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Abstract
In this work, a chitosan (CHI) biopolymer was developed by loading different wt% of carbon-doped TiO2 (C–TiO2) with 
CHI to attain an efficient adsorbent of chitosan/carbon-doped TiO2 (CHI/C–TiO2). The fabricated materials were deployed 
for the removal of organic pollutants (methyl orange, MO; and reactive orange 16, RO16) and sulfur dioxide capture. The 
synthesized composites were characterized by BET, FTIR, XRD, TEM, SEM–EDX, pHpzc, and pH-potentiometric titra-
tions. Statistical modeling represented by the Box–Behnken design (BBD) was utilized for optimization of the impacts of 
the various parameters; A: C–TiO2 particles loading (0–50%), B: dose (0.04–0.15 g), C: pH (4–10), and D: temperature 
(30–50 °C) on the adsorption of MO and RO16 dyes. The adsorption isotherms were obtained at equilibrium and under 
dynamic conditions, where the best fit to the isotherm results was shown by the Langmuir model and pseudo-first-order 
kinetic model, respectively. The maximum adsorption capacities of CHI/C–TiO2-50 (containing 50% of C–TiO2) was esti-
mated at 196.6 mg/g and 270.5 mg/g for MO and RO16 dyes, respectively. This work revealed that the designed biomaterial 
(CHI/C–TiO2-50) could be realized as an effective adsorbent for environmental remediation that includes decontamination 
of wastewater and SO2 gas capture.
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Introduction

Air and water pollution is one of the fundamental problems 
that pose a great threat to the ecosystem and human health. 
In recent years, industrial development has undergone 

tremendous growth in various parts of the world, and con-
sequently, increased water and air pollution can occur due to 
release of effluents containing chemicals into water bodies 
and release of toxic gases released into the atmosphere [1]. 
Organic dyes are one of the chemicals that are widely used 
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in many industries such as textiles, pharmaceuticals, plas-
tics, cosmetics, paper, and leather [2]. The release of these 
dyes into freshwater environments causes many problems for 
biota, such as reducing the effectiveness of photosynthesis, 
in addition to human health problems [3]. Methyl orange 
(MO) and reactive orange 16 (RO16) are among the azo 
dyes that are typical of anionic model organic pollutants 
[4, 5]. These dyes are non-degradable which makes them a 
great danger to aquatic environments, including their health 
hazards [6].

On the other hand, sulfur dioxide (SO2) is considered one 
of the most harmful gases, which is produced from several 
industries such as the combustion of fossil fuels (e.g., coal, 
gas, and oil) in the power plants, and the smelting of mineral 
ores [7]. This gas causes several environmental phenom-
ena such as photochemical smog, acid rain, and haze [8]. 
These phenomena can negatively affect climatic systems 
(e.g., the atmosphere, rivers, snow cover, and sea ice), plant 
communities, human health, and animal growth [8, 9]. In 
light of the foregoing, the treatment of wastewater contain-
ing organic pollutants and the removal of toxic gases before 
release into the environment is an urgent matter to preserve 
the ecosystem and human health. Several methods have been 
reported in the treatment of dyeing wastewater including 
adsorption [10], nanofiltration [11], photocatalytic degrada-
tion [12], and electrocoagulation [13], while in air pollution 
with SO2 gas, the common methods applied for capturing 
SO2 employ liquid alkaline solutions (e.g., Ca(OH)2, and 
Mg(OH)2), and adsorbent materials (e.g., activated carbon) 
[7]. In general, adsorption technology is a preferred method 
for pollutant removal from water and air. Adsorption is char-
acterized by unique and favourable features (e.g., simplicity 
of design, low investment cost, lack of secondary pollution, 
removal efficiency, and regeneration ability) that position 
it at the forefront of methods applied to air and water pol-
lution control [9, 14]. Activated carbon (AC) is one of the 
most popular adsorbents in the field of adsorption of air 
and water pollutants due to its amazing properties such as 
porosity, high adsorption capacity, high surface area, and 
thermal stability [15, 16]. Despite these impressive proper-
ties of AC, it is economically expensive to produce. For this 
reason, research efforts have shifted to low-cost, renewable, 
and environmentally friendly adsorbents.

Chitosan (CHI) is one of the most environmentally 
friendly, renewable, and efficient adsorbents employed in 
adsorption technology [17]. In acidic media, CHI is a natural 
cationic polysaccharide that consists of glucosamine units 
[18]. CHI has several unique advantages over other common 
adsorbents, such as its ease of modification, biodegradabil-
ity, super absorbency, hydrophilicity, and nontoxicity [19]. 
The chemical structure of CHI is characterized by abundant 
amino and hydroxyl groups, which are likely to be active 
adsorption sites for the removal of acid gases such as SO2 

and acid dyes [20, 21]. Despite the foregoing, some of the 
properties of CHI require further development such as the 
effective surface area, chemical stability, and mechanical 
strength. Several strategies have been employed in develop-
ing the CHI properties such as composite formation with 
inorganic materials [22], grafting with organic groups [23], 
and crosslinking [24]. The development of CHI by compos-
ite formation with inorganic materials has attracted much 
attention due to its extraordinary properties like improved 
surface area, absorption capacity, chemical stability, and 
mechanical strength [22].

Carbon-doped TiO2 (known as Kronos) is one of the most 
promising materials that can be employed in modifying the 
properties of CHI due to its distinctive characteristics such 
as its surface area, chemical stability, mechanical strength, 
photo activity, and adsorption efficiency of inorganic/organic 
contaminants [25, 26]. Many studies have reported on the 
development of CHI by TiO2 and its utilization in various 
applications such as wastewater treatment [27], biosensor 
[28], and antimicrobial [29], but with carbon-doped TiO2 
(C–TiO2), no studies were reported thus far. Furthermore, 
the CHI -based composites for capturing hazardous gases 
were recently explored, for example, CHI grafted Leca bio-
composite for the capture of carbon dioxide (CO2) [30], 
adsorption of formaldehyde gas by CHI crosslinked with 
MOF-199@ aminated graphene oxide aerogel [31], CHI 
extracted from shrimp shells loaded with Cd ions for the 
capture of hydrogen sulfide (H2S) [32], CHI aerogel for the 
removal of ammonia (NH3) gas [33], and ferrocene- CHI for 
sorption of carbon monoxide (CO) gas [34].

Herein, this study aims to develop a CHI biopolymer by 
loading different wt% of C-doped TiO2 onto CHI to attain 
an efficient adsorbent, referred to as CHI/C-doped TiO2 
(CHI/C–TiO2). The synthesized composites were fully char-
acterized by BET, FTIR, XRD, TEM, SEM–EDX, pHpzc, 
and pH-potentiometric titrations. The fabricated materials 
were applied for the removal of organic pollutants (MO and 
RO16) and SO2 capture. Statistical modeling represented by 
Box–Behnken design (BBD) was utilized for optimization 
of the impacts of the C–TiO2 particles loading, dose, pH, 
and temperature on the adsorption of MO and RO16 dyes. 
In addition, several kinetic and isothermal models have been 
utilized to investigate the adsorption properties and mecha-
nism of the CHI/C–TiO2 composite.

Materials and Methods

Materials

Chitosan (CHI, deacetylation ≥ 75%), and Carbon-
doped TiO2 (C–TiO2, Kronos) were supplied by 
Sigma–Aldrich. The organic dyes including methyl orange 
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(MO; C14H14N3NaO3S; MW: 327.32; λmax = 464  nm), 
and reactive orange 16 (RO16; C20H17N3Na2O11S3; MW: 
617.54 g/mol; λmax = 493 nm) were obtained from ACROS, 
Organics. The chemicals including acetic acid (CH3COOH), 
sodium chloride (NaCl), sodium hydroxide (NaOH), 
and hydrochloric acid (HCl) were obtained from R&M 
Chemicals.

Synthesis of CHI/C–TiO2

The synthesis of CHI/C–TiO2 was based on the approach 
described in previous work [35]. Initially, 1 g of CHI flakes 
was poured into 60 ml of CH3COOH acid solution (5% v/v) 
and stirred at 500 rpm on a magnetic stirrer for 24 h at 25° C 
to dissolve the CHI flakes. Then, the CHI solution was added 
drop-wise into 1000 ml NaOH (2 M) solution to obtain CHI 
beads. The resulting CHI hydrogel beads were washed with 
distilled water until the pH became neutral. For comparison, 
CHI/C–TiO2 composites were fabricated by loading differ-
ent wt. % of C–TiO2 with CHI before adding to the solution 
of CH3COOH, i.e. 25:75 wt% (C–TiO2:CHI), which was 
termed as CHI/C–TiO2-25 and 50:50. wt% (C–TiO2:CHI), 
which was termed as CHI/C–TiO2-50. Finally, the fabricated 
composites were crushed and then sieved to particle size 
(250 μm) for the dye removal tests, along with SO2 capture.

Characterization

The textile properties (e.g., specific surface area, and average 
pore width) of the CHI/C–TiO2-50 were obtained through 
Brunauer–Emmett–Teller (BET) method (Micromerit-
ics ASAP 2060). The morphological characteristics of 
CHI/C–TiO2-50 before and after adsorption of MO and 
RO16 dyes were achieved by recording scanning electron 
microscope (SEM, Zeiss Supra 40 VP) images. The energy 
dispersive X-Ray analysis (EDX) was performed to the 
chemical qualitative analysis of the CHI/C–TiO2-50 before 
and after adsorption of MO and RO16 dyes. X-ray powder 
diffraction spectra (XRD, X’Pert PRO, PANalytical) were 
used to evaluate the phase determination of the CHI/C–TiO2-
50 composite. Fourier Transform Infrared (FTIR) spectra 
(Perkin-Elmer, Spectrum RX I) was used to determine the 
surface chemical characteristics of the CHI/C–TiO2-50 
composite before and after MO and RO16 dyes adsorption. 
The free amino (-NH2) groups in the CHI/C–TiO2-50 was 
computed by pH-potentiometric titrations [36]. Zero-point 
of charge (pHpzc) analysis was employed to determine the 
surface charge of the CHI/C–TiO2-50 [37].

Experimental modeling

BBD was used in this research work as an efficient and relia-
ble statistical method to provide MO removal (%) and RO16 

removal (%) as responses based on several independent fac-
tors that affect the adsorption properties: C–TiO2 loading, 
pH, adsorbent dosage, and temperature. The statistical analy-
sis and numerical demonstration of the experimental results 
related to MO and RO16 removal were acquired through 
the software program of Design-Expert (Stat-Ease, version 
13). Table 1 shows the parameters evaluated inside the BBD 
model, along with their levels and symbols. A polynomial 
equation (Eq. 1) was applied to correlate the experimental 
results and estimate the MO removal (%) and RO16 removal 
(%).

where Y, and (Xi and Xj) symbol the forecasted response 
(MO removal (%) or RO16 removal (%)); and the evalu-
ated factors. �0 and �i , denote the regression coefficients of 
intercept, and the linear; whereas, �ii and �ij signify quadratic 
and interaction effects. The BBD model produced 29 runs to 
examine the influence of the following factors: A: C–TiO2 
loading (0–50%), B: adsorbent dose (0.04–0.15 g), C: pH 
(4–10), and D: temperature (30–50 °C) on MO and RO16 
dyes adsorption process. The actual values of responses (MO 
and RO16 removal) along with their experimental condi-
tions are recorded in Table 2. In 250 ml flasks that contain 
100 ml of the dye solution, a constant quantity of the adsor-
bent was added. Then, these sealed flasks were transferred 
into a shaker water bath (WNB7-45, Memmert) at a speed 
of up to 90 strokes/min. The next step after the adsorption 
process was to remove the adsorbents from solutions with a 
syringe filter (0.45 μm). Then, the residual concentrations 
of MO and RO16 in solutions was estimated using spectro-
photometry with a UV–Vis spectrometer (HACH DR 2800) 
at λmax 464 nm and 493 nm, respectively. The removal effi-
ciency (R, %) of MO and RO16 dyes were calculated using 
Eq. 2 shown below.

where Co (mg/L) and Ce (mg/L) represent the dye con-
centrations (MO or RO16) before and after the adsorption 
process, respectively.

(1)Y = �0 +
∑

�iXi +
∑

�iiX
2
i
+
∑∑

�ijXiXj

(2)R% =

(

Co − Ce

)

Co

× 100

Table 1   Coded and actual variables and their levels in BBD

Codes Variables Level 1 (− 1) Level 2 (0) Level 3 (+ 1)

A C–TiO2 loading 
(%)

0 25 50

B Dose (g) 0.04 0.095 0.15
C pH 4 7 10
D Temperature (oC) 30 40 50
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Adsorption study of MO and RO16 dyes on CHI/C–
TiO2‑50

Determining the adsorption ability of CHI/C–TiO2-50 
toward MO and RO16 dyes was accomplished by use of 
batch experiments. As determined in Table 2, the maxi-
mum removal of MO (81.6%) and RO16 (90.4%) dyes was 
accomplished in run eighteen under the following condi-
tions: C–TiO2 loading = 50%, dosage = 0.095 g (adjusted to 
0.1 g in adsorption tests), pH 4, and temperature = 40 °C. In 
this way, batch tests were carried out to study the uptake the 
MO and RO16 dyes at these previously mentioned ideal con-
ditions over a range of initial concentrations (20–200 mg/l). 
The calculation of the adsorption capacity (qe, mg/g), of 
MO and RO16 dyes on the surface of the CHI/C–TiO2-50 
at equilibrium employed Eq. 3.

where W (g) and V (L) are the amount of CHI/C–TiO2-
50 and the volume of the dye solution (MO and RO16), 
respectively.

SO2 adsorption tests

The SO2 adsorption tests were carried out by Ultramat 23 
Gas Analyzer integrated with computer dynamic simulation 
to adjust the gas flow rate of SO2 for the tests. 1 g of the syn-
thesized adsorbent was placed in the reaction vessel and the 
temperature was maintained at 87 °C. Before SO2 capture, 
N2 (99.99%) was passed through the prepared adsorbent 
to exclude any undesired compounds. After that, a stream 
of SO2 (1000 ppm) gas was fed to the column containing 

(3)qe =

(

Co − Ce

)

V

W

Table 2   The 4-variables BBD 
matrix and experimental data 
for MO removal and RO16 
removal

Run A: C–TiO2 load-
ing (%)

B: Dose (g) C: pH D: Temp. (oC) MO removal 
(%)

RO16 
removal 
(%)

1 0 0.04 7 40 4.1 8.4
2 50 0.04 7 40 18.8 23.7
3 0 0.15 7 40 12.7 15.1
4 50 0.15 7 40 72.2 77.7
5 25 0.095 4 30 40.8 52.2
6 25 0.095 10 30 15.9 23.5
7 25 0.095 4 50 50.5 58.4
8 25 0.095 10 50 9.7 14.7
9 0 0.095 7 30 6.3 10.3
10 50 0.095 7 30 66.6 81.1
11 0 0.095 7 50 9.3 18.8
12 50 0.095 7 50 75.4 85.8
13 25 0.04 4 40 18 23.3
14 25 0.15 4 40 58.5 74.2
15 25 0.04 10 40 6.5 12.8
16 25 0.15 10 40 10.2 13.2
17 0 0.095 4 40 7.2 15.9
18 50 0.095 4 40 81.6 90.4
19 0 0.095 10 40 2.5 3.4
20 50 0.095 10 40 30.3 34.4
21 25 0.04 7 30 8.2 12.9
22 25 0.15 7 30 20.9 24
23 25 0.04 7 50 8.4 14.5
24 25 0.15 7 50 35.9 44.4
25 25 0.095 7 40 18.5 23.4
26 25 0.095 7 40 17.9 24.2
27 25 0.095 7 40 18.2 23.8
28 25 0.095 7 40 18.3 24.5
29 25 0.095 7 40 17.5 23.8
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adsorbent meanwhile keeping on the feed flow at 500 ml/
min. Equation 4 was utilized to calculate the breakthrough 
adsorption capacity (S, mmol/g) of SO2 gas.

where q, tm, and G signify the gas flow rate (ml/min), is 
the breakthrough time (min), and the amount of the adsor-
bent (g). Co and Ci represent the initial concentration (ppm), 
and the outlet concentration (ppm) of SO2 gas.

Results and discussion

Characterization of the CHI/C–TiO2‑50

Table  3 lists the physicochemical properties of the 
CHI/C–TiO2, specifically the amine content (%) and surface 
area characteristics. pH-potentiometric titration is a vital 
method used to estimate the proportion of primary amino 
groups (-NH2) existing in the backbone of the CHI/C–TiO2-
50, which symbolizes adsorptive sites for anionic dyes such 
as MO and RO16 dyes. The –NH2 content in CHI/C–TiO2-
50 determined by potentiometric titration reached 38.41%. 
This finding suggests that the CHI/C–TiO2-50 still has 
plenty of –NH2 to bind with MO and RO16 dyes. The 
results of the BET analysis showed that the surface area of 
the CHI/C–TiO2-50 composite is significantly higher than 
the cross-linked CHI composites containing 50% of TiO2 
nanoparticles. For example, cross-linked CHI-glyoxal/TiO2 
(17.74 m2/g) [38] and cross-linked CHI-tripolyphosphate/
TiO2 (2.75 m2/g) [35] indicate that C–TiO2 possesses a 
high surface area that plays a significant role in improv-
ing the surface properties of CHI/C–TiO2-50 through sup-
porting onto the CHI biopolymer matrix. As per IUPAC, 
CHI/C–TiO2-50 is a mesoporous material due to its average 
pore diameter of 7.31 nm.

The X-ray diffraction (XRD) profile of the CHI/C–TiO2-
50 composite is illustrated in Fig. 1. The broad peak located 
at 20.3° in Fig. 1 relates to the semi-crystalline nature of 
CHI biopolymer [39]. In Fig.  1, several peaks at 2θ of 

(4)S =
10−6q∫ tm

0

(

C0 − Ci

)

dt

22.4G

25.28°, 37.8°, 48.05°, 53.89°, 55.1°, 62.6°, 68.7°, 70.3° and 
75.01° correspond to the [101], [004], [200], [105], [211], 
[204], [116], [220], and [215] crystalline phases of C–TiO2, 
respectively with the Miller indices (JCPDS file No. 00-021-
1272) [40].

TEM analysis was performed to accurately determine the 
particle size of C–TiO2. The TEM images of C–TiO2 parti-
cles at several wavelengths (500 nm, 200 nm, 100 nm, and 
50 nm) are illustrated in Fig. 2a–d, respectively. According 
to the TEM results in Fig. 2, the size of C–TiO2 particles is 
8.60 nm (Fig. 2d). These results concur with the results of 
the BET analysis, which support that the surface area of the 
CHI/C–TiO2-50 was 89.34 m2/g. The presence of nano-sized 
particles (C–TiO2) in the formula designed (CHI/C–TiO2-
50) for adsorption of anionic dyes and SO2 gas impart a 
high adsorption efficiency to remove organic and inorganic 
pollutants.

The surface functional groups of the CHI/C–TiO2-50, 
and CHI/C–TiO2-50 after MO and RO16 dyes adsorption 
were determined by FTIR analysis. The FTIR spectra of 
CHI/C–TiO2-50, and CHI/C–TiO2-50 after the adsorption 
of MO and RO16 dyes are shown in Fig. 3a–c. The char-
acterized bands of CHI/C–TiO2-50 composite (Fig. 3a) 
at 3698 cm−1, 3500–3650 cm−1, 2270 cm−1, 1660 cm−1, 
1450 cm−1, 1380 cm−1, 1075 cm−1, 770 cm−1, and 540 cm−1 
are attributed to the hydroxyl groups of TiO2, –OH and 
–NH2 stretching, stretching of C≡C, N–H bending vibration, 
deformations of C–O–H, C–N stretching, C–O–C stretching, 
stretching vibration of Ti–O–Ti and Ti–O bond, respectively 
[41, 42]. The FTIR spectra of the CHI/C–TiO2-50 composite 
after MO (Fig. 3b) and RO16 (Fig. 3c) adsorption showed a 
remarkable change in the bands of –NH2 and –OH groups, 
which is notably shifted, and broadened, confirming that 
the –OH and NH2 groups participate in the MO and RO16 
adsorption process. Besides, the peak at 1500 cm−1 can be 

Table 3   The physicochemical properties of the CHI/C–TiO2-50

Property Value

–NH2 content (%) 38.41
BET surface area (m2/g) 89.34
Langmuir surface area (m2/g) 127.6
Total pore volume (cm3/g) 0.1346
Vm (cm3/g) 0.00328
Mean pore diameter (nm) 7.31

Fig. 1   XRD pattern of CHI/C–TiO2-50
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attributed to the aromatic rings (C=C) of the MO and RO16 
dyes further confirm the loading or adsorption of MO and 
RO16 dyes onto the CHI/C–TiO2-50 surface.

Exploration of the surface morphology of the 
CHI/C–TiO2-50 before and after adsorption of MO and 
RO16 dyes as well as estimates of its chemical composi-
tion was achieved by SEM–EDX. Figure 4a–c provides 
SEM–EDX images of (a) CHI/C–TiO2-50, and CHI/C–TiO2-
50 following adsorption of (b) MO and (c) RO16 dyes. As 
seen in Fig. 4a, the surface features for the 50% C–TiO2 
particles loaded onto CHI reveal that the CHI/C–TiO2-50 
had a granular surface containing tiny pores, which illus-
trates the embedding of C–TiO2 particles onto the polymer 
matrix of CHI. The EDX spectrum of the CHI/C–TiO2-50 
reveals the presence of Ti, O, C, and N. The appearance of 
a Ti signature in the EDX spectrum is further evidence that 

the C–TiO2 particles were effectively incorporated onto the 
CHI matrix. The CHI/C–TiO2-50 surface was altered into 
a smooth, packed, and uniform surface after adsorption of 
MO (Fig. 4b) and RO16 (Fig. 4c), consistent with the uni-
form dye surface coverage. This result was confirmed by 
EDX, which showed that the content of C (%) was increased 
because of loading the dye (MO or RO16) molecules.

Model validation

A statistical analysis of variance (ANOVA), including the 
statistical evaluation of the significant impacts of the fac-
tors and their interactions related to the MO and RO16 
dyes removal was carried out. The ANOVA findings for the 
removal of the MO and RO16 dyes are listed in Table 4. 
The MO and RO16 removal models have F-values of 23.63 

(a) (b) 

(d) (c)

Fig. 2   The TEM images of C–TiO2 particles at variable magnification namely a 500 nm, b 200 nm, c 100 nm, and d 50 nm
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and 18.12, respectively, implying that the models are critical 
[43]. The correlation coefficients (R2) of 0.96 (MO removal) 
and 0.95 (RO16 removal) indicate that the models are well 
fitted and that there is a favourable agreement between 
theoretical and actual removal values [44]. Statistically, the 
BBD model terms have statistical significance when the 
p-value ≤ 0.05. Accordingly, A, B, C, AB, AC, BC, A2, and 
D2 are critical terms in the removal process of the MO and 
RO16 dyes. Along these lines, the linkage between MO and 
RO16 removal with the examined variables was empirically 
fitted by the quadratic polynomial formula, as expressed in 
Eqs. 5 and 6, respectively.

(5)

MO removal (%)= +18.08 + 25.23A + 12.20B − 15.13C + 11.20AB

−11.65AC − 9.20BC + 11.40A2 + 6.51D2

Analysis of the diagrams inclusive of real versus pre-
dicted, where the normal probability of the residuals might 
be utilized to successfully verify the experimental findings of 
dye removal for MO and RO16. The real vs. expected graphs 
of MO and RO16 removal values are shown in Fig. 5a, b, 
where the real points were largely near the predicted points, 
demonstrating that the BBD model can optimize the adsorp-
tion process for these dyes. The normal probability charts 
of the MO and RO16 removal dyes are depicted in Fig. 5c, 
d. As seen from Fig. 5c, d, the typical distribution of dots 
around the straight-line denote the independence of the 
residuals [41].

Adsorption optimization of MO and RO16 dyes

3D response surfaces plots are as one of the main graphical 
representations that provide an understanding of the nature 
of the fundamental interactions among the two investigated 
variables and their impacts on the responses denoted by the 
MO removal and RO16 removal. The cumulative impacts 
of C–TiO2 loading and dosage (termed as AB interaction) 
on the MO and RO16 removal were meaningful. Figure 6a, 
b displays the 3D surface plot of the cumulative impacts 
of AB interaction on the MO and RO16 removal at the 
accompanying fixed circumstances: pH (7) and temperature 
(40 °C). The findings shown in Fig. 6a, b found that increas-
ing the adsorbent dosage and C–TiO2 loading enhances the 
removal of MO and RO16 dyes. Such findings are related 
to the excessive surface area coming from C–TiO2 parti-
cles and the adequate quantity of reactive sites available on 
the CHI/C–TiO2 surface, which are attracted with MO and 
RO16 molecules to obtain the adsorption process.

The cumulative impacts of C–TiO2 loading vs. pH 
(termed as AC interaction) and dose vs. pH (termed as BC 
interaction) on the MO and RO16 removal were meaning-
ful. Figure 7a–d displays the 3D surface plot of the cumu-
lative impacts of AC and BC interactions on the MO and 
RO16 removal at the accompanying fixed conditions: dose 
(0.095 g) and temperature (40 °C) for AC interaction; and 
C–TiO2 loading (25%) and temperature (40 °C) for BC inter-
action. As demonstrated in Fig. 7a–d, the MO and RO16 
(%) improved simultaneously with a pH drop from 10 to 4. 
As shown in Fig. 7e, pHpzc of the CHI/C–TiO2-50 equals 
7.0. This observation indicates that the CHI/C–TiO2 surface 
acquires negative charges at pH values larger than pHpzc. As 
a result of the rise in H+ concentration in the solution, the 
CHI/C–TiO2 surface becomes positively charged at an acidic 
medium. Therefore, the electrostatic attractions between the 
sulfonate (–SO3

−) groups belonging to the MO and RO16 

(6)

RO16 removal (%)= +23.94 + 26.77A + 12.75B − 17.70C + 11.82AB

−10.88AC − 12.63BC + 11.44A2 + 8.39D2

Fig. 3   FTIR spectra of a CHI/C–TiO2-50, and CHI/C–TiO2-50 after 
adsorption of b MO and c RO16 dyes
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dyes and cationic groups of CHI/C–TiO2-50, as shown in 
Eq. 7.

where the Dye − SO−
3
 indicates either the MO or the 

RO16 dye species.

(7)
CHI∕C − TiO+

2
+ Dye − SO−

3
↔ CHI∕C − TiO+

2
…−O3S − Dye

Adsorption study

An investigation on the effect of initial concentration on 
the adsorption behaviour of MO and RO16 dyes by the 
CHI/C–TiO2-50 composite was performed at several 
dye adsorbate concentrations (20–200  mg/l); whereas, 
the mass of the adsorbent (0.095 g), volume of the dye 

(a) 

(b) 

(c) 

Element C O Ti N 
Wt. (%) 14.00 31.92 51.98 2.11 

Element C O Ti N 
Wt. (%) 28.83 43.06 19.09 9.01 

Element C O Ti N
Wt. (%) 24.76 42.45 31.42 1.26 

Fig. 4   SEM–EDX images of a CHI/C–TiO2-50, and CHI/C–TiO2-50 after adsorption of b MO and c RO16 dyes
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solution (100 ml), pH (4), and temperature (40 °C) were 
held constant. The adsorption property of CHI/C–TiO2 
towards MO and RO16 dyes as a function of contact time 
are shown in Fig. 8a, b. In Fig. 8a, b, the adsorption capac-
ity of CHI/C–TiO2-50 was found to increase from 17.9 to 
148.4 mg/g for MO and from 20.4 to 193.7 mg/g for RO16, 
across a range of dye concentration (20 to 200 mg/l). The 
higher concentration range for MO and RO16 provides an 
important driving force that contributes to the transport of 
MO and RO16 molecules to the available active sites on the 
CHI/C–TiO2-50 surface [45].

SO2 capture

The removal of SO2 over CHI biopolymer in the presence 
and absence of variable C–TiO2 loadings was investigated. 
Figure 9 displays the breakthrough curves of SO2 capture 
over CHI biopolymer, CHI/C–TiO2-25, and CHI/C–TiO2-
50. According to the breaking curves exhibited in Fig. 9, 
the saturation time of CHI biopolymer, CHI/C–TiO2-25, and 
CHI/C–TiO2-50 was 11 min, 30 min, and 35 min, respec-
tively. These results concur with the values of SO2 adsorp-
tion capacity listed in parentheses as follows: CHI/C–TiO2-
25 (0.6140 mmol/g), CHI/C–TiO2-50 (0.7622 mmol/g), 
and CHI biopolymer (0.1342  mmol/g). Therefore, the 
SO2 adsorption data revealed that SO2 capture by the 
CHI/C–TiO2-25 and CHI/C–TiO2-50 biomaterials was sig-
nificantly improved compared to the CHI biopolymer. The 
improvement in adsorption performance of CHI biopoly-
mer (without C–TiO2 particles) upon loading with C–TiO2 

loading (especially 50%) for CHI/C–TiO2-50 (89.34 m2/g) 
can be attributed to the greater surface area effects of the 
C–TiO2 particles. In addition to the above, and from a chem-
ical point of view, CHI/C–TiO2-50 possesses active adsorp-
tion sites such as Ti–O, C–O, –OH, and –NH2, which can 
participate in the binding of SO2 molecules [8, 20]. Funda-
mentally, the SO2 capture occurred at a high temperature of 
360 K, which signifies that the surface sulfate-like species 
(SO4

2−) was formed from the SO2 capture process is acti-
vated by elevated temperature [46].

Kinetic study

In order to understand the adsorption behavior and deter-
mine the control mechanism responsible for the adsorption 
of MO and RO16 dyes on the surface of CHI/C–TiO2-50, 
the experimental data were evaluated by common kinetics 
model equations, via the pseudo-first-order (PFO) [47] and 
pseudo-second-order (PSO) models [48]. The terms of the 
kinetics including PFO and PSO were extracted by the non-
linear formulas listed in Eqs. 8 and 9, respectively.

where qe (mg/g) and qt (mg/g) represent the adsorp-
tion capacities at equilibrium and time (t), respectively. 
k1 (1/min) and k2 (g/mg min) are the rate constants of the 

(8)qt = qe(1 − exp−k1t)

(9)qt =
q2
e
k2t

1 + qek2t

Table 4   Analysis of variance (ANOVA) for MO removal and RO16 removal

MO removal RO16 removal

Source Sum of Squares df Mean Square F-value p-value Sum of Squares df Mean Square F-value p-value

Model 14,980.28 14 1070.02 23.63  < 0.0001 17,714.65 14 1265.33 18.12  < 0.0001
A 7640.65 1 7640.65 168.70  < 0.0001 8597.45 1 8597.45 123.14  < 0.0001
B 1786.08 1 1786.08 39.44  < 0.0001 1950.75 1 1950.75 27.94 0.0001
C 2745.19 1 2745.19 60.61  < 0.0001 3759.48 1 3759.48 53.85  < 0.0001
D 77.52 1 77.52 1.71 0.2119 88.56 1 88.56 1.27 0.2790
AB 501.76 1 501.76 11.08 0.0050 559.32 1 559.32 8.01 0.0134
AC 542.89 1 542.89 11.99 0.0038 473.06 1 473.06 6.78 0.0209
AD 8.41 1 8.41 0.1857 0.6731 3.61 1 3.61 0.0517 0.8234
BC 338.56 1 338.56 7.48 0.0161 637.56 1 637.56 9.13 0.0091
BD 54.76 1 54.76 1.21 0.2901 88.36 1 88.36 1.27 0.2795
CD 63.20 1 63.20 1.40 0.2572 56.25 1 56.25 0.8057 0.3846
A2 842.61 1 842.61 18.60 0.0007 849.28 1 849.28 12.16 0.0036
B2 46.50 1 46.50 1.03 0.3281 86.77 1 86.77 1.24 0.2837
C2 130.48 1 130.48 2.88 0.1117 186.88 1 186.88 2.68 0.1241
D2 274.90 1 274.90 6.07 0.0273 456.87 1 456.87 6.54 0.0228
Residual 634.08 14 45.29 977.46 14 69.82
Cor total 15,614.37 28 18,692.11 28
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PFO and PSO kinetic models, respectively. The calcu-
lated kinetic parameters are recorded in Table 5, where 
it can be concluded that the adsorption process for both 
dyes are described by the PFO model over that of the 
PSO model. This trend is supported by the relatively high 
R2 values of PFO compared to the R2 values of PSO, in 
addition to the experimental qe values, which are closer 
to the calculated qe values of the PFO model, in com-
parison with the calculated qe values of PSO. The results 
reported herein support that the adsorption of the MO 
and RO16 dyes on CHI/C–TiO2-50 is physisorption that 

involves electrostatic attractions [49]. The latter occurs 
between the cationic groups present on the surface of 
CHI/C–TiO2-50 and the -SO3

− groups of the MO and 
RO16 dyes, respectively.

Isotherm study

An account of the mode of interaction between CHI/C–TiO2-
50 and the MO and RO16 dye species can be obtained by 
analysis of the equilibrium isotherms. The adsorption capac-
ity of CHI/C–TiO2-50 for the uptake MO and RO16 dyes 

Fig. 5   Plots the relationship between the actual and predicted values of a MO and b RO16 removal; the normal probability of residuals for c MG 
and d RO16 removal
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from the liquid phase was determined through the fitting of 
the experimental results to equilibrium isotherms like Lang-
muir, Freundlich, and Temkin [50–52]. The terms of the 
isotherms including Langmuir, Freundlich, and Temkin were 
extracted by the non-linear formulae listed in Eqs. 10–12, 
respectively.

Ka (L/mg), KT (L/mg), and Kf (mg/g) (L/mg)1/n, are the 
adsorption constants of Langmuir, Temken, and Freundlich 
isotherms. qmax (mg/g) is the adsorption capacity of the 
CHI/C–TiO2-50. n is the exponent term for the Freundlich 
model. bT (J/mol) is a term related to the heat adsorption. T 
(K) and R (8.314 J/mol K) denote the temperature and uni-
versal gas constant, respectively. The curves acquired from 
adsorption isotherms for MO and RO16 dyes are exhibited 
in Fig. 10a, b while the calculated terms of the isotherms 
are given in Table 6. Depending on the R2 values, it can 
be concluded that the adsorption of MO and RO16 dyes 
by CHI/C–TiO2-50 fit better with the Langmuir isotherm 
model, based on the highest R2 value compared to the other 
models. These findings signify the homogeneous character 
of the adsorbent surface for CHI/C–TiO2-50 with the MO 

(10)qe =
qmaxKaCe

1 + KaCe

(11)qe = KfC
1∕n
e

(12)qe =
RT

bT
ln(KTCe)

and RO16 dyes [53]. The qmax values for MO and RO16 
dyes on CHI/C–TiO2-50 were estimated as 196.6 mg/g and 
270.5 mg/g at 40 °C, respectively. In order to get a better 
idea of the CHI/C–TiO2-50's adsorption capacity, it was 
compared with the adsorption capabilities of other materi-
als studied for the removal of such anionic dyes (MO and 
RO16), according to the values listed in Table 7. These 
results show that the CHI/C–TiO2-50 poses a good abil-
ity to remove organic pollutants, specifically anionic dyes 
from polluted water.

Adsorption mechanism of MO and RO16 dyes

The surface of CHI/C–TiO2 is characterized by an enor-
mous amount of active groups such as hydroxyl (–OH), 
amino (–NH2), and (Ti–OH), as per the FTIR spectrum, 
which is consistent with other studies [35, 38]. Because 
of the existence of such functional groups, the mecha-
nism of MO and RO16 dye adsorption on the surface of 
CHI/C–TiO2 was deduced, as seen in Fig. 11. One of the 
key pathways contributing to the adsorption of MO and 
RO16 dyes on the surface of CHI/C–TiO2 is electrostatic 
forces that achieve by the attraction between the nega-
tive charge of the MO and RO16 dyes and the negatively 
charged groups of the CHI/C–TiO2 surface as shown in 
Fig.  11. The interaction between the hydrogen on the 
CHI/C–TiO2 surface and the nitrogen and oxygen atoms 
in the MO and RO16 dye structures is another probable 
interaction contributing to the adsorption of MO and RO16 
dyes, which is called H-bonding. The n-π stacking is also 

Fig. 6   3D surface plots of the cumulative impacts of AB interaction toward a MO and b RO16 removal
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implicated in the adsorption of the MO and RO16 dyes via 
the interface that occurs between the CHI/C–TiO2 surface 
(oxygen and nitrogen groups) and the aromatic rings of the 
MO and RO16 dyes [66].

Conclusion

A composite adsorbent with improved adsorption prop-
erties over pristine chitosan was reported herein. The 
composite is comprised of chitosan/C-doped TiO2 
(CHI/C–TiO2) was found to be suitable for the removal 
of organic pollutants (methyl orange, MO; and reactive 
orange 16, RO16) and capture of an inorganic gas (SO2). 
The best experimental conditions for the design of the com-
posite adsorbent herein and the adsorption conditions for 
the highest removal of MO (81.6%) and RO16 (90.4%) 
dyes are as follows: C–TiO2 loading = 50%, adsorbent dos-
age = 0.095 g, pH 4, and temperature = 40 °C. The results 
from the BBD model reveal that the highest MO and RO16 
removal were obtained upon consideration of the follow-
ing interactions: AB (C–TiO2 loading × dose), AC (C–TiO2 
loading × pH), and BC (dose × pH). The results for the 
adsorption isotherms and the kinetic profiles showed that 
the adsorption process of MO and RO16 dyes onto the 
surface of CHI/C–TiO2-50 is primarily monolayer adsorp-
tion and physisorption in nature. The maximum adsorption 
capacities of CHI/C–TiO2-50 (containing 50% C–TiO2) 
were found to be 196.6 mg/g and 270.5 mg/g of MO and 
RO16 dyes, respectively. The developed biocomposite 
material (CHI/C–TiO2-50) was found to be an effective 
adsorbent for environmental applications such as the treat-
ment of wastewater, along with gas capture, as shown for 
SO2.
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Fig. 10   Adsorption isotherms of a MO and b RO16 by CHI/C–TiO2-
50 (dosage 0.1  g, pH of solution 4, temperature 40  °C, agitation 
speed = 90 strokes and volume of solution = 100 ml)

Table 6   Parameters of the Langmuir, Freundlich and Temkin iso-
therm models for the adsorption of MO and RO16 on CHI/C–TiO2-
50 at 40 °C

Adsorption isotherm Parameter MO RO16

Langmuir qm (mg/g) 196.6 270.5
Ka (L/mg) 0.06 0.21
R2 0.99 0.98

Freundlich Kf (mg/g) (L/mg)1/n 23.6 52.5
n 2.08 1.81
R2 0.95 0.96

Temkin KT (L/mg) 0.406 0.89
bT (J/mol) 62.4 46.3
R2 0.98 0.97
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