP), which are easily implementable in wearable settings,

with MDD and their suicidal ideations, has been validated (8, 9,

31). Consequently, this study focuses mainly on how machine-

learning techniques are able to reliably recognize MDD subjects

based on these multi-modal signals.

3. Materials and methods

3.1. Dataset

In this study, resting ECG, respiration, and finger PPG

signals collected from 88 subject for a period of 5–10 min

(8), were used. Among these subjects, 45 are healthy and 43

are MDD patients. Out of the MDD patients, 18 are without

SI (MDDSI+), while 25 have SI (MDDSI−). In each subject’s

category (MDDSI+, MDDSI−, healthy), 4, 5, and 19 of them

were males and their ages’ ranges were 35.0 ± 12.3, 34.92 ±

8.14 and 30.69 ± 9.27 years, respectively. Briefly, diagnoses

of the MDD were made by using the Mini-International

Neuropsychiatric Interview (MINI) version 5 (32); while C

module of the MINI was used to assess the severity of SI.

Patients with Cmodule scoresmore than 9 were considered to be

MDDSI+ patients. Table 2 summarizes patient’s demographics

and psychiatric scores.

TABLE 2 Dataset subjects’ demographics and psychiatric scores.

Variable MDDSI+ MDDSI− Healthy P-value

Subjects 18 25 45

Gender male (%) 4 (22%) 5 (20%) 19 (42%)

Age (yrs) 35.00± 12.30 34.92± 8.14 30.69± 9.27 0.00a

Height (cm) 161.61± 6.73 164.74± 17.79 161.76± 9.65 0.66

BMI (kg/m2) 27.21± 6.19 26.58± 5.13 24.13± 3.39 0.03a

WC (cm) 87.94± 15.37 87.41± 16.23 77.13± 9.43 0.00a,b

SBP (mmHg) 112.78± 13.20 111.74± 13.37 111.48± 9.92 0.60

DBP (mmHg) 71.11± 8.32 72.61± 7.52 72.11± 7.27 0.87

BDI 37.17± 10.85 33.20± 12.11 N/A 0.50

GAD7 16.67± 6.51 16.04± 8.17 N/A 0.36

PHQ-9 20.78± 5.00 19.20± 10.29 1.73± 1.32 0.50

Suicidal score 18.94± 6.39 2.00± 3.16 N/A 0.002

BMI, Body mass index; WC, waist circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; PHQ, patients health questionnaire. aSignificant difference between MDDSI+

and Healthy, bsignificant difference between MDDSI+ and MDDSI−.
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The study was approved by Al Ain District Ethics

Committee, wherein written consent was provided by all

participants. Diagnoses were made by a consultant psychiatrist

including history of SI, using the MINI (32). The clinical

depression severity was assessed using the structured interview

guide for the Hamilton Depression Rating Scale (HAM-D)

(33). Exclusion criteria included: inadequate reading or verbal

fluency in Arabic or English; significant impairment to cognitive

abilities; other primary psychiatric diagnosis and active medical

diagnoses of ischemic heart disease, diabetes, or inflammatory

illness currently or within the preceding 2 years. On the

other hand, the inclusion criteria included all those who did

not fall under these categories and who were diagnosed as

MDDSI± at their first visit to the psychiatric clinic. Additionally,

included data were recorded from unmedicated MDD patients

only. The healthy group was interviewed by the psychiatrist

to check whether they had to go through any psychiatric

assessment. The healthy subjects in this study were not required

to complete MINI interview and other questionnaire since

they declared that they had no previous history of psychiatric

disease. MDD patients completed valid and reliable self-report

ratings of depression (21-item beck depression inventory BDI),

anxiety (general anxiety disorder GAD7), and stress severity

(patient health questionnaire PHQ-9), while healthy subjects

only completed PHQ-9 rating.

3.2. Signals pre-processing

The three acquired signals for each subject were segmented

into 28,800 samples, thus having 3×288000 samples per subject.

In order to remove the noise and artifacts from the signals,

a 50Hz notch filter, as well as a 0.5 − 45Hz band-pass filter,

were applied. All signals have a sampling rate of 1kHz. Figure 1

summarizes the proposed framework.

3.3. Feature extraction

It can be deduced from the literature review that DWT

and nonlinear feature extraction are commonly used and

their suitability is proven for the detection of depression, thus

they are adopted in this framework. DWT was applied to

decompose each pre-processed signal up to six levels using 6th

order Daubechies wavelet (db6). In Daubechies (34), the signals

pass through low and high pass filters. The filtered signals are

subsequently down-sampled to half the maximum frequency,

thereby transforming the signals into low pass (approximate)

and high pass (detail) coefficients. The same process is repeated

to obtain more levels of decomposition. Moreover, Nonlinear

features have been widely used to analyze physiological signals,

such as ECG (35). Thus, in this framework, eleven nonlinear

features that are highly discriminatory, were extracted from

each of the 12 DWT coefficients. The nonlinear features used in

this work include: 1. approximate entropy (36), 2. signal energy

(37), 3. Tsallis entropy (38), 4. Kolmogorov Sinai entropy (39), 5.

Rényi entropy (40), 6. Shannon entropy (41), 7. wavelet entropy

(42), 8. signal activity (43), 9. Hjorth complexity and mobility

(44, 45), 10. Bispectrum (46), and 11. Cumulant (47) features.

The features are described follows,

1. Approximate entropy (Ape): Ape (36) calculates the amount

of regularity and the unpredictability of fluctuations over

time-series data even with artifacts. It is commonly used to

study ECG signals.

2. Signal energy (Se): Se (37) is a commonly estimated

measurement in engineering. The energy of a signal is defined

by the square of the signal amplitude, integral of a squared

signal magnitude or the envelope of a squared signal magnitude.

3. Tsallis entropy (Te): Te (38) represents the basic form of

the Boltzmann-Gibs theory. It is commonly used for statistical

calculations in medicine and physics, hence is explored further

is this study.

4. Kolmogorov-Sinai entropy (Kse): Kse (39) is used to

compute the chaos within a system and it controls the

maximum amount of information that can be produced by the

system.

5. Rényi entropy (Re): Re (40) is closely related to Shannon’s

entropy. The pth entropy, known as the Rényi entropy power, is

an extension of Shannon’s entropy power.

6. Shannon entropy (She): She (41) measures the amount of

information needed to recognize random samples within a

particular probability distribution.

FIGURE 1

Block diagram of the proposed framework for the recognition of MDD with SI from cardiovascular and respiratory signals.
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7. Wavelet entropy (Wae): Wae (42) is suitable for

analyzing features present in non-stationary signals. Wavelet

decomposition combined with entropy is used as a parameter to

estimate the chaos level of a signal.

8. Signal activity (Sa): Sa (43) is computed based on the number

of high frequency components in a system. It describes the

variance of time.

9. Hjorth complexity and mobility (Hcm): Hcm (44, 45)

are useful in the representation of biological signals. These

parameters signify statistical properties in signal processing and

are prevalently used for feature extraction.

10. Bispectrum (Bi): Bi (46) is recognized as a higher order

spectra feature that is created through signal decomposition.

This feature is used to study nonlinear systems.

11. Cumulant (Cu): The Cu (47) of a probability distribution

represents the numbers that provide a substitute to the moments

of a distribution. This feature is competent in the analysis of

imaginary signals.

3.4. Feature selection and reduction

In order to select highly significant features, ANOVA test

(48) was utilized. Features of p-values greater than 0.05 were

discarded, while the remaining features were reduced to a

smaller dataset using Marginal Fisher Analysis (MFA) (49).

The PCA, LDA, and MFA are data reduction techniques,

commonly considered in classification problems. PCA, an

unsupervised technique, is specially useful in representation and

reconstruction. However, it is less effective in discriminating one

class from another. In contrast, LDA is a supervised algorithm

that emphasizes on the best transformation, by mapping data

into a lower dimensional space so that the distribution within the

class is minimized, while maximizing the distribution between

classes, hence enabling the extraction of most discriminant

features (50). Although LDA is considered a better algorithm

compared to PCA for solving pattern classification problems,

it is still undermined by MFA. MFA is a supervised, diverse

learning algorithm that is widely used for the face recognition

problems. PCA and LDA work by considering only the global

Euclidean structure unlike MFA, which determines the local

manifold structure hidden in the high-dimensional data (24).

Thus,MFA is believed to be advantageous, due to its competency

in providing the characteristics of intraclass spatial arrangement

and interclass disconnectedness (11), and is hence adopted in

this work. The reduced dataset was then subjected to second

iteration of ANOVA test for ranking of the reduced feature

set. After the first ANOVA test, there were 309 features, while,

the second ANOVA test after feature reduction, led to 9

significant features. Feature selection and reduction methods

were performed on data, that was lately used for training the

classifier. Table 3 presents the features that were ranked using

ANOVA after MFA feature reduction, along their mean and

standard deviation (SD) values for each category. As it can

be seen in the table, feature ranking was performed based

on the estimated statistical components, i.e., their statistical

significance. Thus, the feature ranked first has the lowest p-value,

while the last ranked feature has the highest p-value. Hence, the

features ranked from 1 to 9 are selected as the best performing

features, due to their p-values being less than 0.05.

3.5. MDDSI classification

In this framework, the classification is based on SVM-

RBF and KNN classifiers. SVM is often used in binary

classification problems due to its ability to map data into a

higher dimensional space using a kernel function and generate

a linear optimal separating hyper plane between classes (51).

The RBF kernel works by mapping samples nonlinearly into a

higher dimensional space, making it more competent than linear

kernels, in managing cases where the class labels and attributes

have a nonlinear relationship (52). On the other hand, the

KNN classifier distinguish between features based on the class

that is most prevalent among its k nearest neighbors (53). The

KNN classifier has been successfully employed for classification

tasks involving ECG signals (54–56), achieving promising

performances. Moreover, SVM-RBF and KNN classifiers are

being widely utilized for the recognition of brain diseases, such

as epilepsy (57–59), depression (60), Alzheimer’s disease (61),

and schizophrenia (62). Subsequently, the SVM-RBF and KNN

classifiers were considered in this study. Therefor, the optimal

feature set obtained from the feature selection and reduction

process was then fed into SVM and KNN classifiers for MDDSI

classification.

4. Results and discussion

To gauge the MDDSI classification performance, 10-fold

cross validation (63) was used, wherein 90% of the data was

used for training and 10% for testing, and then performance

metrics where estimated, including accuracy (ACC), sensitivity

(SEN), specificity (SPC), and positive predictive value (PPV).

Table 4 presents the classification results achieved with the SVM-

RBF and KNN classifiers in different setups, using selected

features from all 3 signals. Table 5 shows the best classification

results achieved using both classifiers with single-modal signals,

including ECG, PPG, and RSP, along the used feature subset and

number. Comparing the results in Table 4, it can be observed

that the highest accuracy of 85.22% was achieved using SVM-

RBF with 6 features of multi-modal signals. Furthermore, it is

noteworthy that SVM-RBF outperformed the KNN classifier in

multi-modal analysis, achieving its best performance while only

requiring 6 features, against the KNN inferior peak performance

of 75.00%, that required 9 features. In contrast, single-modal
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TABLE 3 Range (Mean ± standard deviation) of features ranked using ANOVA after Marginal Fisher Analysis (MFA) feature reduction.

Rank Healthy MDDSI− MDDSI+

Mean SD Mean SD Mean SD P-value F-value

1 27.8548 0.0581 27.9438 0.0422 27.9570 0.0309 4.31E-13 40.5522

2 −7.8758 0.0447 −7.9240 0.0383 −7.8981 0.0310 3.81E-05 11.498

3 15.1592 0.0256 15.1211 0.0353 15.1363 0.0454 5.47E-05 11.0402

4 −12.6348 0.0447 −12.6149 0.0506 −12.5835 0.0249 0.0002 9.086

5 −10.3331 0.0399 −10.2927 0.0591 −10.3479 0.0391 0.0002 9.0758

6 12.3819 0.0362 12.3972 0.0530 12.4300 0.0443 0.0006 8.0024

7 −34.1708 0.0287 −34.1610 0.0342 −34.1413 0.0268 0.0029 6.2344

8 0.9622 0.0309 0.9519 0.0550 0.9323 0.0383 0.0342 3.5103

9 −67.1131 0.0374 −67.1397 0.0380 −67.1255 0.0544 0.0405 3.3282

10 −20.7532 0.0581 −20.7823 0.0331 −20.7735 0.0442 0.0522 3.0576

11 −20.3718 0.0619 −20.4002 0.0511 −20.3855 0.0363 0.1180 2.1913

12 68.8739 0.0499 68.8989 0.0572 68.8722 0.0536 0.1294 2.0942

13 31.5075 0.0320 31.4913 0.0436 31.4935 0.0300 0.1319 2.0742

14 34.9067 0.0393 34.9229 0.0377 34.9118 0.0259 0.2127 1.5763

15 −8.1435 0.0339 −8.1371 0.0456 −8.1553 0.039 0.3158 1.1683

16 −16.1624 0.0792 −16.1720 0.0452 −16.1429 0.0487 0.3552 1.0476

17 13.4162 0.0431 13.4202 0.0454 13.4098 0.0456 0.7500 0.2886

18 −12.9198 0.0372 −12.9158 0.0526 −12.9129 0.0970 0.9040 0.1010

analysis using ECG, PPG, and RSP, only yielded to peak

accuracies of 72.2%, 61.3%, 61.3%, respectively, as reported

in Table 5. Additionally, taking into consideration the results

obtained from each classifier on every single signal, a higher

accuracy was obtained with the SVM-RBF classifier as compared

to KNN for ECG, with more features used for training and

testing. As for PPG, a higher accuracy was achieved using KNN

as compared to SVM-RBF, with 3 more features used. The SVM-

RBF classifier resulted in a superior performance using RSP

signal, although both were trained and tested with the same

number of features.

Figure 2 shows the confusion matrix of the proposed

framework as well as the ROC curve, corresponding to the

best reported results using SVM-RBF as in Table 3. It can be

estimated from the matrix that there was 4.44% of normal

misclassification, 32% as MDDSI−, and 16.7% as MDDSI+. The

low misclassification rates verify the robustness of the MDDSI

classification framework. The lower classification accuracy

achieved for the MDDSI− group in comparison to the other

two groups can be explained by the existence of greater overlap

between values of MFA features for the MDDSI− groups and

the other two groups, as can be observed from the their mean

values in Table 1. Overlapping of features depends on the type

of features used. Further, from the confusion matrix, it can

be estimated that the accuracy for detecting MDD patients

against healthy subjects is 85.2% in two classes classification

task. Additionally, the ROC curve highlights the robustness of

the proposed method. Figure 3 displays the bispectrum plots

of (a) normal, (b) MDDSI− and (c) MDDSI+ ECG signals.

Moreover, Figure 4 displays the cumulant plots of (a) normal,

(b) MDDSI−, and (c) MDDSI+ ECG signals as well. As can be

seen in both Figures 3, 4, it is observable that the bispectrum and

cumulant patterns are distinctive and unique for each MDDSI

class. This attests that the nonlinear features used and the

patterns obtained are highly discriminatory for the presented

classification task. Additionally, this proves that the selected

features are distinctive for recognizing the MDD cases from the

three collected physiological signals.

To compare the presented study and results against the state-

of-the-art, the summary in Table 1 is observed. First, it can be

noticed that works, including (10), (11), (13), (14), (15), (16),

(24), and (7) achieved high accuracies of above 90%. However,

these studies mainly use brain EEG signals, and, except for

(13), they involved low number of subjects compared to the

presented study. Additionally, these studies only perform 2-class

classification, for which 96.6%was achieved in this study without

EEG, making study more promising. Both Mantri et al. (20)

and Kan and Kashihara (21) explored the use of ECG signals,

but did not report any classification performance. Similarly,

Hartmann et al. (22) explored the use of HRV signals, but only

reported a link between HRV features and depression without

classification. Byun et al. (23) achieved a low classification

performance using HRV parameters. Further, Khandoker et al.

(9) examined HRV signals and was able to achieve higher

accuracy for predicting MDD with SD. However, this study

included a smaller number of subjects, and the classification
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TABLE 4 MDDSI classification tests results using KNN and SVM-RBF classifiers with features from the 3 physiological signals.

Classifier Parameters No. of features Feature subset ACC PPV SEN SPC

KNN

K = 10 2 1 to 2 0.5909 0.7879 0.6047 0.8444

K = 10 3 1 to 3 0.5909 0.7813 0.5814 0.8444

K = 5 4 1 to 4 0.6932 0.7561 0.7209 0.7778

K = 5 5 1 to 5 0.7273 0.7949 0.7209 0.8222

K = 5 6 1 to 6 0.7273 0.7949 0.7209 0.8222

K = 5 7 1 to 7 0.7273 0.8333 0.6976 0.8666

K = 5 8 1 to 8 0.7159 0.8333 0.6977 0.8666

K = 5 9 1 to 9 0.7500 0.8205 0.7442 0.8444

SVM-RBF

σ = 0.1 2 1 to 2 0.5909 0.7179 0.6511 0.7556

σ = 1.8 3 1 to 3 0.6363 0.7167 1.0000 0.6222

σ = 0.7 4 1 to 4 0.7954 0.8478 0.9069 0.8444

σ = 1.5 5 1 to 5 0.7613 0.8431 1.0000 0.8222

σ = 1.8 6 1 to 6 0.8522 0.9545 0.9767 0.9555

σ = 2.4 7 1 to 7 0.7727 0.8571 0.9767 0.8444

σ = 2.1 8 1 to 8 0.7386 0.8367 0.9534 0.8222

σ = 2.9 9 1 to 9 0.8182 0.9318 0.9535 0.9333

K is the number of nearest neighbors. σ is the bandwidth of kernel function. Number of ranked features used and their selected subset are According to Table 3. The best results are in bold.

TABLE 5 Top results obtained for MDDSI classification using KNN and SVM-RBF classifiers with single physiological signal.

Classifier Signal Parameters No. of features Feature subset ACC PPV SEN SPC

KNN

ECG K = 10 2 1 to 2 0.6932 0.7955 0.8139 0.8000

PPG K = 5 5 1 to 5 0.6136 0.8000 0.6512 0.8444

RSP K = 10 3 1 to 3 0.5795 0.6944 0.5814 0.7556

SVM-RBF

ECG σ = 1.3 3 1 to 3 0.7273 0.8181 0.8372 0.8222

PPG σ = 0.5 2 1 to 2 0.5341 0.6604 0.8139 0.6000

RSP σ = 1.9 3 1 to 3 0.6136 0.6875 0.7674 0.6667

K is the number of nearest neighbors. σ is the bandwidth of kernel function. Number of ranked features used and their selected subset are according to Table 3.

method involved the use of personal data, such as age, body

mass index and waist circumference, which can be highly

discriminative when low number of subjects are used.

Hence, as per the literature review and comparison, this

is the first study to investigate the classification of MDDSI (3

classes) using a multi-modal combining ECG, PPG, and RSP

signals. Since the cardiovascular system is interconnected with

heart, blood vessels, and respiratory system, combining these

specific signals allowed the proposed framework to perform

effectively, while being physiologically relevant. This validates

the study’s hypothesis that patients can be classified based on

suicidal ideation presence using a multi-modal classification

model with the aforementioned signals. Additionally, MFA

based features were discriminative in MDDSI classification

task due to potentially containing information of interactions

between cardiovascular and respiratory systems through these

signals. Further, mental state in MDD patients had an

influence on respiratory sinus arrhythmia oscillations, where the

amplitudes decrease, inducing incoherent phase lag with respect

to respiratory movements, as was shown in a previous study

(31). Further, in this work, the nonlinear features were extracted

for each subject’s signals using their entire recordings. Thus,

the number of samples was insufficient to train deep learning

models, such as in (64, 65), since over-fitting will be significant.

On the other hand, the obtained results are very promising since

the validation was conducted in a subject independent manner,

where data of subjects used for training are excluded from

testing. This demonstrates a considerable advantage against

works using deep learning in subject dependent manner.

5. Conclusion

Depression is a mental disorder that makes a human

overwhelmed with sadness or negative feelings for long

periods of time, which ends up triggering suicidal thoughts.

Conventional diagnostic approaches for depression either

include interviews that are too long-winded, or use norm-

referenced scales that poorly discern depression from normal.

Currently, tell-tale signs of suicidal risk are largely subjective
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FIGURE 2

The results of (A) confusion matrix, and (B) ROC curve, correspond to the best reported results obtained using the SVM-RBF classifier,

highlighted in Table 4.

FIGURE 3

Bispectrum plots, (A) normal, (B) MDDSI−, (C) MDDSI+ ECG signals.

FIGURE 4

Cumulant plots, (A) normal, (B) MDDSI−, (C) MDDSI+ ECG signals.
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and could be overlooked by individuals, and in some cases even

experts, which potentially leads to undesirable outcomes. A CIT

can be crucial and highly assistive, thus an automated MDDSI

recognition framework was presented. Neurological conditions

such as depression are linked to changes in the functions of

the cardiovascular and respiratory systems. Hence, ECG, PPG

and RSP signals were acquired and processed from each subject.

DWT was then employed to obtain DWT coefficients, from

which eleven nonlinear features were extracted. ANOVA test

was subsequently conducted to rank the features. The ranked

features were reduced using MFA. The set of reduced features

were then ranked again using ANOVA, to obtain the most

significant features. SVM-RBF and KNN classifiers were used for

the recognition of the MDDSI class. Ten-fold cross validation

was performed to quantify the performance of the classification

model. An accuracy upto 85.2% was achieved for 3 classes

MDDSI classification (96.6 for 2 classes MDD classification)

using the SVM-RBF classifier, with the three acquired signals as

inputs. This was proven to be farmore superior in comparison to

a single-modal based on any individual signal. Thus, this shows

the capability of such system to be used as a diagnostic tool to

aid clinicians in the detection of depression with SI.

Future studies should involve a much larger cohort of

MDD patients with various degrees of suicidal risk evaluations.

Further, follow up studies on the outcomes from the same

cohort of MDD patients following treatments should be used for

validation of the proposed method, so that the development of

a system for monitoring the MDD patients on regular basis is

facilitated. Therefore, with a larger dataset, an end-to-end deep

learning based framework with continuous fine-tuning of hyper-

parameters, following the development of the MDDSI patients

status, can be investigated. Moreover, Bayesian optimization

(64) can be employed to tune the hyper-parameters of the

machine learning model to obtain optimal parameter settings

and improve its performance. Additionally, future work will

investigate the use of deep leaning on shorter data segments

not only to identify MDD patients, but also classify and

assess the severity of depression and suicidal ideation based

on both the acquired psychiatric and self-report ratings of

depression, for continuous monitoring and assistive diagnostics.

Although the automated recognition of MDD is not at a

stage where it can be considered for clinical implementation,

the obtained results are promising, and the evolution of the

proposed method through the employment of the future plans

is very feasible. The clinical interpretation of this work can

be achieved through the utilization of such technique as an

assistive diagnostic tool to help psychiatrists and enhance the

accuracy of their diagnosis, while allowing them to develop

personalized treatments considering the continuous monitoring

offered through the use of automated recognition with wearable

technology, in patients daily life.
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