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Featured Application: The research presented in this paper has significant implications
for many engineering applications that make use of image classification, including
industrial inspection, medical diagnosis, and autonomous vehicle operation. This is
because the specific camera used to capture an image can affect the top prediction of
object class, particularly in scenarios with a more complex background.

Abstract: The field of image classification using Convolutional Neural Networks (CNNs) to
predict the principal object in an image has seen many recent innovations. One aspect that
has not been extensively explored is the effect of the camera employed to acquire images
for inference. We investigate this by capturing comparable images of five drinking vessels
using six cameras in various scenarios. We examine the classification ranking of object
classes when these images are input to an independently pretrained Resnet-18 model based
on the ImageNet-1k dataset. We find that the camera used can affect the top prediction
of object class, particularly in scenarios with a more complex background. This is the
case even when the cameras have similar fields of view. We also introduce a metric called
selectivity, defined as the mean absolute difference between prediction probabilities of
similar relevant object classes (such as cups and mugs). We show that the effect of the
camera is largest when the selectivity of the pretrained model between these object classes
is small. The effect of camera choice is also demonstrated quantitatively by examining
Cohen’s Kappa (κ) statistic. Finally, we make recommendations on mitigating the effect of
the camera on image-classification inference.

Keywords: image classification; computer vision; inference; prediction; camera

1. Introduction
There has been much progress in the use of Convolutional Neural Networks (CNNs)

as deep learning models for image classification and other computer vision techniques
over the past few years [1–3]. Models such as AlexNet [4], VGG-16 [5], Resnet [6], and
MobileNetV2 [7] have been progressively developed to increase the performance and
efficiency of image classification.

The network models are typically trained and tested on large datasets of clean images.
For example, the ImageNet-1k [8,9] database is composed of 1,281,167 training images,
50,000 validation images and 100,000 test images of 1000 distinct object classes such as
furniture, drinking vessels, and various animals and birds.

The original metadata for the dataset images, and in particular the source camera
and settings (such as exposure time and white balance), are usually unknown or at least
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unpublished. This is potentially significant because no two camera types are the same;
they have unique characteristics (e.g., field of view, supported resolutions) and unique
imperfections (e.g., lens distortion, chromatic aberration) [10] which filter into the trained
image classifier. Therefore, there is no guarantee that the datasets are representative of the
full range of camera types available, currently or in the future. This raises the question
of how significantly the choice of camera type affects the deployment of trained image-
classification models in the field. More specifically, is it possible or even likely that the
same trained image classifier will give different predictions when using two different
camera types? This is the primary objective of investigation in this paper, i.e., to determine
whether and to what extent the camera employed to capture an image affects the image-
classification output. The answer to this question has very significant implications for many
fields, including industrial inspection [11–13], medical diagnosis [14,15], and autonomous
vehicle operations [16,17]. For example, consider the consequences of a hypothetical
situation where two different camera types are used to acquire comparable images for
the diagnosis of a serious human health condition, and the same pretrained CNN model
classifies images from one camera as positive for the health condition, but classifies images
from the second camera as negative for the health condition. Compared to the analogous
topic of examining the robustness of speech recognition in the face of multiple spoken
accents [18,19], the issue of characterizing the robustness of image classification to multiple
camera types, each with its own properties, has received relatively little attention.

As illustrated in Figure 1, a typical digital camera comprises a lens, image sensor (with
Bayer filter), and Image Signal Processor (ISP) [20]. The lens focuses the image on the image
sensor, the sensor forms a raw pixelated image, and the ISP provides various processing
functions such as de-mosaicing, noise reduction, and compression.
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Figure 1. Typical components and data flows of a digital camera.

Each of these main components of the camera system may have unique properties and
imperfections that affect the processed image output. Although one purpose of the ISP is
to correct for some of the imperfections of the earlier components, such as lens distortion,
the exact capabilities and performance of the ISP will still vary from one camera type to the
next.

Furthermore, there are properties of a digital camera that depend upon multiple
components. One of the most important of these is the Angle of View (AOV) [20], sometimes
known as the Field of View (FOV). The AOV describes the angle of observability of the
camera and depends both upon the lens and the physical size of the image sensor. A
camera with a larger AOV will capture more content than a camera with a smaller AOV.
The consequence of this is that the same target object captured by a camera with a larger
AOV will appear smaller in the image than when captured by a camera with a smaller AOV,
assuming all other parameters (e.g., distance to the object) are kept constant. An equivalent
way of expressing this is to state that the AOV affects the perceived size of objects within
images. These concepts are illustrated in Figure 2.
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Figure 2. Simplified demonstration of the effect of camera Angle of View (AOV) on image capture
(assumes pinhole lens).

In this paper, we investigate the effect of the specific camera used to capture an image
on classification inference. To do this, we capture images of certain objects that can be
recognized by an established, independently pretrained image-classification model using
different cameras while keeping the environmental conditions (e.g., lighting) as constant
as possible. We then feed these images into the pretrained image-classification model to
observe any differences in the classification output. It is important to note that the main
target object in the images is easily recognizable by a human observer; we do not attempt
to intentionally confuse the pretrained model in any way. In particular, the lighting is
set to facilitate easy identification of the main target object in the images by a human
observer. We expect the classification to depend on the camera AOV because this impacts
how dominant the target object is in the captured image and how many other peripheral
objects are captured in the image. Nevertheless, for cameras with similar or even identical
AOV, it is of great interest to explore whether comparable images taken with these cameras
can result in different classification outputs when using the same specific pretrained model.
Note that we do not perform any model training in this paper; rather, the images we capture
are used for inference purposes only in concert with a pretrained model.

To our knowledge, there is no similar publicly available study on the effect of the
specific camera used to capture an image on classification inference, despite the potentially
significant implications for many fields, including industrial inspection. Although this
study was exploratory, and there was always the possibility from the outset that the actual
observed differences between cameras would transpire not to be particularly significant,
we were, in fact, able to demonstrate that comparable images taken with different camera
types (even those with a similar AOV) can result in different classification outputs when
using the same specific pretrained CNN model.

The remainder of this paper is organized as follows. In Section 2, we discuss related
work, particularly the recently growing field of investigating the robustness of computer
vision to natural image degradations, of which differences in camera types are an important
yet neglected area. Section 3 addresses the materials and methods we adopted for acquir-
ing comparable images from different camera types and classifying them according to a
specific pretrained CNN model. Results from these experiments are depicted graphically in
Section 4 and analyzed according to their significance using Cohen’s Kappa (κ) statistic. We
demonstrate that comparable images taken with different camera types (even those with
a similar AOV) can result in different classification outputs when using the same specific
pretrained CNN model. Conclusions and directions for further research are discussed in
Section 5.
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2. Related Work
A large-scale investigation into the effect of image quality on image classification was

conducted in [21]. The authors used a subset of the validation images from the ImageNet-1k
database and digitally introduced varying levels of quality distortions, including blur, noise,
contrast, and compression. They then classified the manipulated images using pretrained
Caffe reference [22], VGG-CNN-S [23], VGG-16 [5], and GoogleNet [24] models, with the
model weights taken from the Caffe library. The image-classification performance was
found to be most sensitive to the quality distortions of blur and noise for all models. The
authors noted that this extended range of quality distortions may be found in adversarial
images [25], which are images that are purposely manipulated to fool an image classifier
but are unlikely to be found in non-manipulated images. However, the normal image
acquisition process can introduce both blur (e.g., when an image is taken out of focus) and
noise (e.g., due to a low-quality image sensor). This motivates the current study discussed
in this paper, where we attempt to find differences in the image-classification output from
images of the same item captured by different cameras under the same environmental
conditions.

The research in [26] aimed at training robust image classifiers to handle failures in
the image acquisition process. These failures were classified as internal (e.g., black pixels
due to a poor or failed image sensor), external (e.g., scratched lens), or environmental (e.g.,
ice, rain, or condensation on the lens) [27,28]. The authors augmented three well-known
Traffic Signal Recognition (TSR) datasets with additional images corresponding to a total of
13 specific visual camera failures, then trained and tested AlexNet [4], MobileNetV2 [7],
and Inceptionv3 [29] classifiers based on the augmented dataset. The results demonstrated
significantly improved classification accuracy using this approach. Our study is somewhat
different in scope in that we are examining the effect of the camera type employed to
acquire an image on the image classifier output based upon the fact that the different
cameras have different characteristics. We do not consider visual camera failures per se,
and we do not train models (rather, we use a pretrained classifier corresponding to the
ImageNet-1k database). Nevertheless, it may be that retraining of classifiers based upon the
data augmentation proposed in [26] may help to mitigate differences in image-classification
output when different cameras are used to capture images. However, this is a topic for
further research.

The study discussed in [30] confirmed that degradations in image quality have a
significant impact on image-classification performance. Building on some previous re-
search [31–33], the authors examined nine specific degradations, including hazy images,
motion blur, out-of-focus blur, underwater images, fish-eye camera images, very low-
resolution images, and salt-and-pepper noise using AlexNet [4], VGG-16 [5], and Resnet [6]
image classifiers. The salient aspect of this research was that an attempt was made to
remove the degradations using accepted image processing techniques to restore the clean
images prior to image classification. However, it was discovered this only marginally
mitigated the drop in image-classification performance.

A recent systematic review of research into the robustness of computer vision to
natural image degradations rather than intentional adversarial image degradations is
provided in [10]. This highlights that natural variations in image quality (for example, as
produced by different camera types) have received relatively little interest compared to
adversarial perturbations. This is the case even though studies [28,34–37] show naturally
degraded images can result in a 30–40% decrease in image-classification accuracy, which
is very significant when computer vision is integrated into safety critical systems such
as autonomous vehicles. The review paper [38] summarizes state-of-the-art research for
analyzing and mitigating the environmental and camera effects on IoT images.
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There has also been some work on the simulation of cameras to enable the genera-
tion of images with realistic camera degradations. The study in [39] reported that some
imperfections, such as distortion, chromatic aberration, and vignetting, could be simulated
relatively successfully, whereas lens flare was too specific to individual camera types to be
simulated realistically. Other studies with a similar aim include [40] for airborne computer
vision and [41] which uses a neural network to generate images with programmable ex-
posure time, light sensitivity level, and aperture size. The research in [42] introduces the
Image Systems Evaluation Toolkit (ISET), which comprises software routines to simulate
the capture and processing of visual scenes. In contrast, our study examines the effect of
image-classification performance on real images taken with a variety of camera types.

3. Materials and Methods
3.1. Camera Selection

The cameras employed in this study are listed in Table 1 with their important prop-
erties. We focused exclusively on webcams firstly because they are small and, therefore,
easy to position accurately. Secondly, they can be controlled from a common software
application (in this study, the Microsoft Windows Camera application), so there is a con-
sistent means of capturing and managing images from the different cameras. There is
significant cross-support for certain resolutions among these webcams, which facilitates a
valid comparison between them. In addition, we selected webcams from different vendors
to increase the diversity of features and implementations. Note that some properties, such
as the image sensor size and the aperture f-value, are not included in Table 1 because not
all webcam vendors publish these values in their data sheets.

Table 1. Cameras and Their Properties (All cameras sourced in Australia).

Property Angetube
962A

EMEET
SmartCam C960

Logitech
C270

Logitech
C920e

Microsoft
LifeCam Cinema Razer Kiyo X

Field of View a 78◦ 90◦ 55◦ 78◦ 73◦ 82◦

Focus Method Autofocus Fixed Focus Fixed Focus Autofocus Autofocus Autofocus

Light Correction Yes Yes No Yes No No

Number of supported
resolutions b 13 7 16 13 9 4

Supported resolutions b

(16:9 resolutions in green,
4:3 resolutions in blue,
other aspect ratios in black)

1920 × 1080
1600 × 896
1280 × 720
1024 × 576
800 × 448
640 × 360

1024 × 768

640 × 480
320 × 240
352 × 288
960 × 544

848 × 480
864 × 480

1920 × 1080

1280 × 720
1024 × 576

640 × 360
1280 × 960

800 × 600
640 × 480

1280 × 720
1024 × 576
800 × 448
640 × 360

1280 × 960

960 × 720
800 × 600
640 × 480
320 × 240
352 × 288
960 × 544

1184 × 656

864 × 480
752 × 416
544 × 288
432 × 240

1920 × 1080
1600 × 896
1280 × 720
1024 × 576
800 × 448
640 × 360

960 × 720
800 × 600
640 × 480
320 × 240
352 × 288

864 × 480

432 × 240

1280 × 720

800 × 448
640 × 360

800 × 600
640 × 480
320 × 240
352 × 288
960 × 544

424 × 240

1920 × 1080

1280 × 720

640 × 360

640 × 480

a As reported by the manufacturer in the datasheet or technical specifications of the camera. b As reported by the
camera to the Microsoft Camera application; resolutions smaller than 224 × 224 have been omitted since they
were not used in data acquisition.
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3.2. Image Targets

In this study, we employed a pretrained off-the-shelf image-classification model
(to be described later), for which the training dataset was the well-known ImageNet-
1k dataset [8,9], which comprises 1000 classes. Therefore, the images captured for inference
purposes were required to contain objects that are represented in these 1000 classes. We
chose the classes of “cups” and “coffee mugs” for this study for the following reasons:

• They are inanimate and, therefore, can easily be photographed under controlled
conditions.

• They are ubiquitous and exist in many different forms.
• They are very similar to each other. Therefore, there is the possibility of the model

inferring an image of a particular drinking vessel taken with one camera is most likely
a “cup”, while inferring an image of the same drinking vessel taken under the same
environmental conditions with a different camera is most likely a “coffee mug”. This
would clearly show the impact of the specific camera used to capture the image on the
inference.

The five drinking vessels acting as image targets are depicted in Figure 3. These vessels
differ in several areas: size, shape, color, surface texture, and reflectivity. There is no need to
declare whether the ground truth of each vessel is a cup or a coffee mug, as this would, in
fact, be subjective. Instead, we are interested in how these image targets might be perceived
differently by the model when images of them are taken by different cameras under the
same environmental conditions. For this reason, we refer to these objects as “vessels” in
the remainder of this paper.
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Scenario 1, image resolution: 320 × 240).

It should be noted that the ImageNet-1k dataset comprises some other classes which
are reasonably like cups and coffee mugs, including coffeepots, teapots, and pitchers, and
sometimes we might expect the vessels to be classified by the model as these other classes.

3.3. Image Capture

As illustrated in Figure 4, images were captured at distances of 20 cm, 30 cm, 40 cm,
50 cm, and 60 cm between the camera lens and the frontmost point of the vessel. This set
of distances was chosen because images are often blurred for a distance less than 20 cm,
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and the image-classification model employed will usually fail to recognize the target vessel
correctly at a distance greater than 60 cm, at least for scenarios where there are other
background objects of interest in the image.

Figure 4. Distance values used for image capture.

Images of Vessel 1 taken at different distances are illustrated in Figure 5. At 60 cm,
Vessel 1, which is a relatively large drinking vessel, only occupies a relatively small section
of the image space, although it is still clearly identifiable as a drinking vessel by a human
observer.
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Figure 5. Images of Vessel 1 at different distances (camera: Logitech C920e, scenario: Scenario 1,
image resolution: 320 × 240).

For each image taken, the camera was positioned such that the target vessel was in the
center of the field of view with the plane of the handle perpendicular to the notional line
between the camera and vessel. This ensured that the target vessel was clearly identifiable
by a human observer as a drinking vessel and as the principal object in the image. We did
not make any changes to the configuration settings of the cameras (apart from exercising
different capture resolutions) and relied on default out-of-box settings. When capturing an
image, the camera autofocus mechanism, if supported by the specific camera, was allowed
to settle before the image was taken, thus ensuring crisp, non-blurred images.

For each camera, images were captured for each combination of the following:

• The supported resolutions of the camera (see Table 1);
• The five target vessels;
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• The five distances of 20 cm, 30 cm, 40 cm, 50 cm, and 60 cm;
• Three scenarios, where each scenario comprises a different background to the target

vessel.

Therefore, with reference to the resolutions supported by each camera in Table 1, the
complete dataset to be used for image-classification inference comprised (13 + 7 + 16 + 13 +
9 + 4) × 5 × 5 × 3 = 4650 images.

The three different scenarios/backgrounds are illustrated in Figure 6. The use of
different scenarios facilitated a larger overall dataset for analysis and also allowed an
investigation into whether the image backgrounds affect the image classification to a
significant degree. Scenario 1 has the quietest background, and Scenario 3 has the busiest
background, but for all scenarios, it is clear to a human observer that the foreground
drinking vessel is the primary object of interest in the image.
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Figure 6. Images of Vessel 1 in different scenarios (camera: Logitech C920e, distance: 20 cm, image
resolution: 320 × 240).

The three scenarios are all indoors since it was easier to maintain consistent envi-
ronmental conditions, particularly with respect to lighting, while capturing the complete
image dataset. However, in order to guard against any residual changes to environmen-
tal conditions and the consequent impact on assessing the effect of the camera type on
image-classification inference, the following methodology was adopted:

• For each scenario, vessel, and distance combination, a camera was used to capture
images of the vessel for all supported resolutions and then swapped out for another
camera.

• For each scenario, vessel, and distance combination, the order in which cameras were
used was randomized.

This frequent cycling of cameras to guard against residual changes to environmental
conditions is illustrated in Figure 7.
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The complete image-capture process is illustrated in the flow chart of Figure 8.



Appl. Sci. 2025, 15, 246 9 of 24

Appl. Sci. 2025, 15, x FOR PEER REVIEW 9 of 25 
 

• For each scenario, vessel, and distance combination, a camera was used to capture 
images of the vessel for all supported resolutions and then swapped out for another 
camera. 

• For each scenario, vessel, and distance combination, the order in which cameras were 
used was randomized. 

This frequent cycling of cameras to guard against residual changes to environmental 
conditions is illustrated in Figure 7. 

 

Figure 7. Image-capture methodology involving frequent cycling of cameras and randomized or-
dering of camera use. 

The complete image-capture process is illustrated in the flow chart of Figure 8. 

 

Figure 8. Flow chart for overall image-capture process. 

3.4. Model Inference 

The 4650 captured images were used as input to a Resnet-18 [6] image-classification 
model, which had been independently trained on the ImageNet-1k [8,9] database. The 
specific pretrained Resnet-18 model used was supplied with the PyTorch framework [43] 

Camera
1
2
3
4
5
6

Image capture for one 
combination of scenario, vessel, 

and distance 

Image capture for next 
combination of scenario, vessel, 

and distance 

Figure 8. Flow chart for overall image-capture process.

3.4. Model Inference

The 4650 captured images were used as input to a Resnet-18 [6] image-classification
model, which had been independently trained on the ImageNet-1k [8,9] database. The
specific pretrained Resnet-18 model used was supplied with the PyTorch framework [43]
and employed the ResNet18_Weights.IMAGENET1K_V1 weights. This model can provide,
for each image, a prediction probability for each of the 1000 object classes represented in
the ImageNet-1k database. For this study, we are primarily interested in the object class
with the highest prediction probability and, in some contexts, the object classes with the
five highest prediction probabilities.

A Resnet-18 model was selected for this analysis because it is a modern, lightweight,
high-performance, and efficient image-classification CNN model that can be used in a
variety of image-classification applications. The efficiency of the model was of interest
because the overall time required to make inferences on 4650 images can be quite large.
Although other image-classification models are of interest for future research, it transpired
that using Resnet-18 alone was sufficient to meet the objectives of this research with respect
to showing how comparable images of the same object taken using different cameras can
lead to differences in the prediction of the most likely object class when using the same
pretrained image-classification model.

We now provide some more details on Resnet-18. The input image is reduced to a
resolution of 224 × 224 before being processed by the model. The architecture consists of 18
convolutional and/or fully connected layers, as shown in Figure 9. A typical convolution
layer has a number of parameters of interest. For example, considering the convolutional
layer with the label “3 × 3, Conv, 256,/2”, this comprises 256 filters with a window size of
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3 × 3 and a stride of 2. The curved arrows are skip connections, which reduce the chance
of overfitting the model to the data during training. For further information, the reader is
referred to [6].
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4. Results and Discussion
4.1. Impact of FOV

As discussed in the Introduction to the paper, the FOV of the camera affects the
perceived size of objects within images. Therefore, the interpretation of the results of the
model inference must take FOV into account. To set the scene for this, Figure 10 illustrates
images of Vessel 1 taken in the same scenario and at the same distance by the different
cameras employed in the study.
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Figure 10. Images of Vessel 1 for different cameras (scenario: Scenario 1, distance: 20 cm, image
resolution: 640 × 480).

The apparent size of Vessel 1 in the image is very similar for the Angetube 962A,
Logitech C920e, Microsoft LifeCam Cinema, and Razer Kiyo X, on account of their similar
FOV values. However, it can be seen there are other differences in these images, e.g.,
differences in the rendered colors. At the extremes, the apparent size of Vessel 1 in the
image produced by the Logitech C270 is significantly larger due to the smaller FOV of the
camera, and the apparent size of Vessel 1 in the image produced by the EMEET SmartCam
C960 is significantly smaller due to the larger FOV of the camera.
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4.2. Scenario 1

We begin the results with Scenario 1 because it involves a very plain background,
so there is less chance that an image-classification model might be confused between
the foreground object (i.e., the drinking vessel) and background objects. As discussed
previously, we do not declare whether the ground truth of each vessel is a cup or a coffee
mug, as this would be subjective. Instead, we are interested in whether the pretrained
Resnet-18 model classifies each image as a cup, coffee mug, or some other class as a function
of the camera used to acquire the image.

Figures 11 and 12 illustrate stacked bar charts showing the proportion of images
classified as a cup or a coffee mug by the pretrained Resnet-18 model as a function of
distance for different combinations of drinking vessel and camera. In Figure 11, only the
top prediction class of an image is considered; in Figure 12, the top five prediction classes
are considered such that if a cup and/or coffee mug appears in the top five, the highest
ranking of these two classes is selected.

It is clear from Figure 11 that the proportion of images classified as a cup or a coffee
mug decreases with distance, especially for Vessel 2. Although this is to be expected
from the perspective that it is harder to recognize an object with increasing distance, it
is important to note that a human observer would be able to easily recognize vessels in
all the images taken for this study. We also see that the proportion of images classified
as a cup or a coffee mug generally decreases with distance more quickly for the EMEET
SmartCam C960 due to its relatively large FOV and less quickly for the Logitech C270 due
to its relatively small FOV. On the contrary, the proportion of images classified as a cup
or a coffee mug for the Logitech C270 is quite low for the larger vessels (i.e., Vessel 1 and
Vessel 3) at a distance of 20 cm; this is because of the relatively small FOV of this camera,
which increases the apparent size of objects, sometimes making them blurred and only just
able to fit in the frame at small distances.
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The bar charts for Vessel 3 (and, to a lesser extent, Vessel 1) are interesting from the
perspective that the pretrained Resnet-18 model tends to classify this vessel as a coffee mug
at small distances but then transitions to classifying it as a cup at larger distances. We refer
to this effect as transitioning in the remainder of this paper. One possible explanation is that
at larger distances, the increasing pixelation of the image section that contains the vessel
leads to a difference in classification for this vessel’s shape, texture, and/or color. Another
possible explanation is unintentional bias in the training data labeling within ImageNet,
i.e., training images with drinking vessels in the distance may appear more like cups than
mugs to a casual observer due to their small apparent size.

For Scenario 1, the classification output of the pretrained Resnet-18 model does not
appear to depend significantly on the specific camera used to capture an image, apart from
with respect to the expected differences due to the different FOVs of the cameras. In partic-
ular, the pretrained Resnet-18 model seems to classify each vessel relatively consistently
as a cup or a coffee mug (for a specific distance), irrespective of the camera. This is not
entirely surprising because Scenario 1 is very simple with an extremely plain background.

However, looking in greater detail at Figures 11 and 12, the proportion of images
classified as a cup or a coffee mug decreases with distance more quickly for the Microsoft
Lifecam than for the Angetube962 and Logitech C920e, especially for Vessel 2, even though
the three cameras have a very similar FOV. To gain more insight into this observation, we
define a metric to quantify the ability of the pretrained Resnet-18 model to distinguish
between the two similar classes of cup and coffee mug.

The selectivity σ is defined formally in Equation (1) and is the mean absolute difference
between the prediction probabilities for the cup and coffee mug classes.

σ(s, v, c, d) =
1
N

N

∑
j=1

∣∣Pcup(s, v, c, d, j)− Pmug(s, v, c, d, j)
∣∣ (1)
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where

• Pcup is the prediction probability for the cup class provided by the pretrained Resnet-18
model for image j corresponding to the tuple (s, v, c, d);

• Pmug is the prediction probability for the coffee mug class provided by the pretrained
Resnet-18 model for image j corresponding to the tuple (s, v, c, d);

• s is the scenario which defines the image background;
• v is the vessel that is the image target;
• c is the camera acquiring the image;
• d is the distance between camera and vessel;
• N is the number of images in the dataset corresponding to the tuple (s, v, c, d).

Figure 13 illustrates bar charts showing the selectivity of the pretrained Resnet-18
model as a function of distance for different combinations of drinking vessel and camera.
To examine the differences in selectivity specifically between the Angetube962, Logitech
C920e, and Microsoft Lifecam as three cameras with similar FOVs, we reformat the graphs
of Figure 13 as grouped bar charts in Figure 14. It is clear from Figure 14 that the selectivity
of the image classifier to distinguish between a cup and a coffee mug is usually higher (and
usually significantly higher) for images acquired by the Angetube 962A than the Microsoft
LifeCam. This demonstrates a significant dependence on the performance of the image
classifier in Scenario 1 on the camera used to acquire images. This dependence of selectivity
on the camera does not, for this scenario, translate into a corresponding dependence of
the classification output in terms of the top one and top five predictions (illustrated in
Figures 11 and 12, respectively) on the camera; this is primarily because, although the
selectivity values are significantly different for the different cameras, they are usually quite
high, which means the image classifier is easily able to distinguish between a cup and
coffee mug for this scenario.
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Some other interesting observations can be made about Figure 14. The selectivity is
very low for Vessel 1 at 20 cm for all three cameras. This may reflect the fact that Vessel 1 is
relatively large and, therefore, occupies a large section of the image space at this distance.
It can be seen from Figure 13 that the selectivity for Vessel 1 at 20 cm is significantly higher
when acquired with the EMEET SmartCam C960, for which the larger FOV makes the
apparent size of the vessel smaller. Separately, for Vessel 3, the selectivity is minimum for
all three cameras at the intermediate distance of 30 cm; this corresponds to the distance
at which the image classifier predictions are transitioning from “coffee mug” to “cup” for
these three cameras in Figure 11.

4.3. Scenario 2

Scenario 2 involves a more complex background than Scenario 1, in which there are a
small number of less prominent objects (such as a board eraser, as illustrated in Figure 6) in
addition to the foreground drinking vessel. Figures 15 and 16 illustrate stacked bar charts
showing the proportion of images classified as a cup or a coffee mug by the pretrained
Resnet-18 model as a function of distance for different combinations of drinking vessel and
camera. In Figure 15, only the top prediction class of an image is considered; in Figure 16,
the top five prediction classes are considered such that if a cup and/or coffee mug appears
in the top five, the highest ranking of these two classes is selected. The pretrained Resnet-18
model is much more likely to classify the drinking vessels as a coffee mug in this scenario
than in the previous scenario.

The following subplots of Figures 15 and 16 are shaded with a gray face color to
designate that they are of interest with respect to demonstrating a dependence of the
classification on the camera:

• Microsoft LifeCam and Vessel 1: the image classifier shows a propensity for classifica-
tion of the vessel as a coffee mug, whereas with other cameras, the same classifier is
more likely to select a cup.

• EMEET SmartCam C960 and Vessel 2: the image classifier shows a propensity for
classification of the vessel as a coffee mug, whereas with other cameras, the same
classifier is much more likely to select a cup.

• Angetube 962A and Vessel 4: the image classifier shows a propensity for classification
of the vessel as a cup, whereas with other cameras (except for the Logitech C270), the
same classifier is more likely to select a coffee mug.

It is of interest to determine whether these observed differences in the image-
classification output are related to the selectivity metric. Figure 17 compares the selectivity
of the pretrained Resnet-18 model as a function of distance for the Angetube962, Logitech
C920e, and Microsoft Lifecam. It is immediately apparent that all the selectivity values are
very small for Vessel 1 and Vessel 4 in Scenario 2, which was not the case in Scenario 1.
This may explain the differences in classification by the image classifier highlighted above
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for these vessels. Specifically, the low selectivity means the image classifier is not easily
able to distinguish between a cup and a coffee mug, so any small difference in the images
produced by different cameras may be sufficient to change the top prediction.
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There are some other interesting observations that can be made. With reference to
Figures 15 and 16, the effect of transitioning from a prediction of coffee mug to cup with
increasing distance for Vessel 3 in Scenario 1 is not replicated (at least as significantly) in
Scenario 2. In fact, the pretrained Resnet-18 model is much more likely to classify Vessel 3
as a coffee mug rather than a cup in Scenario 2. In addition, with reference to Figure 17,
the selectivity values for Vessel 3 in Scenario 2 are usually significantly higher for images
captured by the Microsoft Lifecam than for images captured by the Angetube 962A; this is
completely different from the case in Scenario 1.

These observations from Scenarios 1 and 2 jointly demonstrate that the output of
the image classifier depends in a complex way on both the camera used to capture the
image and the scenario (including such aspects as the background to the foreground objects
and lighting). It may be that differences between cameras are not as evident when the
background is plain but become increasingly evident when the background becomes more
involved. This is explored more in the results for Scenario 3.

4.4. Scenario 3

Scenario 3 involves the most complex background of the three scenarios (see Figure 6).
Figures 18 and 19 illustrate stacked bar charts showing the proportion of images classified
as a cup or a coffee mug by the pretrained Resnet-18 model as a function of distance for
different combinations of drinking vessel and camera. In Figure 18, only the top prediction
class of an image is considered; in Figure 19, the top five prediction classes are considered
such that if a cup and/or coffee mug appears in the top five, the highest ranking of these
two classes is selected. The following subplots of Figures 18 and 19 are shaded with a gray
face color to designate that they are of interest with respect to demonstrating a dependence
of the classification on camera:

• Microsoft LifeCam and Vessel 2: the image classifier shows a propensity for classifica-
tion of the vessel as a coffee mug, whereas with other cameras, the same classifier is
more likely to select a cup.

• Angetube 962A and Vessel 5: the image classifier shows a propensity for classification
of the vessel as a cup, whereas with other cameras, the same classifier is more likely to
select a coffee mug.

In fact, these observed differences in the classification output are more pronounced
than those observed in Scenario 2 and demonstrate a very significant effect of the camera
used on the image classifier. Figure 20 compares the selectivity of the pretrained Resnet-
18 model as a function of distance for the Angetube962, Logitech C920e, and Microsoft
Lifecam. It is apparent that most of the selectivity values are very small for Vessel 2 and
Vessel 5 in Scenario 3, which was not the case in Scenario 1 or Scenario 2. Again, this
may explain the differences in classification by the image classifier highlighted above for
these vessels. Specifically, the low selectivity means the image classifier is not easily able
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to distinguish between a cup and a coffee mug, so any small difference in the images
produced by different cameras may be sufficient to change the top prediction.
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Figure 20. Selectivity σ (i.e., the mean absolute difference between prediction probabilities for cup
and mug classes) comparison for cameras with similar FOV (scenario: Scenario 3).

Interestingly, with reference to Figures 18 and 19, the effect of transitioning from
a prediction of coffee mug to cup with increasing distance for Vessel 3 in Scenario 1 is
replicated in Scenario 3, but it was not apparent in Scenario 2. Again, this highlights the
complex relationship between image-classification output, the camera used to acquire the
image, and the exact scenario.

4.5. Visual Summary of Effect of Camera Choice

Figure 21 illustrates stacked bar charts showing the proportion of images classified as
a cup or a coffee mug by the pretrained Resnet-18 model as a function of distance for all
scenarios, Vessel 2 and Vessel 5, and the Angetube 962A, Logitech C920e, and Microsoft
LifeCam cameras. Only the top prediction class of an image is considered. The three
cameras have a very similar FOV.
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Figure 21. Proportion of images classified as a cup or a coffee mug as the top prediction as a function
of distance for different scenario, drinking vessel, and camera combinations.

The pretrained Resnet-18 model is much more likely to classify the images of Vessel 2
as a cup rather than a coffee mug in both Scenarios 1 and 2, so there is no clear classification
dependence on camera or scenario in this case. In contrast, the pretrained Resnet-18 model
is much more likely to classify the images of Vessel 5 as a cup rather than a coffee mug in
Scenario 1 and as a coffee mug rather than a cup in Scenario 2, irrespective of the source
camera. Therefore, the source camera has no clear effect on the top prediction made by
the model in these scenarios, but the classification ranking is highly dependent upon the
scenario.

However, in Scenario 3, the model classifies images as follows:
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• Images of Vessel 2 and Vessel 5 acquired by the Angetube 962A are much more likely
to be classified as cups rather than coffee mugs.

• Images of Vessel 2 and Vessel 5 acquired by the Microsoft LifeCam are much more
likely to be classified as coffee mugs rather than cups.

• Images of Vessel 2 and Vessel 5 acquired by the Logitech C920e are sometimes classified
as cups and sometimes classified as mugs.

These findings are confirmed in Table 2, which shows the top prediction proportions
for cups, coffee mugs, and all other classes for different scenario, drinking vessel, and
camera combinations summarized over all distances. Hence, the source camera has a very
significant effect on the top prediction made by the model in Scenario 3. This illustrates
the complex relationship between model, camera, and scenario for image-classification
inference.

Table 2. Top prediction proportions for different scenario, drinking vessel, and camera combinations
(summarized over all distances).

Camera
Scenario 1 Scenario 2 Scenario 3

Vessel 2 Vessel 5 Vessel 2 Vessel 5 Vessel 2 Vessel 5

Angetube 962A

Cup 0.78 Cup 0.98 Cup 0.46 Cup 0.00 Cup 0.31 Cup 0.58

Mug 0.00 Mug 0.00 Mug 0.00 Mug 0.75 Mug 0.00 Mug 0.00

Others 0.22 Others 0.02 Others 0.54 Others 0.25 Others 0.69 Others 0.42

Logitech C920e

Cup 0.71 Cup 1.00 Cup 0.32 Cup 0.00 Cup 0.22 Cup 0.23

Mug 0.00 Mug 0.00 Mug 0.00 Mug 0.82 Mug 0.06 Mug 0.38

Others 0.29 Others 0.00 Others 0.68 Others 0.18 Others 0.72 Others 0.38

Microsoft LifeCam

Cup 0.58 Cup 0.91 Cup 0.29 Cup 0.00 Cup 0.00 Cup 0.02

Mug 0.00 Mug 0.00 Mug 0.02 Mug 0.60 Mug 0.22 Mug 0.40

Others 0.42 Others 0.09 Others 0.69 Others 0.40 Others 0.78 Others 0.58

4.6. Quantitative Effect of Camera Choice

To assess the effect of camera choice on inference quantitatively, we examine the
agreement of the model inference in terms of the top prediction class for comparable images
taken by different cameras. As in the previous section, we limit attention to the Angetube
962A, Logitech C920e, and Microsoft LifeCam cameras because these three cameras have
a very similar FOV, and they have a relatively large number of supported resolutions in
common (see Table 1). For each scenario and camera, there are 150 comparable images
corresponding to the following:

• Five target vessels;
• Five distances (20 cm, 30 cm, 40 cm, 50 cm, and 60 cm);
• Six common image resolutions (1280 × 720, 800 × 448, 640 × 360, 640 × 480, 320 × 240,

and 352 × 288).

For each camera pairing and scenario, the most basic agreement statistic is the raw
observed agreement proportion po between the comparable images of the two cameras,
defined as follows:

po =
nagree

N
(2)

where

• nagree is the number of compatible images for the two cameras for which the top model
prediction is the same;

• N is the total number of comparable images for the two cameras (N = 150 per scenario
in this case).
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po has a range of between 0 and 1, with higher values indicating a greater level of
agreement. po = 0 indicates zero agreement, and po = 1 indicates full agreement.

However, a more complex agreement statistic is Cohen’s Kappa κ [44,45], which has a
value in the range −1 < κ ≤ +1 and compensates for the fact that an observed agreement
in the top model prediction may have occurred by random chance. Formally, Cohen’s
Kappa κ is defined as follows:

κ =
po − pe

1 − pe
(3)

where

• pe is the theoretical probability of agreement by random chance and is calculated using
the observed data as follows:

pe =
1

N2 ∑
c

ncincj (4)

where

• c is the index of the categories or classes that can be chosen (ranges from 1 to 1000 in
this case, given that the ImageNet-1k dataset contains 1000 classes);

• nci is the observed number of times that the classifier predicted category c (out of N
images) for images captured by one camera in the camera pairing;

• ncj is the observed number of times that the classifier predicted category c (out of N
images) for images captured by the other camera in the camera pairing.

Table 3 illustrates the raw observed agreement proportion po and Cohen’s Kappa κ

as a function of scenario and camera pairing. It is clear that Cohen’s Kappa κ is always
significantly smaller than the raw agreement proportion po. Although the model is trained
on the ImageNet-1k database and can therefore make predictions on 1000 classes, it is
usually classifying the images in this study as cups or mugs, and even when it makes
different classifications, only a small percentage of the 1000 image classes are represented
in the inference results. For this reason, pe tends to be relatively large, so Cohen’s Kappa κ

is smaller than po.

Table 3. Top prediction agreement statistics for camera pairings and scenarios.

Camera
Pairing

Scenario 1 Scenario 2 Scenario 3

Raw Agreement
Proportion po

Cohen’s Kappa
κ

Raw Agreement
Proportion po

Cohen’s Kappa
κ

Raw Agreement
Proportion po

Cohen’s Kappa
κ

Angetube 962A/
Logitech C920e 0.86 0.56 0.52 0.44 0.37 0.25

Angetube 962A/
Logitech C920e 0.81 0.50 0.43 0.35 0.37 0.28

Logitech C920e/
Microsoft LifeCam 0.82 0.49 0.59 0.50 0.51 0.43

Table 3 demonstrates clearly that the best agreement in model predictions for different
camera pairs is achieved in Scenario 1, while the worst agreement in model predictions
occurs in Scenario 3. This is to be expected because Scenario 1 is the least cluttered scenario
and so we would expect that differences between comparable images acquired by different
cameras would have less bearing in the top model prediction.

It is also clear that the agreement in top model predictions for the Logitech
C920e/Microsoft LifeCam pairing is significantly better than the other two camera pairings
in Scenarios 2 and 3 (although not in Scenario 1). This quantitatively demonstrates that the
chosen camera model can have a significant effect on the model inference output.
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Although somewhat arbitrary, there is an interpretation attached to certain ranges of
Cohen’s Kappa κ [46], as illustrated in Table 4. From this table, the agreement between the
top model predictions for comparable images taken with different cameras is moderate
in Scenario 1 but generally only fair in Scenario 3. Again, this demonstrates the complex
relationship between model, camera, and scenario for image-classification inference.

Table 4. Strength of agreement for ranges of Cohen’s Kappa κ.

Range of Cohen’s Kappa κ Strength of Agreement

<0.00 Poor

0.00–0.20 Slight

0.21–0.40 Fair

0.41–0.60 Moderate

0.61–0.80 Substantial

0.81–1.00 Almost Perfect

5. Conclusions
The primary objective of this research [47] was to determine whether and to what

extent the camera employed to capture an image affects the image-classification output.
The study employed a custom dataset of 4650 acquired images from six different cameras to
demonstrate that the output of an image classifier during inference can depend significantly
upon the specific camera that is used to acquire the image. This was shown both using
graphical methods and by calculating Cohen’s Kappa κ on the top predictions made by
the same model on compatible images acquired by different cameras. This observed
dependency is the case even when the foreground principal object in a scene is easily
recognizable by a human observer and when the cameras employed have a similar FOV.

The extent of the dependence of the output of an image classifier upon the camera
for a similar FOV is a function of the scenario and in particular, the background to the
foreground object and the ambient lighting. In this exploratory study, we found that the
dependence upon the camera is relatively small when there is a plain background to the
foreground object. That is, the object class with the highest prediction probability is usually
not affected by the specific camera used to acquire the image, but the prediction probabilities
of the various object classes in the classification ranking do show some dependence on the
camera. However, when the background is more complex, the object class with the highest
prediction probability can sometimes be different depending upon the specific camera used
to acquire the image.

It should be stressed that these results are more significant given that there are some el-
ements of the image-classification ecosystem that inherently suppress the effect of different
cameras:

• One function of the camera ISP is to correct for camera-specific degradations such
as lens distortion. Of course, the ISP can never fulfill this function perfectly, and the
quality of the ISP correction will depend upon the price of the camera, but the ISP still
regularizes the image acquired at the source to some extent.

• During model training, validation, and testing, images from many different cameras
will typically be used, so there is already an in-built level of data augmentation
and diversity as far as cameras are concerned. This is certainly the case when models
trained with the ImageNet-1k database are used for inference, as in this study, although
the exact cameras represented are unknown or at least publicly unavailable.

Since there are many important applications of image-classification inference, such
as industrial inspection, medical diagnosis, emotion recognition [48], and autonomous
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vehicle operation, there is a question about how to minimize the effect of the specific camera
employed on the inference in the future. There are possible solutions both in how images
are acquired during model training and during inference. For model training, a systematic
plan can be employed to acquire training images from a vast array of cameras rather than
relying on the current incidental diversity approach. However, this may not be realistic,
as acquiring sufficient training images and training models is already a very lengthy and
expensive exercise. In addition, this would not safeguard against the use of new cameras
for inference that were not available at the time the model was trained. As an alternative,
a generic trained model can be customized for use with a specific camera by capturing
a relatively small number of training images using the camera and then optimizing the
generic model with further training. In terms of model inference, a solution is to capture
inference images not with one camera but simultaneously with multiple cameras of different
types (and possibly with different FOVs) and then employ an algorithm to combine the
individual camera classification rankings into a single overall classification result.

6. Limitations and Future Directions
This study on the effect of camera choice on image-classification inference was con-

ducted using an image dataset captured with six distinct cameras, five distinct drinking
vessels, and three distinct scenarios involving different image backgrounds. A larger
dataset could be acquired by expanding the number of cameras, using more drinking
vessels (or even different types of image targets such as vehicles, sports balls, etc.), and
considering different image backgrounds. The difficulty with this is that the image-capture
process is time-consuming because the capture of each image must be precisely staged (e.g.,
using a prescribed distance between the camera and the image target). However, acquiring
a larger dataset for inference will be useful to confirm and expand on the results of this
paper.

Another limitation of the study is that it was mostly conducted using a pretrained
Resnet-18 model. The next phase of our research will involve characterizing the dependence
of various pretrained image-classification models (in addition to the pretrained Resnet-18
model used in this paper) on the camera employed to acquire images for inference. It may
be that other models are dependent to a greater or lesser extent on the specific camera used
for image acquisition during inference.

In this study, the lighting was set to facilitate easy identification of the main target
object in the images by a human observer. A related area of research is to vary the lighting
conditions from dim to bright and observe the effect on image-classification inference.
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