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Abstract 

An experimental and numerical investigation was undertaken to characterise the collapse of 

3D orthogonal woven carbon fibre composites during the load cases of in-plane tension, in-

plane compression and out-of-plane bending. Two different fibre architectures, varying only 

by the density of through-thickness reinforcement, were investigated. Cantilever beam tests 

were carried out to isolate two distinct collapse mechanisms, i.e. bending governed and shear 

governed deformation. A qualitative comparison was made with a similar UD-laminate 

material. 3D woven composites exhibited significantly reduced delamination. An 

investigation into the efficacy of an embedded element modelling strategy for in-plane 

tension, in-plane compression and out-of-plane bending load cases was undertaken. The 

predictions were generally in good agreement with the experimental measurements for the in-

plane and out-of-plane loading.  

Key words 

Composite materials; 3D reinforcement; Finite Element Analysis (FEA); Damage; 
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1. Introduction 

Three-dimensional woven composites contain woven textile reinforcement with yarns 

orientated along the x-axis, the y-axis and the z-axis. They have a distinct advantage over 

two-dimensional fibre reinforced composites due to their enhanced inter-laminar and flexure 

properties. The in-plane response has been investigated at depth within the literature. 

Prominent examples include the tensile properties [1-8], and the compressive properties [1, 9, 

10]. However, the principle reasoning behind the addition of the through-thickness 

reinforcement is to improve the inter-laminar and out-of-plane bending properties of the 

composite.  

The double cantilever beam (DCB) is an effective methodology for determining the Mode I 

inter-laminar fracture toughness of fibre reinforced composites. The DCB studies on 3D 

woven carbon/epoxy materials recorded increases in Mode I inter-laminar fracture toughness 

up to 15 times than that of a 2D carbon/epoxy laminate [11] and greatly increased strain-

energy release rates of 3D composites in comparison to 2D composites [12]. This increase 

was attributed to crack-bridging and crack-diverting. Mode II inter-laminar fracture 

toughness is commonly measured via the end loaded split (ELS) [13-15] and three [16, 17] 

and four-point [15, 18] end notch flexure (3ENF and 4ENF) testing methodologies. ELF and 

4ENF experiments undertaken upon 3D woven composites have suggested that there is a 

relatively greater role for the matrix in Mode II crack propagation in comparison to Mode I 

crack propagation, and therefore increases of binder density present a relatively lower 

increase in Mode II toughness. [15].  

The flexural properties of fibre reinforced composite materials are commonly investigated in 

two standard tests: three-point bending tests [1, 19-24], and four-point bending tests [23-26]. 

During three-point bending tests, stress concentrations have been reported to cause early-
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onset microcracking of the matrix and subsequent localised non-linearity [20], potentially 

leading to catastrophic failure of the beam [27]. The load concentration of the three-point 

bending test leads to a combination of bending with shear stresses [27], causing difficulty in 

the isolation of either one. Also, for composites with high levels of orthotropy, both a flexural 

and a twisting curvature is introduced throughout the beam length, which adds to the 

complication during three-point bending tests [28]. The four-point bending test is an 

attractive alternative as it induces pure bending stresses within the beam. However, due to 

rotation at loading rollers during four-point bending, the load span increases during the test, 

overestimations of flexural modulus are common if corrections are not made [25]. 

Gerlach et al. [21] investigated the out-of-plane properties of a through-the-thickness angle 

interlock 3D woven carbon composite material with a three-point bending test and plate 

bending test. The results indicated that binder density influences delamination length, 

however, the tests were highly dependent on support conditions and loading roller geometry. 

Zhang et al.[29] investigated a layer-to-layer orthogonal interlocked textile composite  under 

three point bending, employing DIC to capture local increases in strain and microcracking. 

However, due to the localised damage initiation experienced in textile composites, 

interpretation of a catastrophic failure event during a three-point bending test can be 

complicated by the asymmetric nature of the failure; damage could occur in either or both of 

the two arms of the beam. Damage could also occur under the loading roller, complicating 

damage progression analysis [30]. Liu et al.[31] applied a cantilever beam test procedure to 

Dyneema material. This method proved useful in simplifying the analysis of beam collapse 

under bending. The research presented here adopts the cantilever beam test in order to 

activate two distinct collapse mechanisms for 3D woven carbon/epoxy composite materials. 

It then provides a clear analysis of the progression of the collapse event throughout the test 
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coupon. This is supplemented with further investigation into the two collapse modes via the 

use of the Finite Element (FE) method.  

A common methodology in the numerical prediction of the stiffness and strength of woven 

composites is the FE analysis at a unit cell level [32-38]. Nagai et al. [32] used micro-

mechanical FE analyses at the unit cell level in order to present a structural analysis model. 

The unit cell, composing of fibre (beam) elements and matrix (beam and rod) elements, was 

imparted with an enforced displacement in order to extract the non-linear properties. These 

properties were then translated to homogenous solids for use in the structural analysis for 

tensile, compressive and shear mechanical behaviour up to failure. The structural analysis 

model was used exclusively for undulated fibre composites, and was validated through 

experiments. Huang et al. [37] conducted a 3D multi-unit cell FE simulation in order to 

investigate the compressive strength and failure mechanisms of woven textile composites. 

They found that 16 unit cells gave good agreement to experimental results [37].  Kink band 

formation was determined as the main compressive strength limit factor [38]. Modelling at 

the representative volume element (RVE) level is an alternative to unit cell based modelling 

methodologies [39-41]. However, modelling at the RVE level has been known to exhibit 

reduced accuracy due to the lack of geometric detailing [39]. 

The Binary Model [42-44] attempts to move away any assumptions of periodicity within the 

material. It was used for simulating relatively large, three-dimensional models of textile 

composites, whilst paying particular attention to the induced stochastic flaws introduced into 

the material during manufacturing. The model uses beam elements to represent fibre tows, 

which are then embedded within a solid effective medium that represents the matrix. The 

Binary Model can incorporate non-linearity in both the reinforcing tow and matrix easily, and 

was shown to reproduce well the qualitative features of stress-strain curves for uni-axial tests 
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on a 3D woven angle interlock material. Readers are referred to [45] for a more 

comprehensive overview of modelling strategies for 3D woven composite materials.  

The experimental component of this paper utilises uni-axial tension and compression tests 

and a cantilever beam bending test. By varying the length of beam during the cantilever beam 

test, two distinct collapse mechanisms experienced by orthogonal 3D woven composites 

during out-of-plane loading were isolated. Two different densities of orthogonal through-the-

thickness reinforcement were tested. The numerical method is developed as a viable finite 

element strategy for modelling full scale 3D woven composites test coupons. The FE model 

aims to be computationally efficient, utilising embedded shell elements representing the 

reinforcement tows within solid matrix elements.  

2. 3D woven composite material and in-plane tension/compression coupon tests 

This study used 3D orthogonal woven carbon fibre reinforcements with two through-the-

thickness (TTT) binder densities. The two different fibre architectures are shown in Figure 1. 

The “Full TTT” material has a binder-to-warp-stack ratio of 1:1 (i.e. each binder tow being 

separated by one vertical stack of warp tows), while the “Half TTT” material has a binder-to-

warp-stack ratio of 1:2. Throughout this paper, the warp tow direction is referred to as the x-

direction, the weft tow direction is referred to as the y-direction and the through-the-thickness 

direction is referred to as the z-direction. Microscopic images of the cured composite cross-

sections were used to measure the average values for the dimensions of the fibre architecture. 

The average dimensions are presented in Figure 1. Both materials contained an alternating 

stack of 9 weft layers and 8 warp layers giving a total thickness of 3.5 mm for the cured 

composite. The overall fibre volume fraction was 0.56 for the full TTT composites, and 0.55 

for the half TTT composites. The carbon fibre tows were AKSACA A-38 with 6K filaments 

for warp and weft tows, and 3K filaments for binder tows. Epoxy resin was Gurit Prime 



  

 

 

6 

 

20LV, with the ratio of slow hardener to resin by weight as 26:100. Standard vacuum 

infusion technique was utilised for the resin injection. Further details of the composite 

material are presented by Turner et al. [46]. 

Quasi-static (2mm/min) uniaxial material coupon tests were conducted on the Full TTT 3D 

woven composites, in order to determine the in-plane mechanical properties under tension 

and compression. The in-plane tension and compression experimental procedure was 

identical to that presented by Turner et al. [46], adopting EN ISO 527-4 methodology for 

tensile testing, and ASTM D3410/B for compression testing. Five repeat measurements were 

taken for tension and compression tests in warp and weft directions. The tensile and 

compressive tests in the ±45º orientation were performed in a way that warp and weft tows 

lay at ±45º to the loading axis.  

3. Cantilever beam test protocol 

Figure 2(a) presents a sketch of the cantilever beam set-up. Beam specimens of width w = 20 

mm were cut along both directions (longitudinal warp or weft yarns), from the two different 

3D woven composites panels.  One end of the beams was clamped into a custom-designed 

fixture in stainless steel with M6 bolts. This fixture was subsequently bolted onto a steel I-

Beam attached to an Instron 5581 test machine with a static 50 kN load cell. The Instron test 

machine provided a constant displacement rate at 4mm/min for a 10 mm diameter roller in 

constant contact with the free end of the beams. The diameter of the loading roller was 

chosen to match current 3-point [47-49] and 4-point [47] flexural test method standards. The 

roller diameter was deemed large enough to reduce local surface fibre damage caused by 

contact stresses. Initial testing indicated that the length of the cantilever beam that extended 

past the roller loading position had no influence on the response of the beams. The front 

surface of the beams were speckle painted for DIC analysis. Figure 2(b) presents a sketch of 
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the cantilever beam test orientated along the x-direction (warp) showing the fibre 

reinforcement topology in relation to the beam.  

4. Finite element Analysis  

A FE modelling strategy, used for the prediction of the in-plane and out-out-plane responses 

of the orthogonal 3D woven carbon fibre reinforced composite, will now be presented. The 

primary aims of the numerical calculations presented in the following sections are: 

• To examine the efficacy of the embedded element modelling technique employing the 

constitutive models of Matzenmiller et al. [50] and Hashin [51] for fibre composites. 

• To provide in-depth understanding of the experimental results.  

4.1 FE model of orthogonal 3D woven composites 

A three dimensional (3D) finite element analysis was conducted by using the explicit solver 

in ABAQUS (Version 6.12). Each individual tow in weft, warp and TTT-directions was 

modelled with 4-noded doubly curved shell elements (S4 in ABAQUS notation), with five 

integration points through the thickness. The length of side of each element was 0.25 mm. 

See Figure 3 for a sketch of the meshed finite element model. The orientation option within 

ABAQUS was used to assign the local fibre orientations of individual tows. The geometric 

data for defining the locations and cross sectional areas of the tows or TTT-reinforcement 

were taken from microscopic images. The fibre architecture varies throughout the structure 

due to the presence of the binder and randomly orientated stochastic flaws. Therefore, an 

average was taken in order to recreate the geometry of the specimen in the FE model. The 

matrix was modelled using quadratic solid elements (C3D8 in ABAQUS notation) of second-

order accuracy. The total number of shell and solid elements was 91,000 elements for the 

short beam model, and 474,000 elements for the long beam model; a numerical study 
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demonstrated that this mesh density achieved a converged result. Shell elements, representing 

the reinforcement tows, were embedded within the solid elements, which represents the resin 

matrix. The translational Degrees of Freedom (DoF) of the nodes in the shell elements are 

constrained to the interpolated values of the corresponding DoF in the solid elements (host 

elements).  

For cantilever beam simulation, the loading roller was simulated as a discrete rigid body 

(using R3D4 elements in ABAQUS notation). The roller was moved along the z–direction 

with a constant displacement. General contact option in ABAQUS was used to model the 

interaction between the roller and the cantilever beam with a tangential friction coefficient of 

0.3. The translational degrees of freedom of the matrix, and the translation and rotational 

degrees of freedom of the tows were constrained at the clamped end of the beam simulations. 

This gave a free length of 8 mm for short beam calculations and 40 mm for long beam 

calculations. Simulations were conducted on 40 mm length long beams, as opposed to the 

longest beam length tested, in order to reduce calculation time. For the simulation of the in-

plane tension and compression tests, the translational degrees of freedom of the edge of the 

matrix, and the translation and rotational degrees of freedom of the edge of the tows were 

constrained at one end of the sample, and the other end subjected to a constant displacement 

along either the x or y-direction. The simulations were conducted in parallel mode (8 CPUs) 

using the High Performance Computing (HPC) facility at the University of Nottingham.  

The constitutive models of Matzenmiller [50] and Hashin [51] for fibre composites were 

employed to capture the observed collapse modes of tows and TTT-reinforcement. Plane-

stress elastic properties were employed for the tow and TTT reinforcement. As the stress state 

within the elements surpass the Hashin damage initiation criteria damage locus, four scalar 

damage variables, corresponding the four damage modes, are introduced to represent the 



  

 

 

9 

 

effects of the damage modes. Post initiation of damage, the response of the material is 

governed by 
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The shear damage variable is used later in order to visualise the location of damage during 

finite element simulations of in-plane uni-axial coupon tests. It is useful as a “resultant” 

damage variable combining tension and compression for both longitudinal and transverse 

directions. The behaviour of the tow and TTT reinforcement elements post-damage is 

governed by a linear softening relationship, as determined by the materials fracture energy. A 

characteristic length scale across a finite element,
el , is included in order to help alleviate 

mesh dependency. A more detailed description of the constitutive laws employed within the 

finite element modelling in this study is presented in the supplementary data to this paper.  

The matrix was treated as a J2-flow theory based elastic-ideally plastic material. A critical 

Von Mises effective strain was used for damage initiation. Post damage initiation, a damage 

variable, D, was employed for the linear degradation of the elasticity, i.e. ( ) mED−1 , and for 

the linear softening of the yield stress, i.e. . The post damage initiation behaviour of 

the material is governed by the matrix fracture energy. The matrix was split into 17 layers 

( ) o

YD σ̂1−



  

 

 

10 

 

through the thickness, representing each of the 17 individual layers of the fibre 

reinforcement. A cohesive contact law was used to model the interface between the layers. 

This simulates the traction-separation behaviour between them and allows the FE model to 

capture delamination at these locations. It is noted that it was at these locations that 

delamination occurred during experimental testing. An uncoupled quadratic maximum stress 

damage initiation criterion was used, and a linear softening law employed post damage 

initiation with the behaviour governed by the defined fracture energy. The values for the 

parameters of the cohesive law are presented in the supplementary data to this paper. A 

detailed description of the constitutive models with the finite element strategy, and of the 

derivation of the material properties, is presented in the supplementary data to this paper. In 

short, the majority of the material properties for the fibre reinforcement were calculated from 

uni-axial tension and compression tests, and the matrix material properties were taken from 

manufacturer’s data and uni-axial coupon tests with the fibre reinforcement orientated at ±45º 

to the loading axis. The values used for the material properties are also presented in the 

supplementary data to this paper.  

5. Results and discussion 

5.1 Collapse of coupons during in-plane tension and compression loading 

Characteristic tensile and compressive stress-strain curves of the 3D woven carbon composite 

are presented in Figure 4. The measured Young’s Modulus in the tensile tests were 44.3 and 

74.6 GPa for warp and weft directions, respectively. The tension and compression tests 

showed elastic-brittle fracture both in the warp and weft directions. This was governed 

mainly by fibre reinforcement fracture, as being observed from scanning electron 

microscopic (SEM) images of the fracture surfaces. Fracture occurred at the location of the 

TTT-reinforcement for both compression and tension testing of samples orientated along the 



  

 

 

11 

 

y-direction (weft). Fracture location was attributed to stress concentrations due to crimping of 

longitudinal tows at the TTT-reinforcement location. No significant delamination, and no 

buckling of plies was recorded during these tests. Material tests conducted with fibres 

orientated at ±45º show a weaker but more ductile response as they are governed by the 

relatively soft matrix material. This is consistent with the behaviour observed by Gerlach et 

al. [21] for an orthogonal 3D woven carbon composite material tested with fibres orientated 

±45º to loading direction.  

For model validation, finite element calculations of in-plane tension and compression test 

coupons were conducted. Good fidelity between the finite element modelling and 

experimental measurements was achieved, and the predictions are presented alongside the 

experimental results in Figure 4. The FE simulation captures the stiffness and peak stress of 

uniaxial compression/tension tests. The FE model can also provide further insights into the 

nature of the collapse event within the material. Figure 5(a) presents the predicted contour of 

in-plane stress along y-direction (weft), yy
σ , under y-direction (weft) uniaxial compression 

testing, immediately prior to failure of the sample. At the positions of the TTT-reinforcement, 

there is a clear increase in magnitude of yy
σ . This is attributed to crimping within the surface 

weft tows induced by the TTT-reinforcement. The predicted ratio of maximum to minimum 

stress yy
σ

 
in the surface weft tows is approximately 4.0, with the peak stress immediately 

prior to fracture being identical to that of the longitudinal compressive strength of weft tows, 

CX = 1.1 GPa. This notably high ratio is analogous to the stress concentration factor of 5.5 

recorded in notched CFRP samples under compression fatigue loading [52], which is defined 

as the ratio of local stress to remote stress. To understand the stress distribution through the 

thickness of the sample, Figure 5(b) shows the contours of yy
σ , immediately prior to failure, 
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within the central weft tow stack, as highlighted in Figure 5(a). Again, both top and bottom 

surface tows have significant stress concentrations owing to crimping induced by the TTT-

reinforcement. However, as the crimping has less influence on the geometries of the internal 

weft tows than those of the surface tows, the stress concentrations in the internal tows are less 

significant. The staggered binder location at the top and bottom surfaces of the material 

causes an alternating pattern of increased and reduced local stresses throughout the thickness 

of the material. This stress variance leads to the “step” shape fracture phenomena. The 

location of the fracture surface corresponds to the position of maximum longitudinal stress 

yy
σ  shown in Figure 5(a) and follows the stress distribution through the thickness shown in 

Figure 5(b). Figure 5(c) and (d) show the fractured sample obtained by FE simulation and 

experiment, respectively. The contour in Figure 5(c) shows the damage variable, ds, within 

the tows.  

For the same sample under tensile testing along y-direction (weft), Figure 6(a) shows the 

contours of in-plane stress along y-direction (weft), yy
σ , within the top surface layer tows, 

while (b) shows the shear damage variable, ds, at the fracture surface of the fibre 

reinforcement immediately after sample fracture. Although the response was governed by the 

tensile response of the in-plane tows, the shear damage variable was chosen as it allows a 

convenient visualisation of a combination of the four damage modes. Once fracture initiates 

within a longitudinal weft tow, it rapidly propagates throughout the material, through the 

centre of the TTT-reinforcement. Again, the increase in longitudinal stress, yy
σ , at the TTT-

reinforcement position gives rise to final fracture. In Figure 6(a), the ratio of maximum to 

minimum stress yy
σ  in the weft tow is approximately 1.8, with the maximum stress prior to 

the onset of fracture being 1.72 GPa which is equal to the longitudinal tensile strength of the 
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weft tows, TX . The maximum to minimum stress ratio during tensile testing is lower than 

that of the compressive testing. This is because during the tensile test, the loading acts to 

“straighten out”, the yarns, thus, reducing the effect of crimp. The FE predication is 

consistent with experimental observation, i.e. the fracture occurred at a TTT-reinforcement 

position. Figure 6(b) and (c) presented the prediction and observed fracture surface from the 

experiment. The contour in Figure 6(b) is the shear damage criterion, ds, with a value of 1 

indicated elements which are fully damaged. The numerical calculation correctly predicts the 

“step” shape fracture surface, located between two neighbouring crimp positions.  

5.2 Cantilever beam collapse mechanisms 

In order to classify the collapse response of the beams, a set of experiments were conducted 

with cantilever beams of varying length loaded to failure. Through this, it was possible to 

identify two distinct collapse mechanisms, and the transition between them. Figure 7(a) 

presents the force applied by the roller against normalised roller deflection L/δδ =  along 

the z-direction for a range of beam lengths. The roller displacement is normalised against the 

cantilever beam length. Beam collapse is defined as the initial drop-off in resisted load for the 

shear mechanism, and the drop-off of load resisted after initial period of non-linearity for 

bending dominated mechanisms. These locations are marked on Figure 7(a). For brevity, only 

the set of experiments of beams of Full TTT material, with beams orientated along the x-

direction (warp) are presented. Beams orientated along the weft direction, and beams of Half 

TTT material exhibited the same characteristics. The results demonstrate two distinct collapse 

responses. The short beams, i.e. 7 mm, 8mm, and 10 mm beam lengths, have a linear elastic 

response up until collapse, and then demonstrate a secondary rise in load resisted before 

ultimate beam failure. Long beams, i.e. 15 mm, 40 mm and 110 mm, exhibit a softening 

regime and then an incremental reduction in load resisted until failure. The moment of beam 
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collapse is highlighted on each of the load-deflection curves presented in Figure 7(a). Figure 

7(b) presents the collapse load Pc of the beams as a function of beam length L. The two 

distinct regimes are visible from the data. Simple beam theory was used to curve fit the 

effective stress within the beam at collapse. It is presented as an approximation in order to 

demonstrate the transition between the two regimes, i.e. LWtP
x

b

c
6/2σ= for bending 

dominated long beams and WtP xy

s

c τ= for shear dominated short beams. Curve fitting 

bending dominated beam theory gave the peak stress at collapse of MPa590=xσ . This 

value is seen to correspond well to the longitudinal tensile strength along the x-direction 

(warp) of the composite material, i.e. MPa595=xσ (presented in Figure 4(a)). Comparison 

is made to the tensile strength, as tensile crack propagation was the dominant failure 

mechanism presented by the long cantilever beams. For the shear regime, curve fitting beam 

theory gave an average shear stress at collapse of MPa46=xyτ . The matrix dominated 

response of tensile coupon tests with fibres orientated at ±45° to the loading axis (Figure 

4(a)) predicts the matrix strength at the onset of non-linearity of the test demonstrated to be 

80 MPa. Assuming the shear strength to be half of this value, i.e. MPa40=xyτ , corresponds 

acceptably with the collapse response demonstrated during the cantilever beam tests. 

However, in reality the composite material demonstrates a highly non-linear shear response 

[53], and therefore this value is only used as a guide. In Figure 7(b), the transition beam 

length between shear and bending dominated collapse regimes is estimated to be 

approximately L ≈ 12.5 mm. For the detailed study, beam lengths 8 mm and 40 mm were 

selected as representative of shear dominated collapse and bending dominated collapse 

mechanisms, respectively.   
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5.3 Long cantilever beam bending collapse 

As previously demonstrated, the collapse behaviour of the long cantilever beams is governed 

by bending deformation rather than by shear deformation. Figure 8(a) and (b) show the force 

imposed by the roller as a function of roller displacement along z-direction for long (40 mm) 

cantilever beams for Full TTT and Half TTT material orientated along the x-direction (warp) 

and y-direction (weft), respectively. Also presented is the FE prediction of a long (40 mm) 

beam collapse event for a Full TTT beam orientated along the x-direction (warp). For both 

orientations, there was shown to be no significant difference between the two materials 

tested. To understand the failure mechanism of the long beams, Figure 8(c) shows the full 

field strain measurement xxε  for normal strain along x-direction (warp) on the front surface of 

the beam, acquired by the Digital Image Correlation (DIC) technique, for the composite beam 

with Full TTT reinforcement orientated along the x-direction (warp). The images can be 

related to the corresponding load – displacement relation shown in Figure 8(a). In the elastic 

region, up to point A, there are localised increases of tensile strain at the top of the beam. 

These locations correspond to the positions of TTT reinforcement in the specimen. The load-

displacement response became non-linear from point A to Point B, which corresponds to an 

increase in local compressive strain at the bottom of the beam. Optical microscopic images of 

the beam post-test, presented in Figure 8(c), reveal the presence of fibre microbuckling of 

longitudinal tows and crushing of a transverse tow at the clamped edge. Post peak load, at 

Point C, a tensile crack initiates at the clamped location. Progressive drop-off in load resisted 

by the beam is attributed to the propagation of the tensile crack. No delamination was 

observed during either the Full TTT or the Half TTT long beam cantilever tests. The failure 

mode was identical for both warp and weft direction for both binder densities of the long 

beam test.  
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For long cantilever beams, Figure 8(a) shows a comparison between experimental 

measurement and FE predictions of the force imposed by the roller as a function of roller 

displacement along z-direction with length of the beam, L = 40 mm, and thickness , t = 3.5 

mm. As the characteristics of the behaviour of the warp and weft orientated beams were the 

same, i.e. initial linear elastic behaviour followed an a period of non-linearity and progressive 

reduction in load resisted by the beam, for brevity, only the numerical calculations of the 

beam oriented along warp direction is presented. The agreement between experimental 

measurements and FE predictions is reasonably good. Figure 8(d) shows the montage 

obtained by FE calculations with contour representing strain along x–direction, xxε . As 

expected, the long beam failed under bending mechanism, i.e. tensile failure within top tows 

and compressive failure within bottom tows. At Point A, immediately prior to peak load, 

there is seen to be an increase of local compressive longitudinal strain at the bottom of the 

beam at the clamp position. Between Point A and Point B there is a rapid drop-off in load 

resisted by the beam, caused by an increase of tensile fibre damage of longitudinal warp tows 

at the top of the beam. This corresponds well to the tensile crack recorded during 

experimental testing. Tensile fibre damage is the cause of the local increase in tensile 

longitudinal strain at the top of the beam, seen at Point B. It is proposed that the modification 

of the linear softening compressive damage evolution law in compression is necessary to 

fully capture the post damage response of the cantilever beam, i.e. the non-linearity due to 

kink band formation and tow buckling. In between Point C and D, the FE prediction captures 

progressive, sudden reductions in load resisted by the beam. The FE model identifies these 

load reductions to the successive compressive damage of tows located at the clamp. The 

numerically predicted buckling length of warp tows at the bottom of the beam was 

approximately 1.5 mm, this coincides to the gap in between TTT-reinforcement positions. 

Figure 9(a) shows a µ-CT image of the tensile bending crack within the long cantilever beam 
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post-test. Beam was Full TTT material orientated along the x-direction (warp). The image 

shows the bending crack following the edges of the TTT reinforcement. The long cantilever 

beam bending collapse response of a UD-laminate material is presented in the supplementary 

data to this paper (Figure S.1). In short, the UD-laminate material exhibited extensive 

delamination throughout the entire length of the beam after initial collapse. This differs from 

the collapse mechanism demonstrated by the 3D woven composite material.  

5.4 Short cantilever beam bending collapse 

As previously demonstrated, the collapse behaviour of the short cantilever beams is governed 

by a shear dominated mechanism. Figure 10(a) and (b) shows the force imposed by the roller 

as a function of roller displacement along the z-direction for the short cantilever beams with 

Full and Half TTT 3D woven composites, with beams orientated along x-direction (warp) and 

y-direction (weft), respectively. The shaded areas represent the range of 3 individual test 

repeats. For both beam orientations, the density of the TTT reinforcement has small effect on 

the load-displacement relationship of the short cantilever beams. The Full TTT beams are 

shown to exhibit a marginally higher secondary increase in load resisted after the initial 

collapse. DIC images showing the shear strain, xzγ  field are shown in Figure 10(c) for the 

Full TTT reinforcement beams orientated along the x-direction (warp). As shown in Figure 

10(a) and (c), up to point A the load-displacement response is linear elastic, with local 

increases in inter-ply shear strain. After the peak load at point B, delamination occurs around 

the neutral axis of the beam and TTT reinforcement, where shear strain is higher than at other 

locations. This delamination continues to point C, where the tows on the top of the beam 

begin to fracture under tensile stress.  

At point D, the beam has begun to fail by fibre fracture on the top of the beam, with 

significant development of inter-laminar shear strains (see the peak shear strain locations in D 
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of Figure 10(c)). The large tensile crack propagates at and after the point of peak load, 

widening until ultimate catastrophic failure of the beam. Shown by a comparison between 

Figure 10(a) and (b), beams orientated along the x-direction (warp) are seen to have a more 

rapid drop off in load resisted, compared to the gradual load-bearing reduction of beams 

orientated along the y-direction (weft).  

Figure 10(d) presents the finite element prediction of the short beam collapse event, as shown 

experimentally in Figure 10(c). The shear strain field γxz is shown. Up until point A, the 

prediction of the beam shows elastic deformation, which agrees well with experimental 

results. At Point B, a hinge forms in the FE predictions at the clamped end of the beam due to 

damage of the top warp tows and cohesive interaction. The shear strain field is shown to be 

almost identical to the shear strain field measured by DIC during experimental testing, i.e. 

Point B in Figure 10(c). The local strain is shown to be higher at the neutral axis and 

locations of TTT reinforcement. At point C, delamination has propagated longitudinally 

along the beam. However, the development of delamination is different from that observed in 

the experiment. During the experiment, the delamination propagates throughout the entire 

length of the beam, and this is not captured within the FE model. It is suggested this 

discrepancy is due to the use of an oversimplified constitutive model for the cohesive 

interaction, and lack of simulated confinement pressure from the TTT reinforcement and 

subsequent increase in frictional forces between composite layers. Finite element calculations 

also reveal the effect of TTT reinforcement on the load versus vertical roller deflection 

relation is small. The final image at point C of the FE prediction of the short beam collapse 

event along the warp direction without TTT reinforcement is presented in Figure 10(e). The 

prediction of the beam collapse with TTT reinforcement removed shows uninhibited 

delamination growth. However, this did not significantly affect the load-displacement 
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response. The numerically predicted delamination length for the Full TTT case was 3.0 mm; 

this corresponds well to the experimentally measured delamination length of 2.8 mm. The 

numerical prediction of the delamination length of the No TTT material was 5.5 mm. 

However, due to the reasons mentioned before, the model is not able to capture the secondary 

increase in load resisted.  

In order to investigate the damage mechanisms throughout the beam thickness, Cross 

sectional X-Ray µCT scans of the beam post-testing are presented in Figure 11. Section a-a, a 

scan in between the binder position, demonstrates localised delamination, the length of which 

was bounded by the distance between TTT reinforcement tows. Section c-c, a scan also in 

between the binder position, did not demonstrate localised delamination, only tensile 

cracking. This highlights the heterogeneity and localisation of damage within the beam. At 

cross-sections located through the TTT reinforcement, for example scan b-b, no localised 

delamination was recorded. However, the tensile cracking was shown to be more pronounced 

at this location. These scans reveal localised, damage within the composite material. The 

short cantilever beam collapse response of a UD-laminate material is also presented in the 

supplementary data to this paper (Figure S.2). In short, delamination was recorded to 

propagate throughout the entire width of the UD-laminate composite beam, as opposed to the 

supressed, localised delamination of the 3D woven composite beams.  

6. Concluding remarks 

The collapse response of orthogonal 3D woven composites was investigated during in-plane 

tension and compression and out-of-plane bending load cases. The cantilever beam test has 

been shown to be effective in isolating the two collapse mechanisms of orthogonal 3D woven 

composite materials; bending dominated long beam tests, and shear dominated short beam 

tests. 
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The TTT reinforcement of 3D woven composites prevents delamination with long cantilever 

bending tests, and provides containment and limited changes to the post-peak load response 

with short beam tests. Localised delamination is shown in short cantilever beam tests, 

however, in long beam tests the failure mechanism is a large tensile crack and compressive 

buckling of longitudinal fibres at the clamped end. DIC analysis indicates increased local 

strain at TTT reinforcement positions for both long beam and short beam tests due to the 

presence of matrix pockets.  

A finite element modelling strategy is presented and validated with experimental results of 

in-plane tension and compression test and cantilever bending tests. The FE method 

demonstrated excellent fidelity for in-plane uni-axial tension and compression tests. High 

levels of fidelity are also shown for the stiffness and peak load of long and short cantilever 

beam tests. However, the model is unable to capture the post initial peak load response of the 

short cantilever beam tests. Refinements to the cohesive interaction and damage evolution 

laws are suggested for advancements of the modelling strategy.  
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Figure Captions 

Figure 1. 3D orthogonal woven carbon composites showing Full through-the-thickness (TTT) 

reinforcement on the left and Half TTT reinforcement on the right, with the dimensions as the 

average measurements of the cured composites.  

 

Figure 2. (a) Sketch of cantilever beam test, showing front surface painted for DIC analysis. 

(b) Sketch of composite beam orientated along the x-direction (warp). (For interpretation of 

the colour legend in this figure, the reader is referred to the web version of this article.) 

Figure 3. Finite element model strategy employed within this study. 

Figure 4. Typical stress-strain curves during quasi-static uni-axial material coupon tests of the 

full TTT 3D woven composites with longitudinal fibres orientated along the warp, weft and 

±45
o
 directions under (a) Tension; (b) Compression. Also presented is the FE predicted 

stress-strain response of the material. (For interpretation of the colour legend in this figure, 

the reader is referred to the web version of this article.) 

Figure 5. Finite element simulation of uni-axial compression test along weft direction: (a) In-

plane stress  field yy
σ on the top surface layer immediately prior to sample failure (b) In-plane 

stress field yy
σ throughout the central weft tow stack immediately prior to fracture. The 

location of the central weft tow stack is shown in (a). (c) FE prediction of fracture surface 

with contour showing tow shear damage criterion, ds, and (d) Photographic image of fracture 

surface from the compression experiment. (For interpretation of the colour legend in this 

figure, the reader is referred to the web version of this article.) 

Figure 6. Finite element simulation of uni-axial tension test along weft direction. (a) In-plane 

stress field yy
σ on the top surface corresponding to peak load (b) FE prediction of fracture 

surface with contour showing shear damage ds and (c) SEM image of fracture surface from 

the tension experiment. (For interpretation of the colour legend in this figure, the reader is 

referred to the web version of this article.) 

Figure 7(a) Force applied by the roller against normalised roller deflection along the z-

direction for a range of beam lengths. Beams orientated along the warp direction (Full TTT 

material). (b) The collapse load for a range of beam lengths orientated along the warp 
direction Full TTT. Also plotted are two predictions of collapse load values showing short 

beam shear dominated collapse and long beam bending dominated collapse regime. 
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Figure 8. Long (40 mm) cantilever beam tests results showing the force applied by the roller 

against vertical roller displacement relationship for beams orientated along (a)  x-direction 

(warp); (b) y-direction (weft); (c) the progressive strain field   with A, B, C and D 

corresponding to the respective points in (a) (obtained via DIC analysis), and the post-test 

optical microscopic images showing localised damage of an edge weft tow and 

microbuckling of a warp tow constrained between the TTT reinforcement. (d) FE prediction 

of long beam (40mm) collapse. x-direction longitudinal strain field shown. (For interpretation 
of the colour legend in this figure, the reader is referred to the web version of this article.) 

Figure 9(a) Micro-CT image post long beam collapse. Beam orientated along x-direction 

(warp) (b) location of CT image within the beam (at the location of TTT reinforcement). (For 

interpretation of the colour legend in this figure, the reader is referred to the web version of 

this article.) 

Figure 10. Short (8 mm) cantilever beam test results. The force applied by the roller against 

vertical roller displacement relationship for beams orientated along (a)  x-direction (warp); 

(b)  y-direction (weft); (c) Progressive shear strain fields γxz with A, B, C and D 

corresponding to the load-displacement curve for the full TTT along the x-direction (warp) in 
(a). (d) Fe prediction of short beam collapse, showing shear strain γxz, points A, B and C 

correspond to the load-displacement curve for the Full TTT along the x-direction (warp) (e) 
Final montage of FE simulation of short beam with TTT reinforcement removed. Image 

corresponds to position C in (a). (For interpretation of the colour legend in this figure, the 
reader is referred to the web version of this article.) 

Figure 11. µ-CT images of short beam post-collapse. Beam orientated along the x-direction 

(warp). (For interpretation of the colour legend in this figure, the reader is referred to the web 
version of this article.) 

 

 

 



  

z

xy

Warp Weft

TTT reinforcement

x

y

z

y
All dim. in mm

1.70 0.50
warp

1.74
TTT Spacing

0.177
warp

3.48
Spacing

weft

1.47
Spacing

x

z

1.40

0.230
weft

0.10
TTT

3.5 

0.1
Spacing



  

L

P, δ 

t

Speckle painted

For DIC

L

t

W

(Warp. Full TTT)

(a) (b)

d 

Warp Weft

TTT reinforcement

Binder

direction

Clamp

Clamp

DIC



  

Material data from 

manufacturer and mechnical

testing 

Geometry from 

microscopic 

images

Embedded within 17

layers of matrix
Cohesive interface

joining matrix layers

z, TTT

y, Weft

x, Warp

“S4”

Tow

Shell element type

Each tow modelled with

shell elements

“C3D8”

Matrix 

Solid element type



  

0

200

400

600

800

1000

1200

0 2 4 6

S
tr

es
s 

(M
P

a)

Strain (%)

±45o

Warp

Weft

Tension

(a)

0

0

0

0

0

0

0

0

0 2 4 6
Strain (%) 

Weft

Warp

±45o

100

200

300

400

500

600

700

S
tr

es
s 

(M
P

a)

0

Compression

(b)
FE Experimental FE Experimental



  

Shear damage, ds

0  1  

Metal tab for

grip on compositez

y

x

y, weft

(a)

(b)

(c)

(d)

0-0.25-0.5-0.75-1-1.25-1.5

 σyy GPa

z

y

a

a

Induced 
displacement

Tow stress field prior to fracture
on top surface layer TTT-reinforcement

2 mm

2 mm

a

a

2 mm
Weft yarns

F
ix

ed
 e

n
d

Max stress

 = 1.1 GPa

z

y, weft

-1.2 0-0.2-0.4-0.6-0.8-1.0

x

 σyy GPa

Induced 
displacement

TTT reinforcement
a

1 mm

Central weft
tow stack

F
ix

ed
 e

n
d



  

TTT-reinforcement

Fracture surface
location

Induced
displacement

 σyy GPa
0  1.7  0.85  1.275  0.425  

(a)

x

y, weft

(b) (c)

z

x, warp

F
ix

ed
 e

n
d

X Y
Shear damage, ds

0  1  

z

x

y, weft a

a

a

a

2 mm

Max stress =
1.72 GPa

Stress field prior to fracture
on surface layer

1 mm

1 mm



  

0.1

1

10

1 10 100 1000

C
o

ll
ap

se
 l

o
ad

, 
P

c
 (

k
N

)

Beam length (mm)

1

1

(d)

Pc = σxWt2

           6L

σx = 590 MPa

Bending collapse

Pc = τxy Wt

              

τxy = 43 MPa

Shear collapse

s

b

(b)

0

500

1000

1500

2000

2500

3000

0 0.1 0.2 0.3 0.4 0.5 0.6

L
o

ad
 (

N
)

δ = δ / L

Warp. Full TTT

7 mm

10 mm

15 mm

40 mm

110 mm

8 mm

Pc

Pc

Pc

Pc

Warp. Full TTT(a)

(b)



  

0

200

400

600

800

1000

0 5 10 15 20

L
o

ad
 (

N
)

Displacement (mm)

(a) (b)

0

200

400

600

800

1000

0 5 10 15 20

L
o

ad
 (

N
)

Displacement (mm)

A B C

D

Tensile crackBinder location
(c)

1.75 mm DA B C

C
la

m
p
ed

 e
n
d

2 mm

Full TTT Exp.
Half TTT Exp.
Full TTT FE

Full TTT Exp.
Half TTT Exp.

AA BB CC

D*

-8 -4 0 4 8

 x-direction 

 strain, εxx  

WARP
WEFT

x10-2

0.5 mm

0.25 mm

Transverse crushing

of weft tow

Microbuckling mm0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.252525252525252525252525252525252525252525252525252525252525252525252525252525252525252525252525252525252525252525252525252525252525252525252525 m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMicrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucucklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklklinininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininingggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg

0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm0.5 mm

0.125 mmMicrobuckling

Full TTT Exp. warp direction

Binder location

z

x

(d)

2 mm

C
la

m
p

ed
 e

n
d -8 -4 0 4 8 x10-2

 x-direction 

 strain, εxx  

Full TTT Exp. warp direction

B C DBA

z

x



  

2
 m

m

z

x
Warp Weft TTT reinforcement

Slice 15.93 mm from O along y-axis

Clamp

location

(a) (b)

z
y
xO 15.93 mm

Location of CT image

TTT

a
a

aa



  

0

500

1000

1500

2000

2500

3000

0 1 2 3 4

L
o

ad
 (

N
)

Displacement (mm)

Full TTT FE

Half TTT FE No TTT FE

WARP

(a)

TTT FE

TTT FE

Full TTT Exp.

Half TTT Exp.

Experimental
Simulation

0

500

1000

1500

2000

2500

3000

3500

0 1 2 3 4

L
o

ad
 (

N
)

Displacement (mm)

Full TTT Exp.

Half TTT Exp.

Full TTT FE

Half TTT FE No TTT FE

WEFT

(b)

Full TTT Exp. Exp.

TTT Exp.TTT Exp.

Experimental
Simulation

Shear strain, γxz

0.09 -

0.06 -

0.03 -

0.00 -

Binder 

location

Crack arrested 

by binder

Roller

1

Half TTT FEHalf TTT FEHalf TTTHalf TTT

a

A B C

(d) Full TTT FE, warp direction (e) No TTT FE, warp direction

A
CB Cz

x, warp

Binder

location

Crack continues 

to propagate

Binder 

location

2 mm

C
la

m
p
ed

 e
n
d Roller

4

D

Tensile crackBinder location

A B C

F
Roller

C
la

m
p
ed

 e
n
d

2 mm
0.00 -

0.03 -

0.06 -

0.09 -

Shear strain, γxz

D

(c) Full TTT Exp. warp direction

z

x, warp



  

Warp Weft TTT reinforcement

z

y

x

3

1

Tensile crack

Ply buckling

Roller

Delamination

3.5 mm 

3.5 mm 

C
la

m
p

aa

Roller

Manufacturing void
Tensile crack

Roller

Tensile crack

a a

b b

c c

3

1

3

1

x 

y

c
b

a

3.5 mm 

3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm     

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRoooooooooooooooooooooooooooooooooooooooooooooooooooooooooolllllllllllllllllllllllllleeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeerrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

 g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g vovovovovovovovovovovovovovovovovovovovovovovovovovovovovovovovovovovovovovovovovovovovovovovovovovovovovovovovovovovovovovovovovoidididididididididididididididididididididididididididididididididididididididididididididididididididididididididididididididididididididididididididididg g g g g g 
TeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTensnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsilililililililililililililililililililililililililililililililililililililililililililililililililililile e e e e e e e e e e e e e e e e e e e e e e e e e e e e e crcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcracacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacackkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

333333333333333333333333333333333333333333333333333333333333333

111111111111111111111111111111111111111111111x

x

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooollllllllllllllllllllllllllllllllllllllllllllllllllllllleeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeerrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

TeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTensnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsilililililililililililililililililililililililililililililililililililililililililililile e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e crcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcracacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacacackkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

3333333333333333333333333333333333333333333333333333333333

1111111111111111111111111111111

3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm       

x

z

z

z

Tensile crack

Manufacturing void

Roller

Roller

Roller

Clamp

Tensile crack

bb

cc


