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Abstract
Coastal wetlands have been long recognized for their importance to biodiversity and many biogeochemical processes includ-
ing carbon sequestration; however, our understanding of plant-microbe interactions that govern many processes in these 
ecosystems remains elusive. Fungal communities are known to play critical roles in coastal wetlands, particularly due to 
their close relationships with plants, yet, systematic understanding of their distributional patterns and the factors shaping 
these patterns in natural coastal wetland environments has been rarely assessed. We synthesized existing published literature 
from fifty-one studies spanning 60 years to examine global fungal distributional patterns in coastal wetlands, draw link-
ages between fungi, the plant communities, and their environment, and identify gaps in fungal research and suggest future 
research directions. We focused on studies that reported root-associated fungi and fungi from the plant rhizosphere (i.e., 
soil surrounding roots) in coastal dunes, intertidal flats, salt marshes, and tidal wetlands. Our synthesis has revealed that (1) 
203 fungal species were reported from salt marshes, 59 fungal species from coastal dunes, 32 from tidal wetlands, and ten 
from intertidal flats; (2) rhizosphere fungal communities were more species-rich and reported more often for all ecosystems 
except in salt marshes; and (3) nineteen different fungal guilds, which are predominantly arbuscular mycorrhizal fungi. 
We conclude that more research is needed to better understand root-associated fungal diversity in less studied ecosystems 
reviewed here. We have identified knowledge gaps in reported data and outlined suggestions to facilitate future plant-fungal 
research in these declining, but important, coastal ecosystems.
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Introduction

Coastal wetlands, considered as ecological ecotones between 
terrestrial and ocean environments, play an indispensable 
role in the global ecosystems (Kirwan and Megonigal 2013). 

While they only account for 5–8% of the global land surface 
(Mitsch et al. 2013), coastal wetlands are hotspots for pro-
ductivity, performing critical functions including nutrient 
and biogeochemical cycling and providing important ecosys-
tem services such as water quality improvement, biodiver-
sity, and carbon sequestration (Baustian et al. 2012). Glob-
ally, tidal wetlands accumulate 53.65 gigatons of carbon 
(C) a year, serving as an important carbon sink (i.e., “blue” 
Carbon) (Wang et al. 2021) and thus considerably contrib-
uting to the global C budget (Howard et al. 2017). Many of 
the coastal ecosystem processes and functions are regulated 
or mediated by their constitutive biota such as plants and 
microbial communities in the soil (Emerson et al. 1999; 
Weiss et al. 2004; Yarwood 2018). Due to a greater focus 
on anerobic processes in the generally anoxic wetland soils, 
bacteria are often considered the primary mediators of many 
coastal ecosystem processes, with fungi historically being 
relegated to having minor importance relative to bacteria 
(Khan 2004). Fungal communities are thus overlooked in 
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coastal ecosystems and studies on their diversity, function 
and distribution lags that of bacterial studies.

There is a growing recognition, however, that fungi can 
also be critical players in coastal ecosystem processes such 
as decomposition, largely due to their tight associations or 
symbiotic relationships with plant communities (Onufrak 
et al. 2020; Bahram and Netherway 2022; Wang et al. 2022). 
For example, arbuscular mycorrhizal fungi (AMF) have 
largely been shown to be ubiquitous and critical in wetland 
ecosystems (Wolfe et al. 2007; Xu et al. 2016). Other types 
of fungi such as endophytes (fungi that live inside plant tis-
sues) and fungi in the rhizosphere soil zone (i.e., soil that 
is in contact with plant roots) are beginning to be explored 
as well, unmasking rich and diverse communities whose 
ecology and functions are critical for wetland plants and to 
coastal wetland ecosystems (Farrer et al. 2022). However, 
there is still a lack of systematic understanding of patterns 
related to their distribution and diversity globally and the 
different factors shaping these processes in coastal wetlands 
in space and time. Basic understanding of these dynamics 
is necessary in order to fully assess the magnitude of their 
roles in coastal wetland ecosystem functioning.

The diversity and distribution of fungi in coastal wetlands 
are influenced by interplay of both biotic and abiotic factors 
depending on the substrate, i.e., inside plants tissues or soil. For 
example, rhizosphere soil fungi and those living inside plant 
roots (e.g., mycorrhiza and endophytes) can display varying 
and sometimes opposite diversity patterns, likely due to differ-
ent underlying mechanisms shaping their patterns (Lumibao 
et al. 2021). Host factors are likely to have stronger influence on 
endosphere fungi than on rhizosphere fungal communities, act-
ing as selective filters for fungi colonizing their roots. However, 
these patterns might be contingent upon the intrinsic abiotic and 
biotic factors of their local environment and would thus differ 
when larger spatial scales, i.e., across continents, are consid-
ered. A recent review of arbuscular mycorrhizal fungi (AMF), 
for example, suggests that they have global distribution in 
coastal wetlands though they are limited by flooding, hypoxia, 
soil pH, salinity, and the host plant’s identity or genotype (Wang 
et al. 2022). Across coastal wetland habitats, pronounced varia-
tions in local environmental conditions (e.g., anoxic saltmarsh 
soils vs. oxygenated mangrove swamp soils) can also drive dif-
ferences in fungal communities (Alzarhani et al. 2019).

In this review, we focus on belowground fungal com-
munities that are in close associations with coastal wetland 
plants for a number of reasons. First, as coastal wetlands 
like marshes are often dominated by only a few plant spe-
cies (e.g., Spartina alterniflora), functional shifts in plant-
fungal associations of dominant vegetation can lead to con-
siderable ecosystem-level outcomes. Second, plant-fungal 
interactions encompass a feedback mechanism. Plants influ-
ence fungal communities in the rhizosphere soil (i.e., soil in 
contact with their roots) and those living inside their  roots  

(Lumibao et al. 2020). In turn, fungi can influence physi-
ology and tolerance of the plants under an environmental 
stressor (Torres-Martínez et al. 2020; Lumibao et al. 2022) 
and help in nutrient acquisition (e.g., Schultz et al. 2001; 
Bowles et al. 2018; Moreau et al. 2019). The dynamics of 
these associations can potentially regulate coastal ecosystem 
processes. Third, the diversity and composition of rhizo-
sphere soil fungi and endophytic fungal communities are 
subject to the competing and/or synergistic influences of 
both biotic, i.e., plants, and abiotic, i.e., local environment, 
that are likely to vary across spatial and temporal scales.

We address the patterns of fungal diversity associated 
with plants in naturally occurring wetland habitats across 
the globe. We synthesized literature that focused on rhizos-
phere soil and root endosphere fungal communities (includ-
ing mycorrhizae) across four wetland habitat types: coastal 
dunes, intertidal flats, salt marshes, and tidal wetlands. Our 
aims were to (1) synthesize literature/data on rhizosphere 
and root endosphere fungi across different coastal wetland 
habitats, (2) determine the commonalities, if any, in fun-
gal research across global coastal wetland habitats, and (3) 
identify research gaps in fungal studies in coastal wetlands.

Materials and Methods

We performed a systematic quantitative literature review by 
searching Scopus (Elsevier, Atlanta, U.S.A) and ISI Web 
of Knowledge (Core collection; Thomson Reuters, NY, 
U.S.A.). These databases were searched through article title, 
abstract, and keywords using the search string: (fung* OR 
microb*) AND (“saltmarsh” OR “salt marsh” OR “coastal 
ecosystem” OR “tidal wetland” OR “freshwater swamp” OR 
“tidal marsh”) AND (“rhizosphere” OR “rhizo*” OR “root” 
OR “endosphere” OR “endoph*”). Available literature until 
December 2021 was included. This search returned 382 and 
145 papers in Scopus and ISI Web of Knowledge, respec-
tively. All papers were imported into COVIDENCE (Covi-
dence systematic review software, Veritas Health Innovation, 
Melbourne) for screening. Covidence removed automatically 
duplicates resulting in 527 papers that were included in title 
and abstract screening. Further screening of the 527 studies 
based on our criteria ultimately resulted in 51 studies that 
were used for the synthesis (Table S1, Online Resources 1).

We defined coastal ecosystems as types of habitats at the 
transition zone between terrestrial and aquatic or ocean envi-
ronments. This encompasses coastal dunes, restinga forest, 
intertidal flats, tidal wetlands (including mangroves), forested 
wetlands (including freshwater wetlands), and salt marshes 
(Table 1). Where applicable further (i.e., more specific), cat-
egorization was carried out based on how it was defined in 
the papers used in this synthesis and/or Ramsar Convention 
(2016) as described in Tables 1 and S1 (Online Resources 1).
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Study Inclusion Criteria

Relevant studies were imported and screened using COVI-
DENCE. Selection was based on the following criteria to 

be included in the systematic review: study must be (1) 
conducted in a natural/pristine coastal ecosystem, i.e., no 
environmental disturbances reported; (2) conducted in field 
conditions without field manipulative experiments or lab 

Table 1   Coastal wetland category description adopted from Ramsar 
Convention on Wetlands (2016), key representative vegetation type, 
the reported region they occur, and published studies used in this syn-

thesis. The full list of host plant species/vegetation can be found in 
Online Resources 1

Type Definition Representative vegetation Region Study

Coastal dune Eolian landforms/habitat 
formed from deposition of 
sand and gravel within a 
marine beach

Brachiaria Global Estrada et al. 2013; da Silva et al. 
2015 (sand dune)

Restinga forest Coastal tropical sand forests 
growing on ancient dune 
formations; porous sandy 
soil

Undefined Eastern coast of Brazil; 
northern Uruguay

da Silva et al. 2017

Intertidal flats Muddy and sandy areas 
exposed regularly between 
tide levels ca twice a day

Zygophyllum, Limoniastrum Global El-Morsy 1999

Tidal wetlands 
(including 
mangroves in 
this study)

Flat, vegetated areas that are 
subject to regular flooding 
by the tides (excluding all 
categories defined here)

Tamarix, Avicennia, 
Calligonum

Global Sengupta and Chaudhuri 2002; 
Bohrer et al. 2004; Medina 
et al. 2015; J. Wang et al. 2021; 
da Silva et al. 2017; Gaonkar 
and Rodrigues 2021

Forested wet-
lands (includ-
ing freshwater 
wetlands)

Forest swamp where soils are 
saturated or flooded for at 
least a portion of the grow-
ing season, and vegetation, 
dominated by trees, is 
adapted to tolerate flooded 
conditions (excludes man-
groves in this study)

Salix, Leersia, Typha Temperate, subtropical and 
tropical regions of the 
world

Cooke and Lefor 1998; Bauer 
et al. 2003

Saltmarsh Coastal wetlands that are 
flooded and drained by 
salt water brought in by 
the tides; soil composed of 
deep mud and peat

Spartina, Phragmites, 
Suaeda

Global Pugh 1961; Hendrarto and 
Dickinson 1984; A. Sengupta 
and Chaudhuri 1990; 
Hoefnagels et al. 1993; Brown 
and Bledsoe 1996; El-Morsy 
2000; Carvalho et al. 2001; 
Burke et al. 2003; Carvalho 
et al. 2004; Caravaca et al. 
2005; Daleo et al. 2007; 
Maciá-Vicente et al. 2008; 
Roda et al. 2008; Schloss 
et al. 2009; Wilde et al. 2009; 
Kandalepas et al. 2010; Welsh 
et al. 2010; Elmer and Marra 
2011; Elmer et al. 2012; 
Estrada et al. 2013; Kannan 
et al. 2014; H. Li et al. 2014; 
Khalmuratova et al. 2015; 
Liang et al. 2016; Chaudhary 
et al. 2017; Chaudhary et al. 
2018; D’Entremont et al. 
2018; Alzarhani et al. 2019; 
Hernández et al. 2020; Kolton 
et al. 2020; d’Entremont et al. 
2021; Gonçalves et al. 2021; 
Khalmuratova et al. 2021; Park 
et al. 2021; Elmer et al. 2016; 
Ding et al. 2021
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experiments; and (3) focused on fungi inside roots (root 
endophytes or mycorrhizae) and/or rhizosphere soil. All 
studies not meeting the criteria were excluded in the final 
screening. Data extraction was conducted manually within 
COVIDENCE, which included information on author, pub-
lication year, geographic location of the study, habitat type, 
substrate, and host plant (Table S1, Online Resources 1). 
We did not make any distinction on whether the host plant 
species is native or foreign to the specific area or geographic 
location; thus, they are included as long as studies meet the 
criteria. Non-target ecosystem types that were captured dur-
ing the keyword search but do not pertain to this study were 
removed (i.e., three seagrass studies). Mangrove studies 
were merged with the tidal wetland category as we did not 
include “mangroves” in key word searches.

Analyses

We conducted all analyses and created graphs in R (R 
Core Team 2020) and Microsoft Excel 365 (Version 2208, 
Microsoft Corporation) where applicable. To assess plant 
and fungal richness patterns, we counted the number of 
either phyla, genera, or species reported across all studies 

from each coastal wetland type. Functional guilds were 
assigned to taxa using FUNGuild (Nguyen et al. 2016). All 
assignments that were “highly probable” and “probable” 
were kept as recommended by Nguyen et al. (2016).

Results

The studies included in our review were published between 
1961 and 2021 (Fig. 1a). The total mean number of studies 
published on root and rhizosphere communities in coastal 
ecosystems between 1961 and 2021 was 2 per year (Fig. 1a). 
Since 2019, there has been an increase in the number of stud-
ies published (6) suggesting an increasing interest in the fun-
gal microbial communities in coastal ecosystems. Majority of 
studies were conducted in the USA (i.e., 21%, Fig. 1b), fol-
lowed by Spain (12%), China, and India, both 8% (Fig. 1b).

Fungal Communities in the Roots and Rhizosphere 
of Coastal Plant Communities

Our results showed that 73% of studies reported fungal com-
munities from salt marshes, followed by 16% from tidal 

Fig. 1   a Global annual number of publications on root and rhizos-
phere fungal communities in coastal ecosystems. b Number of publi-
cations per country. c Number of studies per ecosystem type. Photos 

from left to right illustrate reported coastal ecosystems: coastal dune, 
tidal wetland, and saltmarsh. d Number of studies per substrate
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wetlands, 10% from coastal dunes, and other coastal ecosys-
tems (Fig. 1c). Over half of the studies (53%) assessed fungal 
communities from roots, followed by rhizosphere soil (33% 
of studies) and 14% from both roots and rhizosphere soil 
(Fig. 1d). Culture and root staining methods were the most 
reported assessment techniques, i.e., 37% and 31%, respec-
tively, of fungal communities in the roots and rhizosphere of 
coastal plant communities. High-throughput sequencing (HTS) 
methods were used in 8% of studies, but yielded the highest 
number of fungal species identified (Fig. S1, Online Resources 
2). Other studies assessed fungal communities with a combina-
tion of methods, e.g., phospholipid fatty acid analysis (PLFA) 
and enzyme activity assessment or direct fungal spore counting 
(Fig. S1, Online Resources 2).

Across 51 studies we reviewed, 69 plant species’ fungal 
communities were reported to at least genus level. Of those, 
the ten most studied host species reflected saltmarsh and tidal 
wetland communities. They were Spartina alterniflora (12 
studies), Phragmites australis (10 studies), Suaeda maritima 
(6 studies), Spartina patens (5 studies), Arthrocnemum mac-
rostachyum (4 studies), Avicennia marina (4 studies), Carpo-
brotus edulis (3 studies), and Limonium tetragonum (3 studies). 
A few studies assessed fungal communities associated with 
succulent marsh plants (Salicornia and Batis).

Overall, salt marsh plant fungal communities have been 
reported the most, followed by tidal wetland and coastal 
dune plant communities (Fig. 2a). Some plant host species, 
e.g., P. australis and S. alterniflora, were reported from mul-
tiple coastal ecosystems, e.g., saltmarsh and tidal wetland, 
respectively (Appendix 1, Online Resources 3). Other plant 
species were more restricted, e.g., Calligonum polygonoides 
(Polygonaceae) was only reported from coastal dune, Tama-
rix chinensis (Tamaricaceae) from tidal wetland and Zygo-
phylla coccineum (Zygophyllaceae) from intertidal flat. Fun-
gal genera and species richness varied considerably between 
the ecosystems, with overall highest fungal species richness 
reported within the roots of saltmarsh plants, followed by 
coastal dune plants and tidal wetland plants (Fig. 2b, Online 
Resources 3). Root-associated fungal communities were not 
reported from intertidal flats (Fig. 2b). Fungal species richness 
in the rhizosphere was the highest around saltmarsh plants, fol-
lowed by coastal dune and tidal wetland plants (Fig. 2b, Online 
Resources 3). At the phylum level, Ascomycota was described 
only from intertidal flats. Basidomycota was reported only 
from salt marshes while Glomeromycota was investigated in 
coastal dunes, salt marshes, and tidal wetlands. Mucoromy-
cota was only reported from salt marshes. Fungal genera var-
ied between the coastal ecosystems with 98 genera reported 
from salt marshes, 39 from coastal dunes, 21 from tidal wet-
lands, and 5 from intertidal flats. Most reported fungal genera 
from coastal dunes included Acaulospora, Glomus, and Fun-
neliformis (Fig. 3). Most reported fungal genera from inter-
tidal flats included Aspergillus, Penicillium, and Cladosporium 

(Fig. 3). In salt marshes, it was Glomus, Fusarium, and Asper-
gillus (Fig. 3). In tidal wetlands, Acaulospora, Rhizophagus, 
and Funneliformis (Fig. 3).

In terms of functional guilds, nineteen guilds were reported 
across all studies reviewed here, with predominantly arbuscu-
lar mycorrhizal fungi (AMF) reported with an exception of 
intertidal flats and freshwater wetlands, where AMF were not 
reported (Fig. 4). Across all reported fungal taxa in both roots 
and rhizosphere soil, FUNGuild analyses revealed that 39% 
were AMF, 11% belong to the Plant Pathogen-Dung-Undefined-
Wood Saprotroph complex, 6% plant pathogen, 2% animal path-
ogen, and 33% as cannot be assigned confidently to any known 
functional guild (Fig. 4). The rest of the assigned guilds were 
low in abundance and mostly occurred in salt marshes. Tidal 
wetlands contain primarily AMF with one identified saprotroph 
while intertidal flats only harbor different types of saprotrophs.

Discussion

It is increasingly recognized that fungi may play critical 
roles in coastal wetland processes (Bahram and Netherway  
2022), driving soil multifunctionality (Li et  al. 2022). 

Fig. 2   a Host plant and fungal species richness in the rhizosphere and 
plant roots from reviewed coastal ecosystems; b fungal species rich-
ness across the rhizosphere and the roots of coastal plants (Online 
Resources 3). Note that figure does not include plant and fungal rich-
ness reported in Alzarhani (2019)
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However, fungi in these ecosystems remain underexplored; 
thus, a systematic understanding of their diversity 
and distribution is still elusive. Here, we focused on 

root-associated and rhizosphere soil fungal communities as 
they form close relationships with plants (e.g., mycorrhizal 
symbioses), and the dynamics of these associations can 
potentially influence ecosystem processes (e.g., carbon 
sequestration, provisioning of biodiversity).

Our synthesis provides insights into the current state 
of fungal research in coastal ecosystems globally, reveal-
ing an increasing number of publications over the past 
decade. Our analysis revealed that fungal research in 
coastal systems is geographically biased and skewed 
towards the USA with a large proportion of studies focus-
ing on saltmarsh fungal communities. Outside the USA, 
the majority of studies were conducted in China, South 
Korea, and India. Notably, China contains Asia’s largest 
wetlands, accounting for about 10% of the global wet-
land area (Xiao et al. 2019). Tropical coastal wetlands 
in Southeast Asia were greatly underrepresented in this 
region, indicating the need for better representation of 
these regions globally in future coastal wetland fungal 
research. Moreover, our analysis revealed that coastal 
ecosystems have unique plant and fungal assemblages 
with salt marshes reported to have the highest richness 
of fungal taxa in their roots.

Status of Global Fungal Research in Coastal Wetlands

Coastal wetlands account for 5–8% of the global land sur-
face (Mitsch et al. 2013;  Gardner and Finlayson 2018) 
and are responsible for many climate-soil feedback pro-
cesses including greenhouse gas fluxes, biodiversity,  
and carbon sequestration. Overall, the number of publica-
tions of fungal research in natural coastal wetlands showed  

Fig. 3   Twenty-five most abundant fungal genera across coastal dunes, 
intertidal flats, salt marshes, and tidal wetlands (full list found in 
Online Resources 3)

Fig. 4   Frequency of reported fungal functional guilds across coastal dunes, intertidal flats, salt marshes, and tidal wetlands
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marginal increase since 2019. Despite the wide availabil-
ity of high-throughput sequencing technology over the past 
10 years, which allows for in-depth and more comprehensive 
characterization of rhizosphere and endosphere fungi, plant 
root-associated and soil fungal research in coastal systems 
has been sporadic compared to higher number of studies 
focusing on bacterial or fungal diversity in terrestrial eco-
systems (e.g., Tedersoo et al. 2022). Notably, our study only 
included studies reporting fungal communities from natu-
ral or pristine environments conducted up to 2021; hence, 
we did not review fungal research conducted in restored, 
managed, or disturbed wetlands over the past decades (e.g.,  
Carrasco et al. 2006; Lumibao et al. 2018). For instance, 
there have been growing interests in the functional role of 
fungi in metal and oil-contaminated sites in coastal and 
marine environments due to their potential use for bioreme-
diation (Zhao et al. 2022).

Fungal Diversity Across Coastal Wetlands

Coastal wetlands support diverse but unique assemblages of 
fungi according to wetland types. Despite salt marshes har-
boring naturally depauperate plant assemblages dominated 
by ecosystem engineers like Spartina alterniflora, they con-
tain the highest number of root-associated and rhizosphere 
fungal taxa, with Glomus and Penicillium as the two most 
dominant genera. In general, wetland habitats with lower 
(reported) plant richness can still harbor a high number of 
root-associated and rhizosphere soil fungal taxa. For exam-
ple, coastal dune habitat showed similar fungal richness 
(59 fungal species) despite lower plant richness (only three 
reported plant species) compared to tidal wetland (32 fungal 
species; 33 plant species) habitats. These patterns are in con-
trast with studies demonstrating strong correlation between 
high plant diversity and belowground fungal communities 
in terrestrial communities (e.g., Roy-Bolduc et al. 2016;  
Onufrak et al. 2020). Thus, our analysis revealed that low 
plant richness in coastal ecosystems does not translate into 
lower reported fungal richness in roots and/or rhizosphere.

Salt marshes also harbor diverse functional guilds—from 
mycorrhizae and endophytes to saprotrophs and pathogens. 
On the other hand, coastal dunes and tidal wetlands were 
almost completely composed of mycorrhizae while only sap-
rotrophs (with a few undefined) were identified in intertidal 
flats. This reflects the potential influence of habitat type 
in promoting growth of certain fungal taxa that performs 
specific functions. For example, the high abundance of sap-
rotrophs in the rhizosphere soils associated with a few plant 
species (e.g., Zygophyllum, Limoniastrum) in the intertidal 
flat as reported by El-Morsy (1999) might indicate that a 
large number of saprophytic fungi play a significant role in 
the organic matter decomposition in these habitats as found 
in other studies (e.g., Li et al. 2016; Lin et al. 2023). While 

intertidal flats are generally considered unproductive and 
poorly vegetated, they can still support certain plants as 
found in the reported study (El-Morsy 1999). Notably, as 
salt marshes were heavily studied in the literature, marsh 
fungal communities are, thus, better characterized compared 
to the other habitats, which explains the presence of diverse 
fungal guilds.

The unique assemblages—different fungal genera and  
species—found in each wetland habitat type could be due to dif-
ferent abiotic conditions, i.e., the environment supporting different 
plant species that in turn support unique fungal taxa. For instance, 
several Aspergillus species are known to thrive in the soils of 
semi-arid regions and Mediterranean coasts (Abdel-Azeem  
et al. 2020). Here, Aspergillus was reported only in salt 
marshes and intertidal flats (in Egypt), where it is the most 
common fungal genera in the latter. On the other hand, the 
genus Glomus was reported across all coastal wetland habi-
tats globally except in intertidal flats and was most dominant 
in the salt marshes. Fungal species belonging to Glomus 
are exclusively mycorrhizal fungi, which are cosmopolitan 
and form symbiotic associations with different (host) plant 
species (Schwarzott et al. 2001). Thus, the ability of fungi 
to associate with plants might have contributed to the wide-
spread distribution of Glomus (as well as the other mycorrhi-
zal genera like Acaulospora) across coastal wetland habitats.

Known plant, insect, and animal pathogens such as those 
belonging to the genera Fusarium were reported from salt 
marshes (though other Fusarium species are capable of 
switching to necrotrophs, i.e., kill host then feed on dead 
host cells (Summerell 2019). Different species of Fusar-
ium that are known plant pathogens (e.g., F. palustre) were 
reported in plant roots, mostly those in salt marshes across 
the globe (Elmer et al. 2016). F. palustre has been associ-
ated with the dieback of the saltmarsh grass, S. alterniflora, 
in its native North American salt marshes (Elmer 2014; Li 
et al. 2014).

Notably, the majority of the reported fungal species 
were mycorrhizal fungi (arbuscular mycorrhiza) as they 
were the focus of more than 40% of the studies included 
in our synthesis. Plant-mycorrhizal symbioses repre-
sent the oldest symbiotic relationships between plants 
and fungi, having co-evolved ca. 200–400 M years ago, 
with mycorrhiza colonizing about 85% of vascular plants 
(Brundrett 2002). Fungi supply nutrients to plants, and 
plants provide carbon substrate as food to fungi, and this 
symbiosis has been widely studied in terrestrial ecosys-
tems (e.g., Kivlin et al. 2011; Soudzilovskaia et al. 2019). 
Based on our synthesis, mycorrhizae in natural coastal 
wetland plants were first reported only in 1990 (Cooke 
and Lefor 1990), though it became the main focus of fun-
gal research in coastal wetlands in the following decades 
(e.g., D’Entremont et al. 2018; Kandalepas et al. 2010). In 
part, this might be driven by the potential of mycorrhiza  
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in mediating ecosystem functions as observed in terres-
trial systems. Arbuscular and ectomycorrhizal vegeta-
tion in terrestrial ecosystems store between 241 ± 15 and 
100 ± 17 GT carbon, respectively, in aboveground biomass 
compared to non-mycorrhizal vegetation (29 ± 5.5 GT  
carbon) (Soudzilovskaia et al. 2019), suggesting that myc-
orrhizal fungi contribute significantly to carbon sequestra-
tion. High frequency of reported mycorrhizal fungi found 
in reviewed studies may also reflect the availability and 
relatively low cost of assessing mycorrhizal coloniza-
tion in plant roots. Specifically, AMF characterization is 
a considerably less expensive approach requiring stand-
ard laboratory consumables and materials to assess root 
colonization—which involves root washing, staining, and 
counting presence of fungi under microscope—compared 
to more technically complex and expensive analyses such 
as high-throughput sequencing.

Recent studies reviewed in our synthesis have illustrated 
that mycorrhiza, particularly, AMF (belonging to genus 
Glomus), are globally ubiquitous across different coastal 
wetlands. For example, AMF have been reported from tidal 
wetlands in the US and Egypt (e.g., Bauer et al. 2003; Abd-
Elgawad et al. 2020; others), mangrove-dominated habitats 
in India (e.g., Gaonkar and Rodrigues 2021), and from salt 
marshes in North America, Europe and Asia (Wang et al. 
2022; Daleo et al. 2007; others). They appear to be associ-
ated with almost all the wetland plants studied, supporting 
previous AM findings from wetlands (e.g., Xu et al. 2016). 
This suggests that AMF plays an equally important func-
tional role in coastal systems as in terrestrial systems via 
provisioning of critical ecosystem processes (e.g., nutrient 
acquisition, mediation of stress tolerance of plants), warrant-
ing further in-depth study.

Notably, our synthesis did not capture other coastal habi-
tats such as seagrasses and mangroves. Recent studies suggest 
that seagrasses might also be an important reservoir of fungal 
diversity (Vohnik et al. 2015; Ettinger and Eisen 2019; Poli 
et al. 2022) as are mangrove-dominated habitats (e.g., de Souza 
Sebastianes et al. 2013). These findings highlight the increasing 
recognition of the importance of fungi in coastal ecosystems.

Our review includes studies that were published between 
1961 and 2021. We acknowledge that since 2021, seminal 
papers have been published reviewing microbial commu-
nity diversity, including fungi, in coastal ecosystems. For 
example, Crump and Bowen (2024) synthesized recent 
research on microbial habitats in estuaries. Farrer et al. 
(2022) reviewed the ecology of plant-microbial symbioses 
in coastal systems including mycorrhizae.

Key Knowledge Gaps and Future Research

While the fungal research in coastal ecosystems is slowly 
on the rise, there are still many research gaps that need 

to be addressed. Below, we outline three main research 
gaps resulting from our synthesis analyzing reported 
root-associated and rhizosphere fungal communities from 
coastal ecosystems.

First, increased representation of the different coastal 
wetland habitats, regionally and/or globally, is needed. 
More research is needed to better understand the diver-
sity and functional importance of fungal communities 
associated with plants from restinga forests, intertidal 
flats, and forested wetlands. Second, the geographic bias 
in global fungal research can limit our inferences on the 
global diversity and distribution patterns of fungi in coastal 
wetlands. We found that the majority of studies report-
ing root or rhizosphere fungal communities were from the 
USA, Spain, and China, collectively accounting for 41% 
of reviewed studies. Increasing the reporting of fungal 
research from underrepresented countries is critical for 
global biodiversity assessments.

Third, we found that 68% of studies reviewed here 
analyzed root and rhizosphere fungal communities using 
exclusively culture-based or root-staining methods and 
only 8% of studies used sequencing methodologies. Fun-
gal analysis using cultures is very valuable; however, 
only a small fraction of fungi is culturable, and thus, 
the true diversity of fungal communities using culture-
dependent methods will be underestimated. For instance, 
only 10–30% of fungi are culturable by using traditional 
microbiological methods (Magnuson and Lasure 2002). 
High-throughput sequencing (HTS) offers high-quality, 
cutting-edge alternatives for analyzing microbiome struc-
ture and functioning from complex environmental DNA 
samples (Tedersoo et al. 2021). High costs associated with 
HTS may be a significant impediment as the total cost 
of sampling, extraction of DNA, PCR, and sequencing 
of fungal DNA at a commercial lab is AU$/US$50–120/
sample with the total costs of a one-off analysis quickly 
escalating depending on the number of samples and thus 
may be inaccessible to many researchers and practitioners 
(Birnbaum and Trevathan-Tackett 2022). Therefore, more 
collaboration to advance the study of plant-associated fun-
gal diversity in underrepresented coastal regions is war-
ranted using the latest cutting-edge molecular tools.

We suggest that further research should focus on 
addressing the knowledge gaps highlighted above as 
well as assess the functional roles of fungal communi-
ties across coastal wetlands. Currently, majority of the 
reported studies were descriptive, and most are focused 
on single fungal guild e.g., mycorrhizae. While studies 
on mycorrhizae provide important insights into their eco-
system role, especially with respect to plant physiology 
in coastal systems, systematic community level charac-
terization of fungi is needed—at the levels of taxonomic, 
functional, and metabolic diversity.
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Conclusion

The need for fungal research in natural coastal wetlands 
cannot be understated. As increasing pressures from 
anthropogenic-driven changes to the coastal wetland envi-
ronment impact these ecosystems, generating baseline 
data of fungal communities—their distribution, diversity, 
and functional roles—in natural, pre-disturbed environ-
ment is critical for a better predictive capacity to antici-
pate organismal and ecosystem-system level impacts of 
such disturbances. It can also provide important insights 
that can aid global coastal restoration and management 
efforts (Birnbaum and Trevathan-Tackett 2022; Farrer 
et al. 2022).
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