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A B S T R A C T

Polycystic Ovary Syndrome (PCOS) is a prevalent hormonal disorder affecting women in their childbearing years. 
Detecting PCOS early is crucial for preserving fertility in young women and preventing long-term health com-
plications like hypertension, heart disease, and obesity. While costly clinical tests exist to detect PCOS, there is a 
growing demand for more accurate and affordable diagnostic methods. The primary objective of this research is 
to pinpoint the most effective PCOS features that can aid experts in early diagnosis. We introduce a feature 
extraction model, termed KM-GN, which combines the k-means algorithm with a genetic selection algorithm to 
identify the most informative features for PCOS detection. These selected features are fed into our designed 
model, Random Subspace-based Bootstrap Aggregating Ensembles (RSBE). To assess the performance of the 
proposed RSBE method, we compare it against several individual and ensemble classifiers. The effectiveness of 
our model is assessed using a freely accessible dataset comprising 43 traits from 541 women, of whom 177 have 
been diagnosed with PCOS. We employ various statistical metrics to evaluate the performance, including the 
confusion matrix, accuracy, recall, F1 score, precision, and specificity. The experimental outcomes demonstrate 
the viability of implementing our proposed model as a hardware tool for efficient detection of PCOS.

1. Introduction

Polycystic ovary syndrome (PCOS) is a hormone disorder that affects 
women. Clinical studies have shown that PCOS can be distinguished by 
hyperandrogenism [1–6]. Stein and Leventhal first diagnosed this dis-
ease in 1935 [2]. Women with PCOS often show some symptoms, such as 
menstrual and infertility issues [3]. Moreover, some women may suffer 
from long-term health issues such as heart disease, diabetes, mood dis-
orders, and uterine cancer [4]. The exact causes of PCOS are still not 
identified. However, many clinical studies have shown that genetic 
factors or excess androgen and insulin resistance may play a vital role in 
developing PCOS.

Irregular or absent periods, body hair growth, acne, scalp hair loss, 
and high levels of testosterone are considered the common signs of 
PCOS. Those symptoms and signs may vary in severity among women, 
ranging from mild to severe, making the condition difficult to diagnose 

[7].
Experts usually use clinical data or ultrasound scans to diagnose 

PCOS; however, less than 50 % of women are correctly diagnosed and 
receive the proper treatment [8]. The literature has noticed that clinical 
data, such as obesity, heart disease, high blood pressure, diabetes, etc., 
are widely used in PCOS diagnosis compared with ultrasound images 
due to their availability and complexity.

Many recent studies based on machine learning approaches have 
shown that there is a relationship between the development of PCOS and 
obesity, high blood pressure, heart disease, and diabetes. For example, 
Aggarwal et al. (2023) designed a machine learning-based model to 
diagnose PCOS. A data amalgamation with feature selection methods 
was suggested, resulting in 8 parameters and 985 records. Rahman et al., 
2024 integrated Mutual Information with decision tree, AdaBoost, 
random forest, logistic regression, decision tree, AdaBoost, random 
forest, and support vector machine. Mutual Information was applied for 
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feature selection. Aggarwal et al. (2022) found the most critical pa-
rameters for diagnosing PCOS. In that study, a design of Experiments 
(DOE) was used to minimise the number of diagnostic parameters while 
improving accuracy. Another study by Aggarwal et al. (2021) was 
conducted to diagnose PCOS. In that study, several machine learning 
algorithms were tested, and the authors found that 12 key features were 
the most significant for diagnosing PCOS. Zhang et al. (2024) combined 
gene expression analysis, machine learning, and network biology to 
diagnose PCOS. Aggarwal et al. (2023) thoroughly investigated the most 
essential feature for PCOS diagnosis. In that study, features like heart 
diseases, obesity, diabetes, and high blood pressure were found to be 
vital for diagnosing PCOS. Six classification models were tested and used 
in that study. Liu et al. [9] applied an artificial neural network model 
with a support vector regression (SVR) to detect PCOS. A clinical cohort 
composed of 1365 women was utilised in that study. Danaei et al., [10] 
tested several machine learning algorithms and unique feature selection 
algorithms to detect PCOS from clinical data. Their results showed that 
the feature selection algorithms improved the performance of all clas-
sifiers. Baweja et al. [11] suggested a neural network model based on 
rudimentary features for POCS detection. Roy et al. [12] investigated 
patient’s personal information such as age, metabolic, biochemical 
factors, and marital status. Three classification models including SVM, 
decision tree, and Naïve Bayes were used to classify the extracted fea-
tures into healthy and unhealthy subjects. Vishwakarma et al. [13] used 
a CNN model which was trained on 152 subjects, then it was validated 
and tested on 33 subjects and 32 subjects respectively to predict PCOS. 
Statistical metrics were used to assess their model. Bhat et al., [14] 
examined several classification modes in PCOS detection. They found 
that a linear discriminant classifier gave a superior performance 
compared with other machine learning models. Neto et al., [15] made a 
comparison among different machine learning algorithms namely, SVM, 
NN, RF, LR, and Naïve Bayes. They found that RF provides the best 
performance compared with other models. Mehrotra et al., [16] applied 
a t-test, Bayesian Classifier, and logistic regression to detect PCOS from 
patient’s medical records. Xie et al., [17] combined CNN and a random 
forest model to detect PCOS. A gene ontology analysis was conducted in 
that study.

The discussions in the studies have highlighted a crucial observation: 
not all clinical data have been thoroughly examined for PCOS detection. 
Consequently, there is a demand for the creation of a new model that can 
discern the most effective features for PCOS detection while minimizing 
complexity and processing time. Many recent studies have tried to di-
agnose PCOS from ultrasound scans. For example, Rachana et al. [18] 
proposed a machine learning based ultrasound image model. Several 
image segmentation and feature extraction techniques were tested in 
that study. Fruh et al. [19] investigated a study on electronic medical 
records data of 5492 women. In that study, ultrasound images were 
analysed using machine-learning text algorithms. Hosain et al. [20] 
designed a convolutional neural network-based model to identify PCOS. 
In that study, ultrasound images from healthy and unhealthy subjects 
were used to assess their model. Panicker et al., [21] suggested CNN for 
detecting PCOS. The proposed model classified ultrasound images into 
the PCOS and non-PCOS classes. Chitra et al. [22] proposed a hybrid 
transfer model that combined AlexNet, Inception V3, ResNet-50, and 
VGG-16. Mahajan et al. [23] suggested the YOLO (You Only Look Once) 
model to classify ultrasound images into PCOS images or non-PCOS 
images. According to the above references, detection of PCOS from ul-
trasound images requires high-quality images, and it’s more expensive.

To improve PCOS detection, a robust detection method is proposed, 
and the research route that contains three innovative highlights is 
described as follows. 1) a feature selection model named KM-GA that 
integrates the K-mean model and genetic algorithm is proposed. 2) a 
bootstrap aggregating ensembles (RSBE) model is designed to classify 
the selected features into healthy and unhealthy subjects. 3) Several 
individual and ensemble models are tested and compare their results 
with the proposed RSBE model.

The key scientific contribution of this paper is the provision of time 
series feature selection and classification methods to reduce the cost 
associated with PCOS detection systems and enhance the system’s 
robustness and suitability. The remainder of this paper is organised as 
follows. Section 2 PCOS dataset is explained. Section 3 introduces the 
proposed RF ensemble-based K-mean cluster methodology framework. 
In Section 4, experimental results are presented and discussed. Finally, 
the conclusions are presented in Section 5.

2. PCOS time series dataset

This study uses a publicly available PCOS dataset to evaluate the 
proposed method, which was collected from Kaggle’s Learning Re-
pository [24]. The dataset is recorded from 541 Indian women aged 
20–48, with heights ranging from 134 to 171 cm, and weights ranging 
from 31 to 108 kg. From each subject, a total of 41 true integer traits 
were recorded. The attribute names are {Age, Height, Body Mass Index 
(BMI), Blood Group, Pulse rate, Prolactin, Cycle, Marriage Status, 
pregnancy, No. of abortions, beta -Human Chorionic Gonadotropin, 
PCOS, weight, number of Cycle days, the level of follicle stimulating 
hormone, Luteinizing hormone, Hip, Waist, Waist: Hip Ratio, thyroid 
Stimulating Hormone, anti-Mullerian Hormone, Prolactin, Vitamin D3 
Deficiency, Progesterone, Random Blood Sugar, Weight gain, hair 
growth, skin darkening, Hair loss, Pimples, Fast food, Reg Exercise, 
Systolic Blood Pressure, Diastolic Blood Pressure, Follicle number, 
average, Endometrium}.

3. Methodology

This study presents a robust model for diagnosing PCOS using clin-
ical data. Fig. 1 shows the block diagram of the suggested model. First, 
the preprocessing phase is performed. Then, K-means clustering and a 
Genetic algorithm are implemented to select the most relevant features 
from the patient’s clinical time series record. The outputs of the genetic 
algorithm and k-means are integrated, and different sets of features are 
formed and selected using arithmetic operators. The selected features 
are then used as inputs to the proposed RBSE ensemble classifier, as well 
as to a set of ensembles and individual classification models. In this 
study, to reduce potential bias in model assessment, the dataset was 
randomly divided into training and testing sets. We considered a ratio of 
70 % for training and 30 % for testing. The proposed model was 
implemented using MATLAB, version R2020a, MathWorks Inc.

3.1. Data preprocessing

Medical datasets often suffer from missing values and outliers due to 
network loss, device failure, irregular time recording, and other factors. 
Several machine learning models are sensitive to those issues. We made 
Data preprocessing to fill in missing data. Many statistical methods have 
been developed to deal with missing data. Most methods rely on the 
percentage of missing data and the significance of the features that are 
missing. In the case of the missing data, which is between 5 % and 10 %, 
classic statistical methods such as max, mod, and mean work well. 
However, When the percentage of data missing is above 25 %, advanced 
methods such as hot deck are required. In this paper, we removed fea-
tures with more than 25 % missing values. Features with missing values, 
which are less than 25 %, are considered. We removed columns that 
contain several null values. As a result, the dataset is converted into a 
matrix. The dimension of the resulting matrix was 538X42 where 538 
refers to the number of samples and 42 indicates the number of features 
which are employed to diagnose PCOS.

3.2. Feature selection

This paper integrates the genetic algorithm and K-means to select the 
most powerful features for detecting PCOS. The outputs of the genetic 
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algorithm and K-means are combined based on arithmetic operators. 
The following section gives details regarding the genetic algorithm and 
K-means.

3.2.1. Genetic Algorithms
We employed the Genetic Algorithm (GA) to identify the most sig-

nificant features from medical records. Fig. 2 describes feature selection 
using GA. GA generates a random population, which is used in the 
evaluation phase based on a fitness function. The elite’s children are 
automatically propelled to the next generation, while the children who 
remained in the current society were allowed to pass genetically through 
the function of crossing over and mutation to form a new generation 
[25]. There are 41 features of PCOS in each patient’s record in this 
dataset. The parties are either "infected" or "uninfected".

Suppose we have a set of features and need to identify the most 
powerful ones. A binary vector [1, 0, 0, 1, 1, …] is created where 0 refers 
to rejected feature, and 1 denoted to selected feature. The vector is 
represented as “individual”, and each vector value is named a “gene”. 
The genes are randomly chosen from {0, 1. In Fig. 3, the number of genes 
is N = 12, and the population size is 8. The objective function is used to 
evaluate everyone. In this stage, the individuals with the best objective 
values are selected, while individuals with the worst values are dis-
carded. Then, a gene pool is created using crossover and mutation, as 
shown in Fig. 3.

Table 1 lists the parameters of GA. As previously discussed, selecting 
the optimal number of chromosomes is essential in the evolutionary 
computation phase [25,26,27]. The literature contains a variety of 
findings regarding the appropriate population size [28,29]. Researchers 
typically argue that a "small" population size could cause a poor solution 
[30,31] while a large" population requires a high computational time to 
find a solution. To define a subset feature, the trapping function that 

evaluates the suitability of each subset feature must be defined. We 
adopted Oluleye’s as a fitness function [26]. The distance between the 
training sample and the testing sample is calculated using the KNN al-
gorithm. Individuals are assessed according to the KNN- error. All in-
dividuals with high physical fitness have a top priority to survive in the 
next generation. GA reduces the error rate and selects the individual 
with the best fitness error. This can reduce the number of features. 
Predictions examine the entire training sample to identify the K most 
similar instances, generating a new data point. Various population sizes 
were tested in this work to find the optimal size.

3.2.2. K-means clustering technique
In classification applications, the quality of the classification result is 

Fig. 1. Block diagram of the proposed method.

Fig. 2. Feature selection using GA.

Fig. 3. The main process of GA.
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heavily influenced by the features chosen. Noisy and repetitive features 
are removed during the feature selection process, while informative 
features are retained [32]. In this paper. The k-means algorithm is 
adopted as a feature selection model. K-Means is used to partition the 
dataset into two clusters. The best accuracy was achieved using a 
K-Means cluster with 10 replicates and k = 2, as shown in Table 2. Al-
gorithm 1 describes the K-Means algorithm. 

Algorithm 1.

Input: PCOS dataset 
Output: feature set. 

• Choose the number cluster.
• Mix the feature set first to initialize the centroids, then arbitrarily choose the K 

feature for the centroids.
• repeat step 2, until no change is detected in the middle points.
• We assigned Si features to the closest cluster identified by the sum of the city block 

distance:

d(x, c)=
∑p

j=1

⃒
⃒xj − cj

⃒
⃒
⃒ (1) 

Recalculate the center pointer Nk for each cluster, to reflect the new tasks. 

Nk =

∑n
i=0 xi

n 
(2)

3.2.3. Random subspace with bootstrap aggregating ensembles (RSBE)
Several studies based on machine learning have demonstrated that 

combining the outputs of multiple classifiers reduces generalisation 
error [33–35]. Ensemble methods are a very effective way because they 
combine different types of classifiers with distinctive "inductive biases" 
[33–42]. Indeed, such diversity used by ensemble methods can effec-
tively reduce variance error while increasing bias error. In this work 
study, we proposed a method based on a group of base classifiers to 
detect PCOS using random subspace with bootstrap aggregating en-
sembles (RSBE).

We suggest an ensemble model that generates new learning sets 
using random subspaces and bagging [24,42–51]. In this model, we 
updated the training set based on two ways. First, we modified the 

training set by adopting bootstrap replicates Si =
(

Xi
1 ,Xi

2 ,…Xi
n,

)
of the 

training set S = (X1 ,X2 ,…Xn ). Then, we modified the feature space.
Suppose Xi

j = (j= 1, 2,…,n ; i= 1,2,…B) of a bootstrap replicate 

Si =
(

Xi
1 ,Xi

2 ,…Xi
n,

)
represented by a p-dimensional vector Xi

j =
(

Xi
j1 ,

Xi
j2 ,…Xi

jp,

)
. We arbitrarily chose p* < p attributes from every bootstrap 

replicate Xi. As a result, we obtained a p* dimensional random subspace 
from the original p-dimensional feature space. The modified training set 

is represented as ∼ Si =
(
∼ Xi

1 ,∼ Xi
2 ,…∼ Xi

n,

)
which includes p*- 

dimensional training ∼ Xi
j =

(
∼ Xi

j1 ,∼ Xi
j2 ,…∼ Xi

jp

)
(j = 1,2,…,n). The 

p* components Xi
j (k= 1,2,…,p*) are randomly chosen from p compo-

nents by integrating bagging and random subspaces Xi
jk (j= 1,2,…,p) of 

the training vector Xi
j (the selection is the same for each training vector). 

One then constructs base-level classifiers in the random subspaces ∼ Si 

(of the same size), i = 1, 2,…B and combines them with a voting scheme 
in the final prediction rule. We name this algorithm Random Subspace 
with Bootstrap Aggregating Ensembles (RSBE). Table 3 lists the models 
used to form the RSBE.

As shown in Fig. 4, seven algorithms were implemented to form the 
classification set i.e., support vector machine, Decision Tree, Nave Bayes 
(NB), and KNN. The weights are then assigned and calculated for each of 
the classifier algorithms based on their performance. Each classifier al-
gorithm’s weight is determined using the error rate as a criterion. This 
means that when a workbook’s error rate is low, it is given a high 
weight. The weight β for each classification algorithm is calculated using 
the following equation: 

β= log
1 − error
error(L)

(3) 

where L is a classification algorithm.
We considered the following steps in the classification phase. 

• We calculated the error rate for each individual model during the 
training phase.

• The error rate was calculated as follows: 
o Let the error rates of Linear SVM, Gaussian SVM, KNN3, Naïve 

Bayes, Decision Tree, KNN1 = 0.16, 0.25, 0.30, 0.27 0.32, 0.12, 
0.20.

o Using Eq.3 the models obtained the following weights: Linear 
SVM = 0.72, Gaussian SVM = 0.48, KNN3 = 0.37, Naïve Bayes =
0.43 and KNN5 = 0.33, KNN1 = 0.87, Decision Tree = 0.60.

o Assume each model classifier identifies a targeted PCOS segment 
as follows: Linear SVM = C1, Gaussian SVM = C2, KNN3 = C2, 
Naïve Bayes = C2 and KNN5 = C1, KNN1 = C1, Decision Tree =
C2.

o Based on the ensemble model in Fig. 4, the weighted vote was 
calculated as Class (C1): Linear SVM + KNN5 + KNN1→ 0.72 +
0.33+ 0.87 = 1.92 Class (C2) = Gaussian SVM + KNN3+ Naïve 
Bayes + Decision Tree → 0.48 + 0.37+0.43 + 0.60 = 1.88.

o As a result, the class (C1) obtained a higher value than class (C2). 
The ensemble classifier considered the targeted segment as the 
PCOS segment.

3.2.4. Performance evaluation
Several metrics are used for performance evaluation. In this study, 

recall, F-measure, accuracy, sensitivity, and specificity are employed to 
the proposed method [51–58]. 

• Recall = TP
TP+FN

Table 1 
List of GA parameters.

GAs Parameter Value

Number Feature 41
Population size 50,100
Genome length 41
Population type BitstringS
Fitness Function KNN-Based Classification Error
Number of generations 100,150
Crossover Arithmetic crossover
Crossover Probability 0.8
Mutation Uniform
Mutation Probability 0.1
Selection Scheme Tournament of Size 2
EliteCount 2

Table 2 
K-means parameters.

Parameter Value

No. of clusters 2
Replicates 10
Distance type City block

Table 3 
Parameters of all classifiers.

Classifiers Parameters

Linear SVM Kernel Function = Linear
gaussian SVM Kernel Function = Linear
KNN Distance Function = Euclidean, K = 1,3,5
Decision Tree Default Parameters
Naïve Bayes Default Parameters
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• Precision = TP
TP+FP

• F-measure = 2× Precision*Recall
Precision+Recall

• Specificity = TN
TN+FP

• accuracy = TP+TN
TP+TN+FP+FN .

Where TP refers to the person with no PCOS symptoms, TN denotes 
to the PCOS patient correctly recognised as a PCOS patient. FN denotes 
the patient with PCOS and is classified as a healthy person. FP refers to a 
healthy patient while predicted as a PCOS patient.

4. Experimental results

In this paper, data from 538 patients were collected, of which a total 
of 421 subjects were healthy, while 177 subjects were identified as PCOS 
subjects. The data was preprocessed to remove unwanted columns, and 
then we standardised the data. As mentioned before, two feature se-
lection models were integrated in this study. K-means and Genetic Al-
gorithm were employed to select the optimal feature set. As a result, a 
total of six features were selected using the K-Means algorithm, and a 

total of ten features were selected by the Genetic Algorithm. The 
selected features were sent to the proposed model RSBE. An accuracy of 
95.68 was obtained when the RSBE was combined with k-Means, and an 
accuracy of 91.98 was gained when the RSBE was combined with the 
Genetic Algorithm. Table 4 reports the classification accuracy of the 
proposed model.

4.1. Diagnostic results based on genetic algorithm

In this experiment, it was observed that the proposed ensemble 

Fig. 4. The proposed ensemble model.

Table 4 
The classification results based on two feature selection models.

The proposed 
model

Sensitivity F- 
Measure

Precision Specificity Accuracy

RSBE based on 
k-Means

94.12 93.20 92.31 96.40 95.68

RSBE is based on 
a Genetic 
Algorithm

76.36 86.60 87.4 85.5 89.98
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model RSBE coupled with the Genetic Algorithm. The highest accuracy 
rate was scored using GA when the population number was set to 50,100 
and k = 3 for the Fitness Function (KNN). The number of features 
extracted by the Genetic Algorithm was 7. To find the best solution, 
different values of k were tested. The fitness function was chosen care-
fully to minimise the classification error. A total of 7 chromosomes were 
selected from the total of 41, as shown in Fig. 5. Fig. 5 lists the best value 
for fitness using KNN. In addition, Fig. 6 shows the best and worst scores 
of the fitness function. The classification error for the PCOS was 
0.00185874, 0.00221516. Table 5 shows the classification results based 
on the selected features named Fast Food, hair growth, Cycle length 
(days), RR, VD3, Pimples, Follicle No. (R)).

Table 5 presents the results of PCOS detection based on ensemble 
methods using a Generic Algorithm as feature selection. The proposed 
RSBE achieved the highest specificity and precision compared with the 
other models. The performance of all ensemble models was degraded 
with a genetic algorithm. Our findings showed that the low performance 
resulted from some noisy features that were selected by Genetic Algo-
rithm. The basic ensemble had a better performance, it achieved 91.98 
%. The Boosted Ensemble recorded the lowest performance with an f- 
score 86.67, sensitivity, 84.76.

4.2. Diagnose results based ON K-MEANS

With k-means, the proposed model achieved the best accuracy when 
K-means parameters were set to Replicates = 10 and k = 2. More details 
regarding the results obtained are in the next section. Table 6 shows the 
detection rate based on the selected features. The six selected features 
were ranked based on the accuracy rate. The follicle feature was ranked 
the top feature, gaining the highest detection. However, weight gain 
recorded the lowest detection rate. The detection results of integrating 
K-means with RSBE are listed in Table 7. In this experiment, the pro-
posed ensemble model was compared with other ensemble approaches. 
The selected features using K-Means were sent to the RSBE as well as to 
the ensemble methods. Table 7 presents the comparison results among 
the proposed model RSBE, and other ensemble classifiers. The RSBE 
scored a high accuracy compared with other ensemble models. How-
ever, the random subspace ensemble recorded a higher specificity than 
the RSBE accuracy of 95.68 %. The bagging ensemble achieved a clas-
sification accuracy of 95.06 %, Prec. of 89.58 % and sensitivity of 93.48 
%. Our results showed that the bagging ensemble produced a higher 
number of false positives and a lower number of false negatives.

4.3. Integrating K-MEANS and genetic algorithm

To improve diagnose of PCOS, we integrated the output of K-Means 
and Genetic Algorithm. We used a mathematical operator to find out the 
best combination of features. Table 8 reports the accuracy of integrating 
k-Means with Genetic Algorithms. We can notice that the classification 
accuracy was improved when the selected features by k-Means with 
Genetic Algorithm using ∪ operator.

4.4. RSBE performance evaluation with individual classification models

The proposed RSBE model was compared with several individual 
classification models. Firstly, the comparisons were conducted based on 
the k-mean feature selection model. In this experiment, the K-Means 
were used as a feature selection model, and the selected features were 
sent to several individual classifiers as well as to the RSBE model. We 
found that the K-Mean model showed a high performance with all 
classification models. The main cause is that K-Mean was capable to 
select the most influential attributes as well as eliminating the irrelevant 
feature. The classification results for different classifiers are presented in 
Table 9. As shown in Table 9, the naive bayes algorithm and Linear SVM 
algorithm scored very close results with an accuracy of 89.51 %. The 
Naive Bayes algorithm scored an increase in F-Measure, Precision, 
sensitivity, and Specificity. However, the proposed model RSBE recor-
ded the highest accuracy compared with all individual classifiers.

Second, in this experiment, the best features selected by the genetic 
algorithm were fed to individual classifiers. Table 10 shows that the 
accuracy of weak individual classifiers was lower than that of the pro-
posed ensemble model. For individual classifiers, it can be noticed that 
the KNN3 and Linear SVM algorithms achieved the highest accuracy of 
89.51 % and 88.72 %, respectively. However, the KNN1 recorded the 
lowest accuracy among the individual classification models. In addition, 
compared to Table 10, we can observe that K-Means performed very well 
with individual classifiers compared with the Genetic Algorithm. 
Further evaluation was made using a 10-fold cross-validation metric. 
The results in Fig. 7 confirmed our findings in Tables 9 and 10.

According to Fig. 8, which depicts SHAP values for the detection of 
Polycystic Ovary Syndrome (PCOS), we can identify the relative 
importance of various features for both the normal group (represented 
by blue bars) and the diagnosis group (shown in orange). The chart il-
lustrates how specific biological and symptomatic characteristics are 
weighed differently in predicting PCOS, with Height, Progesterone, and 
Pimples standing out as key indicators for diagnosis.

We applied the Wilcoxon Signed-Rank Test to evaluate the results Fig. 5. The optimal fitness value.

Fig. 6. The highest and lowest scores of the fitness function.
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obtained. The Wilcoxon Signed-Rank Test is considered one of the most 
effective non-parametric tests that compare the performance of two 
models’ accuracies. Table 11 displays the observed results. From the 
results, it can be noticed that the proposed model outperformed the 

state-of-the-art models.

4.5. Comparison with state-of-the-art methods

In this section, the proposed model was compared with several 
previous methods. All studies were tested with the same dataset. Kan-
vinde et al., [38] designed a Bootstrap ensemble model to detect PCOS. 
Bharati et al., [5] detected PCOS based on a filter-based univariate 
feature selection method. In that study, they considered 10 features. 

Table 5 
Typical Performance Test Results for Ensemble Methods Using ga.

Table 6 
Classification results using the K-Means model.

Features Detection rate

Follicle 78.7
SK 77.6
FN 77.5
HG 77.1
CL 74.3
WG 74.2

Skin darkening (SK), Follicle No. (R) (FN), Hair 
growth level (HG), Cycle length (CL), Weight gain 
(WG).

Table 7 
Typical performance test results for ensemble methods using K-mean Cluster.

Table 8 
Classification results using K-means integrated with genetic 
algorithm.

Accuracy

K-Means ∩ Genetic Algorithm 86 %
K-Means ∪G enetic Algorithm 99 %
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Compared with our results, we used lower features to detect PCOS. 
Munjal et al., [39] proposed a genetic algorithm to detect PCOS. In that 
study, random forest, and decision trees were used to classify the fea-
tures into healthy and unhealthy subjects. Tanwani et al. [40] suggested 
a method based on two machine learning algorithms, k-nearest and lo-
gistic regression. 20 features were used in that study. Table 12 shows the 

comparison of our proposed method with state-of-the-art.

5. Conclusion

Early detection of PCOS is crucial for prompt patient treatment. An 
automated system that relies on clinical and metabolic parameters could 

Table 9 
Performance comparisons based on individual classifiers and K-means feature Selection.

Table 10 
Performance comparisons based on individual classifiers and genetic algorithm feature Selection.
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be a valuable tool for PCOS identification. While numerous automated 
detection systems have been proposed in the literature, many of them 
rely on deep learning techniques, which demand large datasets for 

accurate performance. However, due to data availability constraints, 
numerous studies fail to meet this requirement, resulting in reduced 
accuracy, sensitivity, or increased computation time when employing 
individual machine learning algorithms. In our research, we took a 
different approach, employing a variety of ensemble methods and 
machine-learning algorithms for PCOS detection. Our dataset, sourced 
from the Kaggle repository, comprises 541 samples. Specifically, we 
evaluated the performance of six well-established and capable machine 
learning approaches: Stacked Ensemble, Random Subspace, Boosted 
Ensemble, Bagged Ensemble, Ensemble Learning, and the RF model.

The experimental findings reveal that our proposed method, which 
combines a subspace ensemble model and RSBE learning model, 
alongside features extracted using the K-Means algorithm delivers su-
perior classification performance in predicting PCOS cases across most 
of the scenarios considered.
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Fig. 7. Evaluation using 10-fold cross-validation.

Fig. 8. Features importance using SHAP value.

Table 11 
Wilcoxon test for PERFORMANCE comparisons.

Model Wilcoxon p-value Results

RSBE vs Linear SVM model v 0.0021 RSBE significantly better
RSBE vs Gaussian SVM model 0.0033 RSBE significantly better
RSBE vs Decision Tree algorithm 0.0012 RSBE significantly better
RSBE vs Naïve Bayes model 0.0032 RSBE significantly better
RSBE vs KNN1 model 0.0024 RSBE significantly better
RSBE vs KNN3 model 0.0034 RSBE significantly better
RSBE vs KNN5 model 0.0032 RSBE significantly better

Table 12 
Comparison with the state-of-the-art.

Authors Accuracy

Kanvinde, N. et al. [44] 92.00 %
Bharati,et al. [5] 91.01 %
Munjal,et al. [24] 88.00 %
Tanwani, N. et al. [46] 92.00 %
Proposed method 98 %
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