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The adiabatic decay of different types of internal wave solitons caused by the Earth’s rotation is

studied within the framework of the Gardner–Ostrovsky equation. The governing equation

describing such processes includes quadratic and cubic nonlinear terms, as well as the Boussinesq

and Coriolis dispersions: (utþ c uxþ a u uxþ a1 u2 uxþb uxxx)x¼ c u. It is shown that at the early

stage of evolution solitons gradually decay under the influence of weak Earth’s rotation described

by the parameter c. The characteristic decay time is derived for different types of solitons for

positive and negative coefficients of cubic nonlinearity a1 (both signs of that parameter may occur

in the oceans). The coefficient of quadratic nonlinearity a determines only a polarity of solitary

wave when a1< 0 or the asymmetry of solitary waves of opposite polarity when a1> 0. It is found

that the adiabatic theory describes well the decay of solitons having bell-shaped profiles. In contrast

to that, large amplitude table-top solitons, which can exist when a1 is negative, are structurally

unstable. Under the influence of Earth’s rotation, they transfer first to the bell-shaped solitons,

which decay then adiabatically. Estimates of the characteristic decay time of internal solitons are

presented for the real oceanographic conditions. Published by AIP Publishing.
https://doi.org/10.1063/1.5021864

It has been established that even weak Earth’s rotation

leads to prohibiting the existence of solitary waves in

shallow basins. According to “antisoliton theorem”

(Leonov, 1981; Galkin and Stepanyants, 1991), stationary

solitary waves cannot exist in a rotating ocean. However,

if the rotation is weak (which is the case in the ocean),

then an initially generated (by any mechanism) solitary

wave can propagate on a long distance experiencing just

a gradual decay due to the energy losses for the genera-

tion of a trailing wave. This phenomenon has been stud-

ied in application to small amplitude Korteweg–de Vries

(KdV) solitons within the framework of the rotation mod-

ified KdV equation currently known as the Ostrovsky

equation (Grimshaw et al., 1998a; 1998b). For the

description of internal waves of moderate and even large

amplitude, the most popular model is the Gardner equa-

tion which contains the additional cubic nonlinear term

in comparison with the KdV equation. The sign of this

term essentially determines the structure of solitons, and

in the real oceanic situations, both signs of the cubic non-

linear coefficient are possible (Grimshaw et al., 1997;

2007; Talipova et al., 1999; and Apel et al., 2007). The

dynamics of Gardner solitons under the influence of

Earth’s rotation was not studied thus far. Here, we fulfill

this gap and consider internal soliton decay in a rotating

ocean for all possible types of Gardner solitons (small-

amplitude quasi-KdV solitons, “fat” solitons, table-top

solitons, and bell-shaped solitons of positive and negative

polarity). We apply the adiabatic theory, derive the laws

of soliton amplitude decay, and compare the results

obtained with the direct numerical modelling of

Gardner–Ostrovsky equation which accounts for the

effect of Earth’s rotation. According to the predictions of

adiabatic theory, all types of solitons experience a termi-

nal decay, i.e., they vanish in a finite time. Table-top soli-

tons have maximal life time, whereas bell-shaped solitons

have minimal life time. Estimates for solitons life time

are presented for the real oceanic conditions. We show

that for all types of bell-shaped solitons there is a good

agreement between the adiabatic theory and numerical

data, whereas the decay of table-top soliton does not obey

the adiabatic theory. The reason for that is in the distor-

tion of a soliton profile which consists, in fact, of a cou-

pled kink and anti-kink.

I. INTRODUCTION

The model Gardner–Ostrovsky (GO) equation was

derived for the description of long internal waves of large

amplitude (Holloway et al., 1999)
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where c is the speed of dispersionless linear waves, a and a1

are the coefficient of quadratic and cubic nonlinearities,

respectively, and b and c are the coefficients of small-scale
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(Boussinesq) and large-scale (Coriolis) dispersions, respec-

tively. The variable u(x, t) describes a perturbation of an iso-

pycnal surface (the surface of equal density) from its rest

position. For internal waves in two-layer fluid in the

Boussinesq approximation, the parameters of GO equation

are (Apel et al., 2007)

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dq
qm

g
h1h2

h1 þ h2

s
; a ¼ 3

2
c

h1 � h2

h1h2

;

a1 ¼ �
3

8
c

h1 þ h2ð Þ2 þ 4h1h2

h1h2ð Þ2
; b ¼ c

6
h1h2; c ¼ f 2

2c
;

(1.2)

where dq is the density difference between the lower and

upper layers, qm is the mean water density, g is the accelera-

tion due to gravity, h1 and h2 are thicknesses of upper and

lower layers, respectively, and f is the Coriolis parameter

characterizing the Earth’s rotation at the particular geograph-

ical latitude.

Equation (1.1) combines the dispersion effects due to

non-hydrostaticity caused by the finiteness of basin depth (the

Boussinesq dispersion proportional to b) and due to Earth’s

rotation (the Coriolis dispersion proportional to c). The equa-

tion contains also two nonlinear terms proportional to a and

a1. The former one is the traditional quadratic nonlinear term

appearing due to hydrodynamic nonlinearity, as in the

Korteweg–de Vries (KdV) equation (Whitham, 1974),

whereas the latter term appears either when the first term

becomes anomalously small [such situation arises in the inter-

nal wave dynamics (Holloway et al., 1999)], or when the GO

equation is used as the model equation to describe approxi-

mately large-amplitude waves (Michallet and Barth�elemy,

1998; Ostrovsky and Stepanyants, 2005; Apel et al., 2007).

Equation (1.1) is apparently non-integrable and even

its stationary solutions are unknown. Moreover, according

to “antisoliton theorem,” stationary solitary type solutions

of this equation are impossible if bc> 0 (Leonov, 1981;

Galkin and Stepanyants, 1991). In the meantime, in the

absence of rotation (c¼ 0), the GO equation reduces to the

well-known and completely integrable Gardner equation

(Slyunyaev and Pelinovsky, 1999; Slyunyaev, 2001). The

latter equation has soliton solutions whose profile essen-

tially depends on the amplitude and sign of cubic coeffi-

cient a1, whereas the coefficient a determines only a

solitary wave polarity when a1< 0 (a soliton has positive

polarity (hump wave) if a> 0, and negative polarity

(depression wave) otherwise) or the asymmetry of solitary

waves of opposite polarity when a1> 0 (see below for clari-

fication). It is a matter of interest to study the influence of

weak rotation on the dynamics of quasi-stationary Gardner

solitons in application to large amplitude internal waves.

Such waves are often observed in shallow coastal regions

where they may have an influence on human activity, engi-

neering constructions, off-shore petroleum exploration,

production and sub-sea storage activities, etc.

In another limiting case of very long internal waves,

the small-scale Boussinesq dispersion can be neglected,

then Eq. (1.1) reduces to the equation which is known as

the reduced Gardner–Ostrovsky (rGO) equation (Obregon

and Stepanyants, 2014)
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The particular versions of this equation were considered

in many papers starting from the original paper by Ostrovsky

(1978) [see also the reviews of Ostrovsky and Stepanyants,

1990; Grimshaw et al., 1998b; Stepanyants, 2006) and refer-

ences therein].

In this paper, we present asymptotic solutions for slowly

varying Gardner solitons of internal waves due to influence

of Earth’s rotation. We show that the rotation leads to soliton

terminal decay; we estimate the life time of Gardner solitons

and characteristic spatial scales of their decay. It is found

that the character of soliton decay is different for the bell-

shaped and table-top solitons—in the former case solitons

decay adiabatically keeping their profiles, whereas in the lat-

ter case, solitons, being structurally unstable, quickly transfer

first into the bell-shaped solitons which decay then

adiabatically.

To study the process of soliton decay, it is convenient to

transfer first Eq. (1.1) into the dimensionless form using the

normalized variables:

n ¼ x� ct

L0

; s ¼ t
aU0

L0

; t ¼ u

U0

; (1.4)

where U0 is the characteristic amplitude of initial perturba-

tion, and L0 is its characteristic width (these parameters will

be specified below). In the new variables, Eq. (1.1) reads
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 !
¼ et; (1.5)

where l¼ a1U0/a, e¼ c L0
2/(aU0), and Ur¼ aU0 L0

2/b is the

well-known Ursell parameter in the theory of shallow water

waves [see, e.g., Whitham, 1974; Dingemans, 1997].

The pulse-type initial condition for Eq. (1.5) reads: t (0, n)

¼F (n), where function F(n) has a unit amplitude and unite

width.

In the typical oceanic conditions the coefficients of Eq.

(1.1) are such that a< 0, b> 0, c> 0, whereas the coefficient

a1 may be both positive and negative (distributions of all

these coefficients in the World Ocean are presented in

(Grimshaw et al., 2007)). As the consequence of that, the

dimensionless coefficient l may be also both positive and

negative, whereas the parameters Ur and e in Eq. (1.5) are

always positive for oceanic waves.

II. INFLUENCE OF ROTATION ON THE DYNAMICS OF
GARDNER SOLITONS WHEN a1 < 0

A. The theoretical analysis

We start our analysis with the most typical oceanic case

when a1 is negative (and hence l is negative too). Presume

also that the initial perturbation is a soliton whose polarity is

negative in this case (Apel et al., 2007) and present Eq. (1.5)

033106-2 Obregon, Raj, and Stepanyants Chaos 28, 033106 (2018)



in the form which is more convenient for the application of

the perturbation analysis, namely,

@t
@s
þ t

@t
@n
þ lt2 @t

@n
þ 1

Ur

@3t

@n3
¼ �e

ðþ1
n

t n0ð Þ dn0; (2.1)

where limits of integration in the right-hand side are chosen

such that the perturbation is zero far away from the soliton

front, i.e., at n¼1.

When e¼ 0, Eq. (2.1) reduces to the well-known

Gardner equation (alias extended or combined KdV equa-

tion). One of the exact stationary solutions to this equation is

the soliton which can be presented in different equivalent

forms [see, e.g., Apel et al., 2007; Grimshaw et al., 2003;

2010; and Ostrovsky et al., 2015]; here we will use the fol-

lowing two forms:

t ¼ A

1þ Bcosh
n� Vs
D=2

� � ; (2.2a)

where 0�B� 1 and all other parameters can be presented in

terms of B

A ¼ 1� B2

�l
; D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�24l

Ur 1� B2ð Þ

s
; V ¼ 1� B2

�6l
: (2.3a)

We will be using also another form of soliton solution

which is equivalent to Eq. (2.2a) but reads differently:

t ¼ � �

2l
tanh

n� Vs
D
þ /

� �
� tanh

n� Vs
D
� /

� �� �
;

(2.2b)

where � 2¼ 1 – B2 and other three parameters can be pre-

sented in terms of �

/ �ð Þ ¼ 1

4
ln

1þ �
1� �

� �
; D �ð Þ ¼ 2L0

�

ffiffiffiffiffiffiffiffiffiffi
� 6l

Ur

r
;

V �ð Þ ¼ � �
2

6l
: (2.3b)

The amplitude of Gardner soliton (2.2a) is determined

by the formula

U ¼ A

1þ B
� � 1� B

l
: (2.4)

The soliton profile varies with the parameter B from the

bell-shaped KdV soliton, when B! 1, to the table-top soliton,

when B! 0. Figure 1 shows soliton solution (2.2) for several

values of parameter B. The table-top soliton resembles a

meander-type pulse, which can be treated as a pair of station-

ary moving kink (dissipationless shock wave) and anti-kink

(see line 3 in Fig. 1). The kink is described by the first tanh-

function in Eq. (2.2b), whereas the anti-kink is described by

the second tanh-function in that equation. Such representation

is especially helpful when the widths of kink and anti-kink

fronts D are much less than the distance between them.

In the KdV limit (B! 1, �! 0), solution (2.2) reduces to

t ¼ A

1þ Bcosh
n� Vs
D=2

� �! A

2cosh2 n� Vs
D

� � : (2.5)

If e 6¼ 0, but sufficiently small, e� 1, then solution (2.2)

is no longer valid. However, if the Gardner soliton is struc-

turally stable, then under the influence of small perturbative

term in the right-hand side of Eq. (2.1), it may experience

just a gradual adiabatic variation with time, keeping the pro-

file which corresponds to the instant value of the parameter

B(s) and the relationships between other parameters (ampli-

tude, velocity, and width) at any instant of time. Then the

evolution of soliton parameters with time can be evaluated

with the help of perturbation theory developed in many

papers [see, for instance, Grimshaw et al., 1998a; 2003;

2010 in application to waves in a rotating fluid described by

the Ostrovsky equation]. The application of perturbation the-

ory reduces, in essence, to the energy balance equation for a

soliton. Such approach was successfully used for the calcula-

tion of adiabatic evolution of Gardner solitons in viscous flu-

ids with different mechanisms of dissipation (Grimshaw

et al., 2003; 2010; 2018; Clarke et al., 2018). Here, we apply

a similar approach to calculate the time variation of soliton

parameters under the influence of fluid rotation.

Multiplying Eq. (2.1) by t and integrating then the resul-

tant equation over n in the infinite limits, we obtain

d

ds

ðþ1
�1

t2dn ¼ �e
ðþ1
�1

t nð Þdn

2
64

3
75

2

: (2.6)

Substitute now into this equation, soliton solution (2.2a)

assuming that the parameter B is a slowly varying function of

time. After integration and simple manipulations, we obtain

dB

ds
¼ e

ffiffiffiffiffiffiffiffiffi
�3l
2Ur

r
Bffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� B2
p ln2 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2
p

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2
p : (2.7)

In general, an analytical solution to this equation can be

presented in the implicit form in a quadrature:

es

ffiffiffiffiffiffiffiffiffi
�3l
2Ur

r
¼
ðB
B0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2
p

dB

B ln 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2
p� �

� ln 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2
p� �	 
2 ;

(2.8)

FIG. 1. Normalised Gardner soliton (2.2a), for several values of parameter

B. Line 1: B¼ 0.9999 (KdV soliton); line 2: B¼ 10�2 (“fat soliton”); line 3:

B¼ 10�4 (table-top soliton).
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where B0 is the initial value of parameter B at s¼ 0.

However, in the KdV limit (B0! 1, l � B0 – 1! 0, Ur!
12), Eq. (2.7) simplifies and reads

dB

ds
¼ 2e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B0ð Þ 1� Bð Þ

q
: (2.9)

Solution to this equation can be readily found in the

explicit form:

B ¼ 1� 1� B0ð Þ 1� esð Þ2: (2.10)

This solution can be presented in terms of soliton ampli-

tude [see, e.g., Grimshaw et al., 1998a; 1998b; Fraunie and

Stepanyants, 2002]:

U

U0

¼ 1� esð Þ2: (2.11)

As follows from this formula, a soliton completely van-

ishes in a finite time s¼ sext � 1/e . But in fact it transfers

asymptotically after long-time evolution into an envelope soli-

ton and non-stationary dispersive wave train. This was

revealed for the first time in Ref. (Helfrich, 2007) within the

framework of fully nonlinear set of Boussinesq equations (aug-

mented by the Coriolis force) for internal waves in two-layer

rotating fluid and then studied in detail both within the frame-

work of Ostrovsky equation (Grimshaw and Helfrich, 2008;

2012; Grimshaw et al., 2013; 2016; Whitfield and Johnson,

2014) and within the framework of Gardner–Ostrovsky equa-

tion (Whitfield and Johnson, 2015). The envelope soliton is

described by the generalized non-linear Schr€odinger equation,

and its carrier wavenumber kc¼ (3e Ur/4)3/4 is close to the

maximum of growth rate of modulation instability.

In another limit, when B0 ! 0 (l ! –1, Ur ! 24), Eq.

(2.7) again simplifies and reduces to

dB

ds
¼ e

ffiffiffiffiffiffiffiffiffiffiffiffi
�24l

Ur

r
Bln2 B

2
: (2.12)

It can be explicitly integrated resulting in

B ¼ 2 exp
ln B0=2ð Þ

1� esln B0=2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�24l=Ur

p
" #

: (2.13)

In terms of soliton amplitude, this gives

U nð Þ ¼ 1

�l
1� 2 exp

ln B0=2ð Þ
1� esln B0=2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�24l=Ur

p
" #( )

�!
B0!0

1� 2 exp � 1

es

� �
: (2.14)

According to this formula, soliton amplitude turns to

zero at a finite time, in particular, for large amplitude soliton

with B0 ! 0 the extinction time is sext � 1/(e ln 2). Hence,

the extinction time of the table-top soliton is greater than

the extinction time of KdV soliton by the factor of 1/ln 2

� 1.443.

In general, Eq. (2.7) can be easily solved numerically

and after that, using the relationships between the parameter

B and other soliton parameters as per Eqs. (2.3a) and (2.4),

one can find time dependence of soliton amplitude U(s),

velocity V(s), front width D(s), and the total soliton width

D(s). Time dependence of soliton amplitude is shown in

Fig. 2 for different initial values of parameter B.

Asymptotic dependence (2.11) for the KdV soliton

completely coincides with the numerical solution shown in

Fig. 2 by line 1. Another asymptotic solution (2.14) corre-

sponding to the case of small B0¼ 10�4 is shown by the

dashed line next to the solid line 3 which was obtained by

numerical solution of Eq. (2.7). As one can see, there is a

good agreement between the asymptotic and numerical solu-

tions of Eq. (2.7). In all cases, soliton amplitudes monotoni-

cally decrease with time independently of initial value of the

governing parameter B. At a certain time, the amplitude for-

mally vanishes within the framework of the adiabatic theory.

The corresponding extinction time has been presented above

for two limiting cases of KdV soliton (B0! 1) and table-top

soliton (B0! 0). In general, the extinction time can be found

from Eq. (2.8) when B turns to unity; then we have

e sext B0ð Þ ¼
4ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� B2
0

p
�
ð1
B0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2
p

dB

B ln 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2
p� �

� ln 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2
p� �	 
2 :

(2.15)

Figure 3 shows the dependence of normalized extinction

time on B0 as per Eq. (2.15). As follows from Eq. (2.15), the

extinction time abruptly goes to infinity in the limit of a very

wide table-top soliton, when B0 ! 0, whereas the approxi-

mate formula (2.14) provides a reasonable estimate for the

extinction time esext¼ 1/ln 2 � 1.443.

The minimum value of the extinction time realizes for

the KdV soliton: sext¼ 1/e. In the dimensional variables, this

gives Text¼ 1/(c L0)¼ (1/c) (aU0/12b)1/2. Thus, the extinc-

tion time depends not only on the parameters of the GO

equation, but also on the initial soliton amplitude U0 too.

FIG. 2. Soliton amplitude against time in normalized variables. Line 1:

B0¼ 0.9999 (KdV soliton); line 2: B0¼ 10�2 (“fat soliton”); solid line 3:

B0¼ 10�4 (table-top soliton). Dashed line next to line 3 represents the

asymptotic dependence (2.14). Symbols represent numerical data: triangles

for B0¼ 0.9999, pluses for B0¼ 10�2, and dots for B0¼ 10�4.
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Using the coefficients (1.1) and taking the following set of

parameters:

dq=qm ¼ 5 	 10�4; f ¼ 10�4 s�1; h1 ¼ 24 m; h2 ¼ 26 m;

we obtain for the initial soliton of amplitude U0¼ 2 m

Text ¼
1

f 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dq
qm

g
3U0 h1 � h2ð Þ
h1h2 h1 þ h2ð Þ

s
� 1:39 	 105 s � 38:6 h:

(Note that soliton polarity is such that the product U0

(h1 – h2) is always positive.) The extinction time can be com-

pared with the total soliton duration which can be estimated

as

Tt ¼
2D
c
� 2

c

ffiffiffiffiffiffiffiffi
12b
aU0

s
¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1h2 h1 þ h2ð Þ

3U0 h1 � h2ð Þg dq=qmð Þ

s

� 2:88 	 103 s � 0:8 h:

Thus, under the chosen set of parameters, the extinction

time of the KdV soliton due to Earth’s rotation is about 50

times greater than its characteristic duration.

The soliton velocity is related to the amplitude; the rela-

tionship between them can be derived from Eqs. (2.3a) and

(2.4)

V ¼ U

3
1þ l U

2

� �
: (2.16)

In the adiabatic approximation, time dependence of soli-

ton velocity follows the variation of amplitude in accordance

with Eq. (2.16). The dependence of V(s) is shown in Fig. 4 for

the same three initial values of the parameter B as in Fig. 2.

The soliton velocity also monotonically decreases with

time independently of the initial value of the governing

parameter B. The traversed path for the KdV soliton until its

disappearance can be easily calculated.

SKdV

L0

¼
ðsext

0

V sð Þds ¼ 1

3

ðsext

0

U sð Þ
U0

ds ¼ 1

3

ðsext

0

1� esð Þ2ds ¼ 1

9e
:

(2.17)

In the case of the table-top soliton with B0¼ 10�4, the

total traversed path can be evaluated numerically; the result

is Stts/L0 � 0.142/e. For the limiting case of the table-top sol-

iton with B0¼ 0, the total traversed path can be calculated

analytically using Eqs. (2.14) and (2.16); the result is Slim/

L0¼ –4Ei(– ln 4)/3e � 0.159/e, where Ei (x) is the exponen-

tial integral function of x.

The characteristic soliton scale (the width of the soliton

front) D(s) and the total soliton width can be also readily

found in terms of parameter B(s). The total soliton width

can be defined as the distance between the soliton front and

rear slope at the level of half of soliton amplitude, i.e., when

t(D, s)¼U/2 for any instant of time [see (Apel et al.,
2007)]. Using Eq. (2.2b) and the relationship between � and

B, �2¼ 1 – B2, one can derive

D

L0

¼
ffiffiffiffiffiffiffiffiffiffi
�6l

Ur

r
4ffiffiffiffiffiffiffiffiffiffiffiffiffi

1�B2
p

� ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�B2
pp

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�B2
pp

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þ 3Bð Þ

p
2
ffiffiffi
B
p

" #
:

(2.18)

Graphics of soliton front width D(s) and the total soliton

width D(s) against time are shown in Fig. 5 for different val-

ues of B0. In the course of soliton propagation, the soliton

front width D(s) monotonically increases with time, whereas

the dependence of total soliton width D(s) may be non-

monotonic depending on the initial value of parameter B. The

minimum value of D(s) occurs at B � 0.451 and equals to

Dmin¼ 4.746	(–6l/Ur)1/2. This value is attained at a certain

instant of time, if the initial soliton amplitude is large enough,

i.e., if B0< 0.451. Thus, a small-amplitude soliton with

B0> 0.451, whose initial width D>Dmin, decays in time in

the course of propagation, and its width monotonically

increases with time, whereas large-amplitude soliton with

B0< 0.451, whose initial width D is also greater than Dmin,

shrinks in time first, attains the minimal value Dmin, and after

that expands with time decreasing in amplitude. This is illus-

trated, for example, by solid lines 2 and 3 in Fig. 5.

As has been mentioned above, the process of soliton

evolution under the influence of Earth’s rotation is not

FIG. 3. The extinction time of the Gardner soliton against the initial value of

the parameter B.

FIG. 4. Soliton velocity against time in normalized variables. Line 1:

B0¼ 0.9999 (KdV soliton); line 2: B0¼ 10�2 (“fat soliton”); solid line 3:

B0¼ 10�4 (table-top soliton). Dashed line next to line 3 corresponds to the

asymptotic dependence (2.14).
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completed with the terminal decay, but looks more compli-

cated. Numerical calculations show that when the leading

soliton decays, it produces an intense trailing wave which in

turn evolves into another solitary wave of smaller amplitude

(Grimshaw et al., 1998b; Helfrich, 2007). This secondary

soliton is accompanied by generation of a trailing wave

again. Then the secondary soliton gradually decays generat-

ing in turn a trailing wave and new solitary wave. Such

quasi-recurrence may occur several times until eventually an

envelope solitary wave forms. In the case of relatively small

amplitude of initial KdV soliton, the envelope solitary wave

can be described by the nonlinear Schr€odinger (NLS) equa-

tion, whereas when the amplitude of initial solitary wave is

big enough, the envelope solitary wave consists of solitary-

like waves that propagate through the envelope having a par-

abolic shape (Helfrich, 2007; Grimshaw and Helfrich, 2008;

2012; Grimshaw et al., 2013; 2016; Whitfield and Johnson,

2014; 2015).

B. The numerical results

The process of soliton decay under the influence of

large-scale Coriolis dispersion was numerically investigated

with the help of numerical scheme described in detail in

Obregon and Stepanyants, 2012. In the result of this study, it

was discovered that the adiabatic theory works quite well for

small-amplitude solitons and small parameter e [see also

Grimshaw et al., 2016]. This is illustrated by triangles

scattered around line 1 in Fig. 2, which was obtained in the

direct numerical calculations within the framework of the

Ostrovsky Eq. (2.1) with l¼ 0, Ur¼ 12, and e¼ 3.464

� 10�4. Small deviations of data points from the theoretical

line 1 occur when soliton amplitude becomes small. This can

be explained by the influence of non-soliton trailing pertur-

bations which appear gradually in front of propagating soli-

ton due to the periodical boundary condition used in the

numerical calculations. Another reason for the deviation of

data points from the theoretical line may be caused by the

non-adiabatic decay of a solitary wave when its amplitude

becomes very small and its shape deviates from the KdV

soliton.

However, the adiabatic theory fails to describe the time

dependence of amplitude for the “fat” and table-top solitons.

It is astonishing that for such solitons of large amplitude

numerical data follows the KdV asymptotic dependence

(line 1 in Fig. 2) rather than the predicted dependence for the

corresponding values of B0. As one can see in Fig. 2, all

numerical data obtained both for B0 ! 1 and B0 ! 0 are

grouping around line 1. In this figure, pluses represents the

numerical data for the moderate-amplitude Gardner soliton

with B0¼ 0.134, l¼ –0.866, and Ur¼ 21.164; diamonds

(almost invisible in Fig. 2) represent numerical data for the

large-amplitude “fat soliton” with B0¼ 0.01, l¼ –0.99, and

Ur¼ 23.762; and dots represent numerical data for the large-

amplitude “table-top soliton” with B0¼ 4.472� 10�4,

l¼ –0.999553, and Ur¼ 23.989.

The failure of the adiabatic theory in application to

large-amplitude Gardner solitons is related with the com-

posite structure of such solitons. As has been mentioned

above, they can be treated as a superposition of coupled

kink and anti-kink described by Eq. (2.2b). The kink propa-

gating to the right generates the negative near-field pedes-

tal which affects the following anti-kink. In the result of

that, the table-top soliton becomes wry rather than symmet-

ric. This effect is illustrated by Fig. 6, where one can see

the initial Gardner soliton of symmetric table-top profile

(line 1) and asymmetric pulses accompanied by negative

polarity trailing perturbations (lines 2 and 3). Similar

results were obtained for the GO equation derived for the

electric transmission line (Obregon et al., 2012). Further,

in the course of propagation, the leading pulse transfers

into a bell-shaped solitary wave resembling a KdV soliton.

However, time dependence of the solitary-wave amplitude

is described well by the KdV adiabatic theory from the

very beginning of evolution.

The advanced asymptotic theory for the description of

table-top solitons within the framework of perturbed

Gardner equation was developed in Gorshkov et al., 2012.

The proposed approximate approach of soliton evolution

was based just on representation of table-top solitons as the

compound formations consisting of kinks and antikinks. The

obtained theoretical results were in a good agreement with

the numerical data published in Nakoulima et al., 2004.

In spite of the near-field trailing perturbation is negative,

the total mass of generated wave train is positive. This can

be shown on the basis of the following reasoning similar to

that used in the paper (Grimshaw et al., 2003). The mass of a

perturbation can be defined as M ¼
Ð

tðs; nÞdn; within the

framework of GO equation this quantity is zero. This follows

directly from Eq. (1.1) or in the normalised variables, from

Eq. (1.5). If a soliton of nonzero mass is studied in the finite

spatial interval of length L (which is the case in the numeri-

cal simulations), then the constant pedestal should be added

to make the total mass equal to zero: t (s, n)¼ ts (s, n) – d,

where ts (s, n) is the Gardner soliton described, for instance,

by Eq. (2.2a), and the pedestal d¼Ms(0)/L, where Ms is the

soliton mass at the initial instant of time.

FIG. 5. The soliton front width D (dotted lines) and total width D (solid

lines) against time in normalized variables. Line 1: B0¼ 0.9999 (KdV soli-

ton); line 2: B0¼ 10�2 (“fat soliton”); and line 3: B0¼ 10�4 (table-top

soliton).
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As shown below, within the framework of GO equation,

the mass of a soliton decreases in the course of propagation

due to decreasing of soliton amplitude caused by the large-

scale dispersion. But the total zero mass of perturbation is

conserved within the GO equation, i.e., Ms (s)þMwt (s) – d L
¼ 0, where Mwt(s) is the mass of generated wave train.

From this equation, we find Mwt(s)¼ d L – Ms(s)¼Ms (0)

– Ms(s)—the result does not depend of L. The soliton

mass can be readily calculated for the Gardner soliton (2.2a)

Ms sð Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B0

1� B0

r
ln 1�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B sð Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B sð Þ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B sð Þ

p
" #

:

(2.19)

Using the solution for the parameter B(s), we can pre-

sent graphically the time dependence of soliton mass and

mass of generated wave train (see Fig. 7). As one can see,

both of them are positive, but vary in opposite direction: Ms

decreasing with time, whereas Mwt increasing with time.

In the KdV limit, B0 ! 1, Eq. (2.19) reduces to the lin-

ear dependence Ms¼ 2(1 – es). The mass of generated wave

train in this case is described by simple formula Mwt¼ 2es.

These dependences correspond to lines 3 and 4 in Fig. 7.

III. INFLUENCE OF ROTATION ON THE DYNAMICS OF
BELL-SHAPED SOLITONS WHEN a1 > 0

A. The theoretical analysis

In this section, we consider another case of GO Eq. (1.1)

when the cubic nonlinear coefficient a1 is positive. As has

been shown in many papers, there are real oceanic situations

when internal waves are described by the Gardner equation

with the positive parameter a1 [see, e.g., Grimshaw et al.,
1997; Talipova et al., 1999]. Such equation also possesses

soliton solutions with different profiles and properties in

comparison with those studied in Sec. II. To study the influ-

ence of Earth’s rotation on the dynamics of such solitons, we

can use again the GO equation in the normalised form (2.1)

with l> 0.

Soliton solution to Eq. (2.1) with e¼ 0 and l> 0 can be

described by the same Eq. (2.2a) where now B2> 1. In fact,

in this case, we have two families of solitons: one for B 
 1

and another for B� –1 (in the former case aU0 
 0, whereas

in the latter case aU0� 0; both these cases can be met in the

real oceanographic situations). All relationships between sol-

iton parameters are described by the very same Eq. (2.3a),

and the soliton amplitude is determined by the same formula

(2.4). Plots of soliton profiles in terms of lt against f¼ (Ur/

6l)1/2n are shown in Fig. 8 for several values of parameter

B. When B ! 1 being greater than 1, the soliton (2.2a)

reduces to the KdV soliton of infinitely small amplitude,

which eventually vanishes when B turns to unity. When B
increases, the soliton amplitude also increases and becomes

narrower (cf. lines 1, 2, and 3 for B¼ 1.5, 2, and 4,

respectively).

The negative B solitons are negative polarity. Their

amplitudes infinitely increase as B ! –1 and they become

more and more narrow. However, when B ! –1 being less

than –1, solitons do not vanish, but reduce to the algebraic

soliton shown by line 5 in Fig. 8. The formula for the alge-

braic soliton reads

t ¼ �2

l
1

1þ Urn2=6l
: (3.1)

Its amplitude is –2/l, the characteristic half-width is

(6l/Ur)1/2, and velocity V¼ 0 (in the reference frame moving

with the linear velocity c).

For further consideration, it is convenient to make soli-

ton amplitude U and characteristic width D equal to unity in

the dimensionless variables. To this end, we put l¼B – 1

and Ur¼ 24/(Bþ 1). Then both families of bell-shaped soli-

tons with B 
 1 and B� –1 can be presented in the universal

form which contains only one free parameter B

t ¼ 1þ B

1þ Bcosh 2n� Bþ 1

3
s

� � : (3.2)

The soliton profiles as described by the dimensionless

formula (3.2) are shown in Fig. 9 for several values of

parameter B (note that in this variable the algebraic soliton

formally has a unit amplitude but zero width).

FIG. 6. Table-top soliton at the initial stage of its evolution under the action

of large-scale Coriolis dispersion with e¼ 4.9 � 10�3. Line 1—initial

Gardner soliton with B0¼ 4.472 � 10�4; lines 2 and 3 are the results of its

short-time evolution at the consecutive instants of time. The graphics are

presented in the limited interval of n-axis around the initial soliton position,

whereas the total spatial interval of calculation was L¼ 50 000.

FIG. 7. Time dependence of soliton and wave train masses. Line 1—table-

top soliton with B0¼ 4.472 � 10�4 and e¼ 4.9 � 10�3; line 2—the total

mass of generated wave train behind the soliton; line 3—KdV soliton with

B0¼ 1 and e¼ 3.464 � 10�4; line 4—the total mass of generated wave train

behind this soliton.
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When B increases from 1 to infinity, the soliton profile

slightly varies from the KdV soliton shown by line 1 in Fig.

9 to the narrower limiting soliton shown by line 2 for

B¼ 1010. And when B increases from minus infinity to –1,

the soliton profile varies from the same limiting soliton

shown by line 2 in Fig. 9 to the algebraic soliton of zero

width. The approach to the algebraic soliton is shown by

lines 3 and 4 for B¼ –1.1 and –1.01, correspondingly.

For e 6¼ 0 in Eq. (2.1), but sufficiently small, e� 1, we

can develop again an asymptotic approach based on the

equation of energy balance for a quasi-stationary bell-shaped

solitons. By substituting into Eq. (2.6), the soliton solution

(2.2a) with jBj> 1 and assuming that B is a slowly varying

function of time, we ultimately obtain after consecutive inte-

grations [cf. Eq. (2.7) for the “fat” and table-top solitons]

dB

ds
¼ �8e

ffiffiffiffiffiffi
6l
Ur

r
Bffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 � 1
p arctan2

ffiffiffiffiffiffiffiffiffiffiffiffi
B� 1

Bþ 1

r
: (3.3)

In general, an analytical solution to this equation can be

presented again in the implicit form in a quadrature:

8

ffiffiffiffiffiffi
6l
Ur

r
es ¼ �

ðB
B0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 1
p

Barctan2

ffiffiffiffiffiffiffiffiffiffiffiffi
B� 1

Bþ 1

r dB; (3.4)

where B0 is the initial value of parameter B at s¼ 0.

However, in the KdV limit (B0 ! 1þ), Eq. (3.4) simplifies

and reduces to the equation similar to Eq. (2.9)

dB

ds
¼ �2e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B0 � 1ð Þ B� 1ð Þ

q
(3.5)

with the very same exact solution (2.10) for the parameter B
or solution (2.11) in terms of soliton amplitude.

In another limit B0 ! 61 Eq. (3.3) again simplifies

and reduces to

dB

ds
¼ �ep2

ffiffiffiffiffiffiffiffi
3l
2Ur

r
1� 4

pB

� �
¼ � ep2

4
B0 1� 4

pB

� �
: (3.6)

In the last equality, it has been used that for the normal-

ized initial soliton with the unit amplitude and characteristic

width, the parameters l and Ur are (see above): l¼B0 – 1 �
B0 and Ur¼ 24/(B0þ 1) � 24/B0. Equation (3.6) can be read-

ily integrated resulting in the implicit dependence of B(s)

es ¼ 64

p2B0

4

p
ln

B0

B
þ B0 � B

� �
: (3.7)

Here, sign plus (minus) corresponds to the case when B
!þ1 (B ! –1). This formula can be further simplified

for B � B0; then we have B¼B0(1 – p2e s/4), or in terms of

soliton amplitude this gives

U

U0

� 1� p2

4
es: (3.8)

The formulae presented above make sense only until jBj

 1. When B> 1 and decreases reaching 1, the soliton (2.2a)

gradually vanishes transforming first into the KdV soliton

which completely vanishes in a finite time. Figure 10 illus-

trates this process in terms of soliton amplitude versus nor-

malized time. Solid lines 1, 2, and 3 in this figure represent

FIG. 8. Normalised Gardner soliton (2.2a) with l> 0, for several values of

parameter B. Line 1: B¼ 1.5; line 2: B¼ 2; line 3: B¼ 4; line 4: B¼ –2; line

5: B¼ –1 (the algebraic soliton).

FIG. 9. Normalized Gardner soliton (3.2) for several values of parameter B.

Line 1: B¼ 1 (KdV soliton); line 2: B¼ 1010 (limiting soliton); line 3:

B¼ –1.1; line 4: B¼ –1.01.

FIG. 10. Bell-shaped soliton amplitude against time in normalized variables.

Line 1: B0¼ 1.01 (quasi-KdV soliton); line 2: B0¼ 10; and line 3: B0¼ –10.

Dashed line 4 represents the asymptotic dependence (3.7) for the same value

of B0¼ 10. Dotted line 5 displays the limiting case as per Eq. (3.8); and

dashed line 6 represents the asymptotic dependence (3.7) for B0¼ –10.

Symbols present numerical data for the corresponding cases.
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numerical solutions of Eq. (3.3) for the different values of

parameter B0, and soliton amplitude was further calculated

with the help of Eq. (2.4).

The bigger the parameter B0, the faster the soliton

decays (cf. lines 1 for B0¼ 1.01 and 2 for B0¼ 10). The

shortest life-time of the bell-shaped solitons with B0> 1 can

be estimated from the asymptotic formula (3.7) which pro-

vides a bit underestimated life-time because the formula is

formally valid only when soliton amplitude is large enough.

According to that formula, soliton amplitude turns to zero at

s¼ sext � 4/(ep2), which is less than the extinction time for

the KdV soliton in 4/p2 times. The analytical formula for the

KdV soliton, Eq. (2.11) with B0¼ 1, is indistinguishable

from line 1 in Fig. 10.

The situation is different when B0< –1. In this case, the

adiabatic theory predicts that the soliton decays until its

parameter B increases, but remains less than –1. Eventually,

when B becomes equal to –1, the soliton transforms into the

algebraic soliton (3.2) which represents formally a stationary

perturbation moving with the speed of long linear waves c in

the laboratory coordinate frame. However, as has been

shown in Pelinovsky and Grimshaw, 1997, the algebraic soli-

ton is structurally unstable; under small perturbations it can

be transferred into a mowing breather—a non-stationary soli-

tary wave with the oscillating internal structure (see, e.g.,

Grimshaw et al., 2010 and references therein). This is

exactly what happens when the Gardner equation is per-

turbed by the additional term caused by the large-scale

Coriolis dispersion. The algebraic soliton loses its identity

immediately, and the adiabatic theory become senseless. The

numerical solution illustrating the disintegration of algebraic

soliton is presented in subsection III B (see Fig. 14 below).

The dotted line 5 in Fig. 10 separates solitons of positive

polarity shown in Fig. 8 (their decay lines are shown to the

right from the line 5) and solitons of negative polarity whose

decay lines are shown to the left from the line 5. All decay

lines which correspond to solitons of negative polarity termi-

nate when the parameter B becomes equal to –1, and the

amplitude becomes equal to Ulim (see horizontal dashed line

in Fig. 10), where

Ulim ¼
2

1� B0

: (3.9)

When Eq. (3.3) is solved for the parameter B, all other

soliton parameters can be readily obtained as functions of s,

the soliton amplitude U(s), velocity V(s), and characteristic

width D(s). The soliton amplitude monotonically decrease

with time both for positive and negative initial values of the

parameter B, although the termination of the adiabatic process

is different and depends on the sign of B0. As has been men-

tioned above, the soliton amplitude formally vanishes at a cer-

tain time if B0> 1. The corresponding extinction time can be

found from Eq. (3.4) when B turns to 61; then we have

8

ffiffiffiffiffiffi
6l
Ur

r
e sext B0ð Þ ¼ �

ð61

B0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 1
p

dB

Barctan2

ffiffiffiffiffiffiffiffiffiffiffiffi
B� 1

Bþ 1

r : (3.10)

Figure 11 shows the dependences of the normalized

extinction time on B0 as per Eq. (3.10). In the same figure,

we present the dependence of extinction time for the table-

top solitons as per Eq. (2.15) (see line 1). As follows from

this figure, line 2 represents just a continuation of line 1, and

the extinction time for the KdV soliton esext¼ 1 exactly cor-

responds to the point of matching of two branches of one

line (see the black point at the border of lines 1 and 2 in Fig.

11). Thus, the adiabatic theory predicts that the extinction

time of fat and table-top solitons (when l< 0) is always

greater than the extinction time of KdV soliton, whereas the

extinction time of bell-shaped solitons (when l> 0) is

always less than the extinction time of KdV soliton. Further,

the characteristic time of bell-shaped solitons with B0< 1 is

always less than the extinction time of bell-shaped solitons

with B0> 1 (cf. lines 2 and 3 in Fig. 11), and the extinction

time of an algebraic soliton is formally zero. When B0

! 61, the extinction time of bell-shaped solitons asymp-

totically approaches a limiting value 4/p2, but from different

sides (see the dashed horizontal line esext¼ 4/p2 in Fig. 11

and lines 2 and 3 approaching it).

In the dimensional variables, the limiting extinction

time of bell-shaped solitons is Tlim¼ 4/(p2c L0)¼ (4/p2c)

(aU0/12b)1/2. Using the same oceanic parameters as above,

one can find Tlim � 5.63 � 104 s � 15.65 h. For solitons

(2.2a) with B0 ! 61, the characteristic duration can be

estimated as

Tt ¼
D
c
¼ 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24l

Ur B2
0 � 1

� �
s

¼ 2

caL0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6a1b

B2
0 � 1

s
� 2

ffiffiffiffiffiffiffiffiffiffi
6a1b
p

caL0jB0j
:

(3.11)

As one can see, Tt ! 0 when jB0j ! 1, hence, the

extinction time for such solitons is much greater than their

duration.

The bell-shaped soliton velocity is related to the ampli-

tude by the very same formula (2.16); it monotonically

decreases with time. The dependence of V(s) is shown in

Fig. 12 for the same three initial values of the parameter B as

in Fig. 10.

FIG. 11. The extinction time for all types of Gardner solitons against the

initial value of parameter B. Line 1: table-top and fat solitons when l< 0;

line 2: bell-shaped solitons with l> 0 and B0> 1; and line 3: bell-shaped

solitons with B0< –1. Black dot corresponds to the KdV soliton, and

dashed horizontal line shows the asymptotic value of extinction time 4/p2

for B0!61.
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The traversed path for the bell-shaped soliton until its

disappearance can be calculated numerically; it is not pre-

sented here.

The characteristic soliton scale D(s) can be calculated

using Eq. (2.3a)

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

24l

Ur B2 � 1ð Þ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

0 � 1

B2 � 1

r
: (3.12)

Graphics of D(et) against time are shown in Fig. 13 for

different values of B0. In the course of soliton propagation,

the width monotonically increases with time and tends to

infinity when a soliton with B0> 1 vanishes or when a soli-

ton with B0< –1 turns to the algebraic soliton (see, e.g., line

3 in Fig. 13).

B. The numerical results

The numerical results for soliton decay under the influ-

ence of large-scale Coriolis dispersion were obtained with

the help of the same numerical code as in Sec. II B. The data

obtained for the bell-shaped solitons in the case of l> 0 are

in very good agreement with the results of adiabatic the-

ory—see, for example, symbols next to lines 2 and 3 in Fig.

10. For other cases studied with different values of parameter

B0, a similar good agreement between the theory and numer-

ical modelling was obtained.

As has been mentioned above, the extinction time of an

algebraic soliton formally is zero (see Fig. 11). Figure 14

illustrates disintegration of algebraic soliton into nonstation-

ary wave trains and, possibly, breathers. As one can see, the

soliton radiates a long quasi-sinusoidal wave and quickly

changes its own shape and polarity. Then, in the process of

evolution, it transfers into a nonstationary wave train which,

apparently, contains one or two breathers which can repre-

sent an intermediate asymptotic of soliton evolution.

The breathers of the Gardner equation (Pelinovsky and

Grimshaw, 1997), apparently, will decay in turn due to the

influence of large-scale Coriolis dispersion. Therefore, one

can expect again that an envelope NLS-type soliton will be

formed eventually after a long-term evolution of an algebraic

soliton or a breather. The influence of Earth’s rotation on the

long-term dynamics of algebraic solitons and breathers will

be considered elsewhere.

IV. CONCLUSION

In this paper, we have analysed the influence of weak

Earth’s rotation on adiabatic decay of all types of solitary

waves within the framework of Gardner–Ostrovsky equation.

We consider the equation with both negative and positive

coefficient of cubic nonlinear term a1, the term which essen-

tially determines the type of solitary wave. In natural oceanic

conditions, the GO equation with both signs of this coeffi-

cient can occur (Grimshaw et al., 1997; Talipova et al.,
1999; Apel et al., 2007).

As has been shown in this paper, Gardner solitons expe-

rience slow decay in a weakly rotating fluid due to the radia-

tion of long trailing waves. The adiabatic theory allows us to

calculate the decay laws of solitons and estimate the

FIG. 12. Bell-shaped soliton velocity against time in normalized variables.

Line 1: B0¼ 1.01 (quasi-KdV soliton); line 2: B0¼ 10; and line 3: jVj is

shown for B0¼ –10, whereas V is negative.

FIG. 13. Characteristic width of a bell-shaped soliton D against time in nor-

malized variables. Line 1: B0¼ 1.01 (quasi-KdV soliton); line 2: B0¼ 10;

and line 3: B0¼ –10.

FIG. 14. Disintegration of algebraic soliton into nonstationary wave trains

and breathers (fragments).
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extinction times when solitons completely vanish [in fact

they eventually transfer into wave packets similar to enve-

lope solitons of NLS equation (Helfrich, 2007; Grimshaw

and Helfrich, 2008; 2012; Grimshaw et al., 2013; 2016;

Whitfield and Johnson, 2014; 2015)]. The results of direct

numerical calculations within the framework of GO equation

are in a good agreement with the outcomes of adiabatic the-

ory for bell-shaped solitary waves. In the meantime, the

decay law for a table-top soliton of GO equation with a1< 0

predicted by the adiabatic theory does not agree with the

numerical data. The reason of this disagreement is in the

composite character of a table-top soliton which consists of a

coupled kink and anti-kink. Under the influence of weak

rotation, the soliton does not keep its symmetric profile, but

becomes essentially wry in contradiction with the main

assumption of adiabatic theory.

On the basis of the results obtained, we have presented

estimates for soliton life times in a real ocean.
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