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ABSTRACT

The Richtmyer–Meshkov instability (RMI) results from the impulsive acceleration of a density interface where the RMI itself or the
acceleration is perturbed. The RMI is ubiquitous in shock environments and may arise due to an interface of fluid species, isotopes,
temperature, or more. The plasma RMI can be significantly influenced by electromagnetic effects and can be modeled more accurately by a
multi-fluid plasma (MFP) model rather than conventional magnetohydrodynamics, though with increased computational expense. MFP
modeling of the plasma RMI has revealed many phenomena but has only been completed within the ideal regime. Modeling the effects of
elastic collisions is vital for understanding the behavior of the instability in a dense plasma. The Braginskii transport coefficients provide the-
oretically based relations modeling thermal equilibration, inter-species drag, viscous momentum- and energy-transfers, and thermal conduc-
tivity. Our numerical simulations of the MFP RMI with these relations show that the key changes from the ideal case are (1) reduction of
relative motion between the ion and electron fluids (consequently affecting the self-generated electromagnetic fields), (2) introduction of
anisotropy in momentum and energy via transport coefficients, and (3) damping of high frequency electromagnetic waves and plasma waves.
Under the conditions studied, the net effect is a reduction in the MFP RMI amplitude width and the growth rate to levels approaching the
neutral fluid instability, as well as a reduction in large scale perturbations along the ion fluid density interface, a positive for inertial confine-
ment fusion efforts. There are, however, two important caveats: small-scale density interface perturbations remain, and the conditions simu-
lated are a few relevant points in a large parameter space that requires further investigation.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0132461

I. INTRODUCTION

The promise of developing a carbon-neutral and plentiful
power source, a solution to many existential crises facing human-
ity, has motivated research in thermonuclear fusion for over a
generation. Incremental progress toward the goal of net power-
generation from fusion has continued steadily, though slowly, with
several key milestones passed and others on the near horizon. In
the inertial confinement fusion (ICF) branch of fusion efforts, the
next key milestone is “ignition,” where self-sustaining fusion reac-
tions consume all the inertially confined fuel within the target.
Recent results at the National Ignition Facility (NIF) have made
significant progress toward ignition by achieving a “burning”
plasma,1 releasing more heat from fusion reactions than is input to
the fuel target. One of the core issues that must be resolved before
achieving ignition is the presence of hydrodynamic instabilities
within the fuel target.2–4

A review of early ignition experiments found that “Current evi-
dence points to low-mode asymmetry and hydrodynamic instability as
key areas of research to improve the performance of ignition experi-
ments on the NIF and are a central focus of the Ignition Program
going forward.”2 The primary hydrodynamic instabilities that affect
the fuel capsule during implosion are the Rayleigh–Taylor instability
(RTI), the instability of superposed fluids continuously accelerated
from the heavy fluid to the light, and the Richtmyer–Meshkov instabil-
ity, the impulsive analog of the RTI that is most influential at early
time and in the presence of shock-waves that drive the implosion.
Much of the effort to suppress the hydrodynamic instabilities has been
focused on RTI and to a lesser extent the Richtmyer–Meshkov insta-
bility (RMI), via manipulation of the laser pulse characteristics that
produce the driving shock-waves.

Extracting telemetry for the parameters of interest within the fuel
assembly during experiments is difficult due to the violent and high
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energy processes created during an ICF implosion. Even more chal-
lenging is the requirement for noninvasive diagnostic techniques that
would otherwise exacerbate hydrodynamic instabilities, degrade
implosion-symmetry, and disrupt the delicately constructed fuel
assembly. The burn-averaged total areal density, neutron-averaged
hot-spot ion temperature, and neutron yield are typical measurable
quantities.5 The areal density is a measure of the amount of compres-
sion achieved and is a fundamental ICF parameter given from the
Lawson criteria.6,7 Any derived quantities must be related to the few
measurable parameters from experiments via the physics of energy
confinement and losses, assuming that the existing theories and
knowledge of the fuel capsule implosion are well understood. In the
absence of abundant and pertinent diagnostic information, research
efforts rely on numerical simulations to complement experimental
results and provide insight to physical processes occurring within the
target.

Modeling methodologies for the plasma RTI and RMI vary
widely, and the literature on the plasma RMI is particularly limited.
Common modeling approaches are single-fluid reductions with the
major multi-physics modeled to capture interactions of phenomena8,9

or dedicated plasma modeling. The dedicated plasma modeling tend
to employ one of the following: the ideal magnetohydrodynamic
(MHD) model,10–14 the Hall magnetohydrodynamic (HMHD)
model,15,16 or the multi-fluid plasma (MFP) model.17–19 Kinetic mod-
els are generally not employed because of their great computational
expense. The MFP modeling approach offers an attractive compro-
mise; it possesses a superior grasp of the physics involved compared to
the ideal and Hall MHD models that are simplified in their treatment
of the physics, but still allows simulations of practical significance
compared to kinetic models. The MFP theory captures the key effects
of charge separation, Lorentz forces, self-generated electromagnetic
(EM) fields, fluid interactions (electron fluid exciting ion fluid), and
high frequency phenomena. Importantly, the MFP theory can resolve
the differences between the fundamental material interface types pre-
sent in a plasma RMI which cannot be distinguished by MHD and
HMHD due to their simplifications.19

The Richtmyer–Meshkov instability (RMI) typically results from
the impulsive acceleration of a perturbed density interface. It is unsta-
ble in any density interface arrangement and leads to instability
growth and produces turbulent mixing. The instability was first identi-
fied by Markstein20 with the first theoretical and experimental charac-
terizations completed by Richtmyer21 and Meshkov,22 respectively,
who are the instability’s namesakes. The RMI is ubiquitous in high-
energy environments, and some of the current research on the RMI
are motivated by mitigation of hydrodynamic instabilities in
ICF,2–4,18,23–25 enhancing mixing in supersonic combustion,26,27 many
astrophysical phenomena,28,29 atmospheric sonic boom propagation,30

driver gas contamination in reflected shock tunnels,31,32 combustion
wave deflagration-to-detonation transition,33,34 laser–material interac-
tions, including but not limited to microfluid dynamics35 and
micrometer-scale fragment ejection,36 high energy density turbulent
mixing,25 and many more fundamental studies investigating the sol-
id–liquid and solid–solid media interactions with lasers and fluid
flows. The aforementioned list of research areas is by no means com-
plete as the RMI is important in many other natural and engineered
formats. A brief and informative review is provided by Brouillette,37

and detailed reviews are available from Zhou38 and Zhou et al.39

MFP models feature individual sets of conservation laws for ions,
neutrals, and electrons, coupled to Maxwell’s equations, allowing the
modeling of charge separation and the consequent generation and
evolution of EM fields that is not possible with single-fluid models.
The resulting MFP effects fundamentally alter the evolution and sever-
ity of the generic plasma RMI18 and produces a different RMI evolu-
tion for the isotope, species, and thermal density interface cases that
are near indistinguishable in the ideal MHD model and other single-
fluid models.19 The key phenomena influencing the plasma RMI are
the following:

1. primary Richtmyer–Meshkov instability,
2. electromagnetically driven Rayleigh–Taylor instability,
3. Kelvin–Helmholtz instability,
4. electron-fluid-excitation of the ion–fluid interface,
5. Lorentz force bulk fluid accelerations and vorticity deposition,
6. transverse-reflected shock-wave interaction with the ion–fluid

interface, and
7. a multi-fluid plasma shock refraction process.

Points (1), (3), and (6) are observable in the hydrodynamic mod-
els of the RMI and MHD reductions of the plasma RMI; however, the
remaining phenomena are beyond their grasp because of the required
capacity to model self-generated EM fields and the evolution of elec-
tron fluid. All three interface types previously studied (isotope, species,
and thermal RMI19) experience the phenomena above to varying
degrees. The isotope case, lacking an initial density interface in the
electrons, is the closest to the single-fluid limit. The thermal and spe-
cies interface scenarios with their initial electron fluid mass density
ratios experience significant multi-fluid effects and amplification of
the RMI in the larger Debye length cases. As the Debye length is
reduced (increasing coupling between the ion and electron fluids), all
three novel interface types tested experience a significantly reduced
RMI growth rate and amplitude, approaching the single-fluid limit but
retain multi-fluid phenomena. The results of previous studies18,19

show that MFP effects should be considered important when (i)
Debye lengths are large enough to permit relative motion between spe-
cies, and (ii) distinct density interfaces are formed from isotope, spe-
cies, and thermal discontinuities.

To realistically simulate the evolution of the RMI at plasma con-
ditions relevant to ICF, the ideal MFP model is extended to include
collisional effects. Studies investigating ICF implosions show that
kinetic effects are significant and required for accurate modeling of the
implosion dynamics.40,41 The Braginskii transport coefficients42 model
the effect of elastic collisions within (intra) and between (inter) species
of an ion–electron plasma. Braginskii derived these coefficients begin-
ning from the Boltzmann equation and using the Landau Collision
operator. Taking moments of the Boltzmann equation recovers fluid
conservation equations with terms representing the influence of the
collision operator on the conserved quantities. A two-term Sonine
(Laguerre) polynomial is used to approximate the distribution
functions—the primary source of numerical inaccuracy is from the
truncation of the polynomial terms and the polynomial fit.

The Braginskii42 transport coefficients relate the thermodynamic
properties of the plasma to those of: momentum transfer between the
plasma species; the viscous stresses; the heat fluxes; the heat generated
due to viscous dissipation; and the thermal equilibration between the
species. Braginskii recovers a set of separate transport coefficients for
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the electrons and ions with different temperature and velocities that
are decoupled. The resulting decoupled equations have an ion distri-
bution with dependence on self-interaction and an electron distribu-
tion with a dependence on the self- and cross-interactions.
Braginskii’s42 derivation neglects inelastic collisions, ionization, fusion,
recombination, rotational degrees of freedom, and the effect of mag-
netic fields on the Landau collision operator.

The Braginskii transport model has been implemented in varying
degrees within plasma simulation codes. Berlok et al.43 implemented
Braginskii viscosity (intra-species terms) in MHD to study weakly col-
lisional plasmas that comprise the intra-cluster medium (ICM) of gal-
axy clusters, utilizing a second-order accurate Runge–Kutta–Legendre
supertime-stepping algorithm to alleviate the viscous time step con-
straint. Sadler et al.44 incorporated the model within an MHD formu-
lation motivated by applications in collisional astrophysics and high
energy density plasmas. Li and Livescu45 implement the full-Braginskii
transport terms to the multi-fluid plasma equations but then use the
infinite speed of light and negligible electron inertia approximations to
lessen the stiffness of the system of equations. Srinivasan17 imple-
mented the Braginskii formulation within a multi-fluid plasma model,
neglecting the gyro-viscosity terms for simplicity, and Shumlak et al.46

utilized the resulting numerical tool to study Z-pinch dynamics
(anomalous resistivity and plasma sheath formation) in a field reversed
configuration. Meier and Shumlak47 provide a study of the Z-pinch
dynamics utilizing only the intra-species terms, the inter-species terms
being neglected because their timescale exceeds the hydrodynamic
timescale (characteristic length divided by the Alfv�en speed vA),
though the authors include the diamagnetic transport terms introduc-
ing some form anisotropy. It is rare that the full-Braginskii transport
terms are implemented in true multi-fluid plasma framework due to
numerical stiffness and problem specific relevance. Alternative model-
ing approaches are preferred, notably Miller48 used a 13-moment fluid
model derived from the Pearson type-IV probability distributions to
successfully model transition from the collisional to weakly collisional
regimes.

The present paper is organized in the following way. Section II
outlines the non-dimensionalization, Braginskii transport coefficients,
and relevant implementation details. Section III outlines the numerical
tool used, non-dimensional initial conditions, and the reference condi-
tions. Section IV presents the test cases for the implementation of the
Braginskii transport coefficients. Section V describes the reference
cases (the hydrodynamic and ideal MFP case) used to compare to the
results with elastic collisions modeled by the Braginskii transport coef-
ficients. Section VI discusses simulation results for the separate cases
of intra-species, inter-species, and combined intra- and inter-species
elastic collisions (henceforth, we refer to this combined case as the full
Braginskii or FB case), where we consider the effects with and without
magnetic field induced anisotropy. Section VII focuses on the FB case
with anisotropy modeled, investigating the interface statistics and
unique features. The conclusion follows in Sec. VIII.

II. METHODOLOGY

This investigation’s key objective is the identification and under-
standing of the effects of elastic collisions on the plasma RMI at condi-
tions relevant to ICF. To this end, the conditions of the investigation
are simplified so the influence of other physical phenomena are not
conflated with that of the elastic collisions. Consider the “other”

physical phenomena as those associated with radiation transport,
laser–surface interactions, multi-phase modeling, shell-dynamics,
nuclear reactions, converging geometry, ablation, and the process of
ionization. Isolating the RMI in this way reduces problem complexity
and simplifies investigative tools and analyses required for the works
proposed. Additionally, reducing the computational overhead of
multi-physics modeling frees the computational resources on hand to
be directed at the far more physically accurate but also more computa-
tionally expensive MFP model, relative to ideal and Hall MHD
models.

We use the non-dimensionalization of Bond et al.,49 itself based
on the work by Loverich.50 The variance in magnitudes of floating
point numerics is greatly reduced by the non-dimensionalization,
which is vital in resolving the disparate fluid and electromagnetic vari-
ables within a single system of equations. In the description of the
non-dimensionalization below, the^symbol and subscript zero indicate
non-dimensional and reference parameters, respectively. The dimen-
sionalization of the problem is set by four reference parameters; we
use length (x0), ion mass (m0), mass-density (q0), and electron
thermal-velocity (u0). Once non-dimensionalized, the numerical sys-
tem stiffness is reduced, and the plasma regime is conveniently set by
two parameters, the skin depth (d̂ S), and the plasma ratio of thermo-
dynamic and magnetic pressure (b),

n̂ ¼ n
q0=m0

; m̂ ¼ m
m0

; q̂ ¼ q
q0
; q̂ ¼ q

q0
;

û ¼ u
u0
; p̂ ¼ p

q0u
2
0
; ê ¼ e

q0u
2
0
; x̂ ¼ x

x0
;

ĉ ¼ c
u0
; t̂ ¼ t

x0=u0
; B̂ ¼ Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2l0q0u
2
0

b

s ; Ê ¼ E

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l0q0u

2
0

b

s ;

d̂S ¼
dS
x0
;

where n is the number density, m is the particle mass, q is the charge, q
is mass density, u is the velocity vector, p is thermodynamic pressure, e
is the thermal and kinetic specific energy, x is a length, c is the speed of
light, t is the time, B is the magnetic field vector, and E is the electric
field vector. Additional variables used in the paper are temperature T,
Boltzmann’s constant kB, atomic number of a species Z, ratio of specific
heats c, vacuum permittivity �0, the permeability of free space l0, and
the hydrodynamic Mach number of the propagating shock M. From
this point forward in the paper, we drop the^symbol for brevity, and all
properties are non-dimensional unless otherwise specified.

Braginskii’s transport coefficients, representing elastic collisions,
are incorporated by adding the relevant flux and source terms to the
momentum and energy conservation equations. The non-
dimensionalized set of conservation equations for each fluid are

@qa

@t
þr � qauað Þ ¼ 0; (1a)

@qaua

@t
þr � qauaua þ paIð Þ (1b)

¼
ffiffiffiffiffi
2
b0

r
naqa

dS
cEþ ua � Bð Þ � r �P

$

a þ
X
f 6¼a

Raf; (1c)

and
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@ea

@t
þr � ea þ pað Þuað Þ ¼

ffiffiffiffiffi
2
b0

s
naqac
dS

E � ua �r � qa �P
$

a : rua

�
X
f 6¼a

Raf � ua þ Qa; (1d)

where the : is a double inner product, the subscript a 2 ði; eÞ repre-
sents the species modeled, and f represents a second species that col-

lides with species a. P
$

a is the viscous stress tensor, P
$

a : ua is the
heat generated due to viscosity, Raf is the momentum transfer from
species a to f, Qa is the thermal equilibration (collisional heat
exchange) between the species, and q is the heat flux. Note that the
sign on the Raf term is negative for ions and positive for electrons,
and the expressions for each of the collisional terms are given in
Sec. IIA.

We define mass-density, pressure, and energy-density by

qa ¼ nama; pa ¼ nakBTa; and ea ¼
pa

c� 1
þ qajuaj2

2
: (2)

Maxwell’s equations govern the evolution of the EM fields and
are given in non-dimensional form,

@B
@t
þ cr� E ¼ 0; (3a)

@E
@t
� cr� B ¼ � c

dS

ffiffiffiffiffi
b0

2

r X
a

naqaua; (3b)

cr � E ¼ c2

dS

ffiffiffiffiffi
b0

2

r X
a

naqa; (3c)

and r � B ¼ 0: (3d)

A. Braginskii transport model

The equations of the Braginksii’s transport model42 approximate
the local solution of the kinetic equation for each species. A two-term
Sonine (or Laguerre) polynomial is used to approximate the distribu-
tion functions. Numerical inaccuracies arise from the truncation of the
polynomial terms and the polynomial fit. The fundamental approach
is to obtain separate transport coefficients for the electrons and ions
with different temperatures and velocities that are decoupled. The
resulting equations have (1) ion distribution with dependence on self-
interactions and (2) electron distribution with a dependence on the
self- and cross interactions. The numerical coefficients that make up
the Braginskii transport coefficients are calculated exactly (after the
Sonine polynomials are taken to the second term) and reported with
rational numbers.

The key assumptions used in the derivation are as follows.
General conservation of the collision integral across the moments is
taken such that the number of particles, momentum-density, and
energy-density are conserved in like species collisions and dissimilar
species collisions. The distribution functions of the species take the
form of a Maxwellian distribution. All quantities vary slowly in space
and in time, i.e., change must be on length scale larger/longer than the
mean free path between collisions and slower than the collision time-
scale. The dominant terms in the kinetic equations are the collision
operators and the magnetic field term. It is assumed the magnetic field

does not affect the collision integral, i.e., the radius of curvature,
the Larmor radius, is large compared to the Debye length. The
mass ratio of the ions and electrons is small. The difference in the
mean velocities of ions and electrons is small compared with
the characteristic electron velocity. The derivation neglects the
effects of inelastic collisions such as those resulting in ionization,
fusion, recombination, excitation/de-excitation of internal degrees
of freedom, and the Landau collision operator does not consider
the effect of magnetic fields on itself.

The largest error in the approximation of the transport coeffi-
cient is in the regime where the product of the cyclotron frequency
and the collision timescale is of the first order. These errors can be
as great as 10% to 20%.42 Since Braginskii’s seminal work, several
authors have revised the calculation of some of the transport coef-
ficients (typically with respect to accuracy or functional form/
physical behavior in limits of strong magnetic fields xs!1).51,52

Some specific constructive criticisms are the (1) over-estimation
of advection due to perpendicular resistivity, g? in Braginskii’s
data fits,52 (2) inaccuracy of b; j?, and j in the range of
0:3 � xs � 30,51 among others. We continue with the Braginskii
result for simplicity and the ubiquitous comparisons available in
the literature while acknowledging their accuracy is limited for
some parameter regimes though certainly instructive for the fun-
damental plasma behaviors.

In the following, note that dd;0 and dL;0 are the non-dimensional
reference Debye length and Larmor radius, respectively, and n̂0 is the
product of reference number density and reference length cubed
(n̂0 ¼ n0x30). The equations that follow are taken from Braginskii42

and non-dimensionalized according to the reference values specified
at the start of Sec. II. The characteristic collision time scales are the ion
and electron collision times se and si, given by

se ¼ d4d;0n̂0
6
ffiffiffi
2
p

m1=2
e ðpTeÞ3=2

ln ðKÞniZ2q4e
; (4)

si ¼ d4d;0n̂0
12m1=2

i ðpTiÞ3=2

niZ4q4e ln ðKÞ
: (5)

The cyclotron frequencies in the ion and electron fluids govern the
magnetic influence on collisions and are given by

xc;e ¼
qeB
me

1
dL;0

; (6)

xc;i ¼
qeZB
mi

1
dL;0

: (7)

In the following transport coefficients, we will refer to the compo-
nents parallel and perpendicular to the local magnetic field, and to the
diamagnetic terms. The diamagnetic terms generally refer to transport
properties that arise due to imbalances in momentum or energy when
counter-propagating fluids interact at a common point within their
gyro-orbits. The direction of the resulting net momentum or energy
change is perpendicular to both the magnetic field and the instigating
property, i.e., relative velocity or temperature gradient. The parallel,
perpendicular, and diamagnetic terms are denoted by a subscript
k; ?, and �, respectively. It is important to note the equations shown
below are all non-dimensional according to the previous non-
dimensionalization and the following:
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P0 ¼ q0u
2
0; q0 ¼ q0u

3
0; Q0 ¼

q0u
3
0

x0
; R0 ¼

q0u
2
0

x0
;

g0 ¼ q0x0u0; j0 ¼
u0kB
x20

; bTU
0 ¼ q0u

3
0; bUT

0 ¼ n0;

a0 ¼
q0u0
x0

:

(8)

1. Inter-species drag forces

The inter-species forces due to friction and temperature
gradients—temperature gradients introduce a diamagnetic effect due to
the difference in energies of fluid interacting in opposing gyro-orbits—
are denoted by subscript “U” and “T,” respectively, and are given by

RU ¼ �akuk � a?u? � a� u� ; (9)

RT ¼ �bUT
k rkTe � bUT

? r?Te � bUT
� r� Te; (10)

where, u is the relative velocity between the electron and ion fluids,
u ¼ ue � ui. The thermal force is only dependent on the electron tem-
perature gradient because the relative velocity which sets the rate of
collisions between electrons and ions is dominated by the more mobile
electrons. The constants and vector definitions of each direction are
given as follows:

uk ¼
B
jBj u � BjBj

� �
rkTe ¼

B
jBj rTe �

B
jBj

� �
;

u? ¼ u� uk r? ¼ rTe �rkTe;

u� ¼
B
jBj � u r� Te ¼

B
jBj � rTe;

(11)

ak ¼ qe�ea0; bUT
k ¼ neb0;

a? ¼ qe�e
1� a01x

2
e þ a0

De
; bUT

? ¼ ne
1� b01x

2
e þ b00

De
;

a� ¼ qe�exe
a002x2e þ a000

De
; bUT

� ¼ nexe
b001x

2
e þ b000
De

:

(12)

Within Eq. (12), xe ¼ xc;ese, and De ¼ x4e þ d1x2e þ d0. The
coefficients for a Z¼ 1 plasma are a0 ¼ 0:5129; a00 ¼ 6:461; a00
¼ 1:837; a000 ¼ 0:7796; d0 ¼ 3:7703, and d1 ¼ 14:79. Coefficients
for greater atomic numbers are available in Braginskii42 (the values for
Z¼ 1 and Z¼ 3 are utilized in this study). Note that xe and De are
dimensionless numbers, and the nondimensionalization of frequency
and time are inverses, and therefore there is no residual dimensional
coefficients.

2. Viscous stress-tensor

The viscous stress tensor is calculated following the approach of
Li and Livescu.45 The strain-rate tensor is calculated in the simulation
reference frame and then transformed into the magnetic field aligned
reference frame. The viscous stress-tensor is then calculated as per
Braginskii’s derivation, which assumes the magnetic field aligned refer-
ence frame. Finally, the stress-tensor is then transformed back to the
simulation reference frame. The strain-rate tensor is given by

W
$

a ¼ rua þ ruað ÞT � 2
3
r � uað ÞI; (13)

where I is the identity matrix. The rotation matrix is given by Q,

Q ¼ Q̂ ¼

�b0y �b0xb00z b00x

b0x �b0yb00z b00y

0 b0xb
00
x þ b0yb

00
y b00z

2
664

3
775: (14)

Therefore, the strain-rate tensor in the magnetic field aligned reference
frame is given by

W
$ 0

s ¼ QTW
$

s Q: (15)

Note the entries of the rotation matrix are unitless, formed by the ratio
of magnetic field components and the magnetic field magnitude, given
by

B00 ¼ 1
jBj ; B0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2
x þ B2

y

q ;

b00x 0 ¼ BxB00; b0x ¼ BxB0;

b00y ¼ ByB00; b0y ¼ ByB0;

b00z ¼ BzB00:

(16)

The viscous stress tensor in terms of the strain-rate tensor is
given by

P
$ 0

0;0 ¼ �
1
2
g0 W

$ 0
0;0 þW

$ 0
1;1

� �
;

� 1
2
g1 W

$ 0
0;0 �W

$ 0
1;1

� �
� g3W

$ 0
0;1;

P
$ 0

0;1 ¼ P
$ 0

1;0 ¼ �g1W
$ 0

0;1 þ
1
2
g3 W

$ 0
0;0 �W

$ 0
1;1

� �
;

P
$ 0

0;2 ¼ P
$ 0

2;0 ¼ �g2W
$ 0

0;2 � g4W
$ 0

1;2;

P
$ 0

1;1 ¼ �
1
2
g0 W

$ 0
0;0 þW

$ 0
1;1

� �
� 1
2
g1 W

$ 0
1;1 �W

$ 0
0;0

� �
þ g3W

$ 0
0;1;

P
$ 0

1;2 ¼ P
$ 0

2;1 ¼ �g2W
$ 0

1;2 þ g4W
$ 0

0;2;

P
$ 0

2;2 ¼ �g0W
$ 0

2;2:

(17)

The viscous stress tensor in the original reference frame (laboratory
frame) is recovered by using the inverse coordinate transform

P
$

s ¼ QP
$ 0

sQ
T : (18)

The viscous coefficients for the electron fluid are

ge0 ¼ 0:96neTese; (19)

ge2 ¼ neTese
1:2x2e;g þ 2:23

De;g
; (20)

ge1 ¼ g2ð2xe;gÞ; (21)

ge4 ¼ neTese
xe;gðx2e;g þ 2:38Þ

De;g
; (22)

and ge3 ¼ g4ð2xe;gÞ: (23)

Note xe;g ¼ xc;ese and De;g ¼ x4e;g þ 13:8x2e;g þ 11:6 and gnð2xe;gÞ
represents gn a function of 2xe;g rather than xe;g, and De;gð2xe;gÞ
¼ ð2xe;gÞ4 þ 13:8ð2xe;gÞ2 þ 11:6. For the ion fluid, we have
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gi0 ¼ 0:96niTisi; (24)

gi2 ¼ niTisi
1:2x2i;g þ 2:23

Di;g
; (25)

gi1 ¼ g2ð2xi;gÞ; (26)

gi4 ¼ niTisi
xi;gðx2i;g þ 2:38Þ

Di;g
; (27)

and

gi3 ¼ g4ð2xi;gÞ; (28)

where xi;g ¼ xc;isi; Di;g ¼ x4i;g þ 4:03x2i;g þ 2:33 and the same proce-
dure described for the electron coefficients is followed, in regard to
gnðxi;gÞ.

Each of the viscosity coefficients refer to a particular type of
strain-rate relative to the magnetic field. The stress response of the
fluid to expansion/compression is proportional to g0. The diffusion of
momentum across the magnetic field is proportional to g2 and g1. The
diamagnetic effect is accounted for by g3 and g4. The five coefficients
for three physical processes are used to conveniently solve for the
stress-tensor. An arbitrary symmetric second-rank tensor with a zero
trace in 3D space is represented by five independent elements.42,53

Note the scaling of these terms shows that when the ion and electron
fluid temperatures are of the same magnitude, the ion viscosity is
always much greater than the electron viscosity. Therefore, under
most conditions, the ion fluid has the greatest influences on the overall
plasma viscosity.

If we are not considering the magnetic field effects on the viscous
stress tensor—you may neglect the magnetic field’s effect by assuming
the gyro-viscosity (anisotropic terms) is negligible or when the mag-
netic field is zero—the viscous stress tensor is given by

P
$

a ¼ �g0W
$

a; (29)

where the coefficients are as before, for the electrons and ions.

3. Viscous heating

The heat generated due to intra-species interactions is given by
the double inner product of the viscous stress tensor and the tensor
formed by the gradient of the velocity vector (or in tensor notation
r� u). We give the equivalence between vector and Einstein summa-
tion notation in the following:

P
$

a;i;j : rua ¼
X
i

X
j

P
$

a;i;jrua;i;j: (30)

4. Intra-species heat flux

Thermal conduction within each species is accounted for through
heat flux terms. The electron heat flux has two contributions that are
considered, the first is heat flux from thermal conduction, qT;e,

qT;e ¼
1
n̂0
�je
krkTe � je

?r?Te � je
�r� Te

� �
: (31)

The second contribution is the heat flux due to relative velocities in
electron populations moving from different regions, induced by ther-
mal forces, creating an imbalance in energy flux, qU;e,

qU;e ¼ bTU
k uk þ bTU

? u? þ bTU
� u� ; (32)

where the coefficients are given by

je
k ¼

neTese
me

c0n̂0; bTU
k ¼ bUT

k Te;

je
? ¼

neTese
me

c01x
2
e þ c00
De

n̂0; bTU
? ¼ bUT

? Te;

je
� ¼

neTese
me

xe
c001x

2
e þ c000
De

n̂0; bTU
� ¼ bUT

� Te;

(33)

where the coefficients for a Z¼ 1 plasma are given by
c0 ¼ 3:1616; c01 ¼ 4:664; c00 ¼ 11:92; c0 01 ¼ 5=2, and c000 ¼ 21:67,
and xe and De are as before specified in Sec. IIA 1.

The heat flux for the ion species is assumed to be due only to the
thermal conduction because the contribution from relative velocity is
assumed negligible due to the massive ions assumption. This yields the
expression

qi ¼ qT;i ¼
1
n̂0

ji
==$==Ti � ji

?$?Ti � ji
� $� Ti

� �
; (34)

where the thermal conductivities, j, are given by

ji
k ¼ 3:906

niTisi
mi

n̂0; (35)

ji
? ¼

niTisi
mi

2x2i þ 2:645
Di

n̂0; (36)

and

ji
� ¼

niTisi
mi

xi

5
2
x2i þ 4:65

Di
n̂0

0
@

1
A
; (37)

with xi ¼ xc;isi andDi ¼ x4i þ 2:70x2i þ 0:677.

5. Inter-species energy exchange

Inter-species collisions lead to a thermal equilibrium developing
between the species. The thermal equilibration is modeled by

QD ¼ 3
me

mi

ne
se
ðTe � TiÞ: (38)

Braginskii42 assumes the ion–electron friction heating is negligible
since it is proportional to mi;e ¼ mime

miþme
. In this paper, the artificially

greater mass electrons used for numerical stability mean the contribu-
tion to the ion energy equation (consider the mass ratio) is greater
than the physical values (mi=me ¼ 100 rather than the real mi=me

¼ 1836 for hydrogen ions) but still negligible. Therefore, we retain the
treatment by Braginskii, which uses conservation of total energy result-
ing in

Qi ¼ QD; (39)

Qe ¼ �RU � u� RT � u� QD: (40)

B. Implementation details

Braginskii transport is for collisional plasmas near thermal equi-
librium. It is suitable in the Knudsen number range on the order of
10�5 < Kn < 10�2. Departing from this regime can cause the charac-
teristic properties, i.e., collision time scales to become very large or
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small leading to nonphysical transport coefficients. Accordingly, the
collision frequencies (non-dimensional) are checked during the simu-
lation to avoid divide by zero errors,

� ¼ max �; efloatð Þ; (41)

where efloat is the effective zero for calculations within the code, usually
1� 10�14. In the low collisionality regime, the collision frequency can
be set to some minimum characteristic frequency to avoid numerical
errors, as recommended by Srinivasan,17

� ¼ max �;min 0:1xp; 0:1xcð Þð Þ: (42)

Though this is implemented in the code, it is not utilized in our
simulations.

III. NUMERICAL SOLVER AND INITIAL CONDITIONS
A. Numerical solver

The numerical implementation used for this work was developed
by Bond et al.18 and is named Cerberus. Cerberus is a finite volume
code built in the adaptive mesh refinement (AMR) framework
AMReX.54 Inherited from AMReX is the capacity to simulate mas-
sively parallel, block-structured adaptive mesh refinement (AMR) sol-
utions on architectures up to the exascale. Cerberus is capable of
three-dimensional simulation though here we use the two-
dimensional three-vector architecture. Consequently, these scenarios
do not produce x- and y-magnetic field components; however, there is
generation of the z-component of magnetic field as well as x- and y-
electric fields. The numerical solution requires a very high degree of
spatial and temporal refinement due to the small length scales and
advective speeds associated with the plasma regime modeled. The spa-
tial refinement is easily satisfied by the AMReX capabilities. The trig-
ger we use for the cell refinement is the relative ion and electron mass
density gradient. A threshold value for the gradient is set according to

g ¼ t1 � 2t0 þ t�1
jt1 � t0j þ jt0 � t�1j þ 0:01 t1 þ 2t0 þ t�1ð Þ ; (43)

where t is the primitive variable of interest calculated for a centered
stencil. The gradient is determined along each spatial dimension of the
solution is performed along each dimension. The temporal refinement
is satisfied in some part by manipulating the resolved value of speed of
light in the non-dimensionalized parameter space. The manipulation
is in choosing a large value for the reference velocity so the non-
dimensional speed of light, ĉ ¼ c=u0, is smaller, thereby lessening the

temporal refinement required by the Courant–Friedrichs–Lewy (CFL)
condition than what is typical in most plasmas. Care must be taken to
ensure that the non-dimensional speed of light is still the greatest char-
acteristic speed in the system; otherwise, nonphysical behavior due to
the interaction of the fluid and EM waves may occur.

The time integration is calculated with a two-stage second-order
accurate Runge–Kutta scheme.55 Linear cell reconstruction is carried
out with second-order van Leer limiting.56 Fluid (ions and electrons)
and electromagnetic fluxes are computed with the HLLC57 and
Rankine–Hugoniot58 solvers. The source terms are calculated via a
locally implicit solution of the source terms, according to the method
of Abgrall and Kumar.59 The inviscid flux constraint on time steps is
enforced by using 0.5 for the CFL number. The dissipative flux con-
straint on time is calculated from the spatial scale (Dx) and diffusivity
(�) of the relevant physical process enforced according to

Dt � Dx2

2�
; (44)

where �diffusion is given by the physical process, i.e.,

�viscous ¼
g
q

and �thermal ¼
j

Cpq
; (45)

where the cell values of viscosity (g), mass-density, thermal conductiv-
ity (j), and specific heat capacity (cp) are used to calculate the viscous
and thermal diffusivity. Electromagnetic divergence constraints were
enforced using a projection method, driven by an elliptical PDE solver.
Further details on Cerberus are available in Bond et al.18

B. Initial conditions

The generic problem follows that of Bond et al.18 which was
designed to be comparable to previous RMI studies.10,12,60 Figure 1
shows the initial plasma configuration that forms a three-zone
Riemann problem consisting of zones 0 (S0), 1 (S1), and 2 (S2) from
the left boundary. The interface between S0 and S1 generates a shock
that travels to the right where it encounters the interface formed
between fluids in region S1 and S2. The perturbation of the interface
between S1 and S2, is chosen to consist of a single period of a sinusoid
with an amplitude of 0.1 non-dimensional length ( 110 domain width).
The perturbation mean location in the x-dimension is 0.2 non-
dimensional lengths from the initial shock. The density interface stud-
ied in this work is a material interface. The initial interface is a station-
ary contact discontinuity without any mass or heat flux (we do not
consider, for example, the kind that would be involved in the RMI of a

FIG. 1. An example of the initial conditions and developed evolution of the RMI.
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traveling flame front). Furthermore, there are no phase changes associ-
ated with the interface in this work.

As an initial condition, charge neutrality is enforced everywhere
and mechanical equilibrium is enforced between S1 and S2 as mini-
mum requirements for initial stability and clarity of results. These two
conditions minimize the movement of the interface between S1 and S2
prior to the shock interaction due to EM or hydrodynamic effects,
excluding the shocks involved in the simulation. The interface is not
likely to be stable in actual ICF experiments due to an x-ray preheat
preceding the shock, shown to exist in shock tube experiments,61,62

and drive asymmetries. However, it is useful to model the interface as
stable so we may elucidate the fundamental physical phenomena.

The boundary conditions are periodic in the y-dimension and
zero gradient in the x-dimension. The domain is taken to be one refer-
ence length in the y-dimension, and 650 in the x-dimension. The
expansive x-dimension of the simulation space is made practical by
the adaptive mesh refinement used in the numerical solver, where a
very coarse base grid of only eight cells across the domain allows a grid
to be inexpensively extended away from the region of interest. The
boundary between S1 and S2 in Fig. 1 represents the RMI density inter-
face which is chosen to be in the light-to-heavy configuration to avoid
complications from a phase inversion (heavy-to-light configuration).
A hyperbolic tangent transition function is used between S1 and S2 to
impose a smooth transition that makes the solution less susceptible to
numerical artifacts and to ensure a consistent interface thickness at dif-
ferent resolutions. This function has the form

f ðxÞ ¼ fR þ
fL � fR

2
1þ tanh

2x
g
arctanh

9fR � 10fL
10ð fL � fRÞ

	 
� �� �
; (46)

where fL and fR are the variable of interest on the left and right of the
interface, and g is the width containing 90% of the transition, chosen
as 0.01 non-dimensional lengths.

The parameter space in the simulations is large; therefore, a sub-
set must be chosen to make the investigation tractable. The parameters
used to define the simulated regime were taken from previous investi-
gations10,12,19,60 and are the ion fluid species mass-densities either side
of the interface, the ion partial pressure for S1 and S2, species hydrody-
namic and EM properties, e.g., ratio of specific heats and particle
charge, and the shock Mach number. Electron fluid parameters, such
as fluid mass-densities, pressures, number densities, and temperatures
(kT), are set according to the ideal gas equation of state, normal shock
relations, and physical properties of the species involved. The follow-
ing parameters were set:

me ¼ 0:01; mi0 ¼ mi1 ¼ 1:0; qi1 ¼ 1;

qe ¼ �1:0; qi0 ¼ qi1 ¼ 1:0; qi2 ¼ 3;

ce ¼ 5=3; ci0 ¼ ci1 ¼ ci2 ¼ 5=3; pi1 ¼ 0:5;

and M0 ¼ 2:0:

(47)

The nontrivial relations are the normal shock relations and scalar pres-
sure for a gas obeying a Maxwellian distribution (ideal gas law),

qi0 ¼
qi1

1� ð2=ðcþ 1ÞÞð1� 1=M2
0Þ
;

pi0 ¼ pi1 1þ 2c
cþ 1

ðM2 � 1Þ
� �

;

pa ¼ nakTa;

(48)

and the requirements of charge neutrality resulting in the relations

ni0 ¼
qi0

m1
1H
; ni1 ¼

qi1

m1
1H
; ni2 ¼

qi2

mi2
;

ne0 ¼ ni0Z1
1H
; ne1 ¼ ni1Z1

1H
; ne2 ¼ ni2Zi2:

(49)

All other parameters are set as a result of those above and the require-
ments of charge neutrality and mechanical equilibrium. The remain-
ing relations are

Pi2 ¼ Pi1;

Pe0 ¼ Pi0; Pe1 ¼ Pi1; Pe2 ¼ Pi1;

kTi0 ¼
Pi0
ni0
; kTi1 ¼

Pi1
ni1

; kTi2 ¼
Pi2
ni2
;

kTe0 ¼
Pe0

ni0Zi1
; kTe1 ¼

Pe1
ni1Zi1

; and kTe2 ¼
Pe2

ni2Zi2
:

(50)

The interface between S1 and S2 is set using an interface of hydro-
gen with a fictitious isotope of lithium, 33Li, chosen to match the den-
sity ratio from the previous investigation. The scenarios simulated are
not accurate quantitative representations of the phenomena occurring
in ICF; however, the physical phenomena which are elucidated
through these simulations are representative of those which would be
exhibited in an ICF experiment. This choice of species is made to elu-
cidate a response from all transport phenomena. The result is a signifi-
cant ratio across the density interface in the ions and electrons, as well
as a temperature interface in the electrons. A summary of the non-
dimensional parameters for S2 is given in Table I.

The temperature discontinuity that results across the density
interface is likely to occur in reality. If we consider a non-ionized initial
condition with a high enthalpy shock propagating toward the density
interface, regardless of having initially constant pressure and/or tem-
perature across the density interface, the result will have non-constant
conditions after ionization. Several factors influence the thermody-
namic properties of the plasma after the shock interaction and ioniza-
tion, including the difference in ion and electron number densities
from nuclear charge, and ionization energies. To complicate matter,
the elements comprising the interface will be ionized by the (1) shock
and/or (2) the radiative preheat ahead of the propagating shock
(caused by downstream plasma conditions). In either case, there will
be non-constant pressure and temperature across the density interface
after shock traversal and ionization. If we are instead to consider a
situation where the density interface has already been ionized by a
preceding shock, then the discontinuity in thermodynamic proper-
ties across the shock will depend on the time between successive
shock interactions as transport properties across the interface equili-
brate properties. Actual experiments will likely experience a plasma
RMI of a density interface where there is both pressure and tempera-
ture discontinuity, and consequently transport across the interface.

TABLE I. Simulation initial conditions referring to zones displayed in 1.

mi Zi qi Ti qe Te

S0 1 1 2.29 1.04 2:29� 10�3 1.04
S1 1 1 1 0.5 1� 10�2 0.5
S2 3 3 3 0.5 3� 10�2 1:67� 10�1
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We have chosen to enforce pressure continuity across the interface as
an initial condition for numerical convenience and ease of comparison;
however, the fundamental effects observed in our simulations for the
temperature discontinuity will be present in actual experiments.

Ideally, a single shock-front would be maintained across both flu-
ids until interaction with the density interface. However, the greater
sound speed and shock breakdown in the electron fluid mean an elec-
tron shock-wave co-incident to the ion shock cannot be produced and
maintained after initialization. The resulting general Riemann problem
in the electron fluid propagates a single shock and multiple waves.
Due to the small Debye length of the simulations (high coupling), the
ion and electron shocks propagate at close to the same speed, though
with large Debye lengths (loose coupling)18,19 the electron shock will
traverse the interface prior to the arrival of the ion shock.

The volume of fluid tracer quantity used to track the interface is
also used to calculate the mixture properties of the ion fluid. The same
hyperbolic tangent transition function is used for the tracer as for the
conserved properties on the interface, and the tracer has a value vary-
ing q 2 ½0; 1� from the left to right states. The single ion fluid modeled
in this work is technically a mixture, where the tracer property is
equivalent to a mixture fraction. The tracer value is conserved and is
convected as a passive scalar. A mixture equation, shown below, is
used to find the particle properties when the tracer value is between
zero and one. In the following equation, q is the tracer value, / is
some property, which varies as a linear mixture of the two values,

/effective ¼ ð1� qÞ/0 þ q/1: (51)

Finally, the reference parameters that define the dimension sce-
nario are given in Table II. The reference parameters are in close prox-
imity to ICF experimental values, with the exception of length scale
x0 ¼ 1� 10�8, giving relevance to the results that follow. The
Reynolds numbers characterizing the RMI in the ion and electron flu-
ids (using the reference parameters and total circulation on the inter-
face for the ideal case) are Re ¼ qC

l ¼ 9 and 1, respectively, indicating
a strong viscous effects within the plasma. The magnetic Reynolds
number, Rem, indicates the relative strength of the advection/induction
and diffusion of the magnetic field. Rem is given by Rem ¼ l0vAx0=g0
where vA is the Alfv�en speed, and g0 ¼ ðmi=q0 Zq0Þðme=q0 seÞ is the
background resistivity and has a reference value of 2:17� 10�3 for the
plasma studied here.

IV. TEST CASES

We investigate several test cases to verify the transport coeffi-
cients have been implemented correctly. Previously, the Cerberus code
was validated against experimental results for a hydrodynamic RMI
(HRMI)19 and several test cases, such as the plasma shock Bond

et al.18 Here, we investigate several test exercising the inter- and intra-
species transport coefficients.

A. Inter-species elastic collisions

We verify our implementation of Braginskii’s elastic colli-
sional terms for inter-species collisions by compared to a similar
model, which are presented by Ghosh et al.,64 and implemented in
Cerberus. Comparison of the latter elastic terms implemented in
Cerberus with the solutions by Rambo and Procassini65 is pre-
sented by Ghosh et al.64

Tests are performed with fully ionized carbon with qi¼ 6,
mi¼ 12, constant Coulomb logarithm ln ðKÞ ¼ 10, reference
Debye length dD;0 ¼ 2:35� 10�5, and n0 ¼ 1017. Figure 2 shows
all the test cases have good agreement with the reference solution
by Rambo and Procassini.65 The first test condition, Fig. 2(a),
is computed with ion non-dimensional number densities of
nA ¼ nB ¼ 1 and initial temperatures of TA¼ 1 and TB ¼ 0:25.
We observe both component fluids relax to the equilibrium tem-
perature at the same rate. The second test case, Fig. 2(b), has
nA ¼ 0:1, and we observe the fluid temperatures relaxing toward
the high-density fluid original temperature. The remaining two
cases have fluids with temperatures TA ¼ TB ¼ 0:5 and x-velocity
of uA ¼ 2:115 but either nA ¼ nB ¼ 1, Fig. 2(c), or nA ¼ 0:1 and
nB¼ 1, Fig. 2(d). In the case of equal densities, both fluids relax
toward the equilibrium temperature in the same way, as expected.
When the fluids have unequal densities, the less dense fluid is
heated due to momentum transfer as it is slowed by impact with
the stationary fluid before thermal equilibration due to energy
transfer.

We now proceed to comparing the Braginskii transport coeffi-
cients with the Cerberus implementation of the model from Ghosh
et al.64 We test a scenario where a stream of ions interacts with back-
ground electrons, neglecting Lorentz forces as above.

The first test condition, Fig. 3(a), is with equal non-dimensional
number densities of ni ¼ ne ¼ 1, initial temperatures of Ti¼ 1 and
Te ¼ 0:25, and ion x-velocity of ui ¼ 2:115. We see the two fluids
equilibrate to the same temperature, slowly as before. The Braginskii
formulation thermalizes slower than the Cerberus implementation of
model by Ghosh et al.64 This difference is due to a different expression
for the inter-species drag term. In the second case, the ion number
density is reduced to ni ¼ 0:1, and the other properties are as before.
The difference between the Ghosh and Braginskii implementations is
one of the coefficients comprising the momentum drag terms that is
different between the two models. Regardless of the small deviation,
the model implementations agree well qualitatively and reasonably
well quantitatively.

TABLE II. Comparison of typical ICF parameter orders of magnitude,7 parameters from a single point along an ICF capsule implosion,63 and those simulated in the present
work. In the present work, the reference length is x0 ¼ 1� 10�8.

T (K) q ðkg=m3Þ dS (m) n ðm�3Þ Ushock ðm=sÞ

ICF generic 106 105 10�10 1032 105

107 104 10�9 1031

Point on predicted ICF implosion path 3� 105 1:6� 104 2:4� 10�9 4:7� 1030 4� 105

Current simulation, ĉ ¼ 2000, d̂ S;0 ¼ 7:2; b̂0 ¼ 1 1� 106 1:6� 104 1� 10�9 1� 1031 1:5� 105
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B. Hartmann flow

The Hartmann flow problem is a useful test case for magneto-
viscous and resistive plasmas.66 We use this test to study the viscous
effects and subsequent magnetic field generation in the MFP system
forming an ion–electron plasma. The problem resembles a Couette
flow, where two parallel plates move longitudinally in opposite direc-
tions driving a shear flow along the y-direction. The shear flow in the
y-direction, in combination with an imposed x-magnetic field, induces
a flow in the z-direction that is balanced by resistive forces. The
induced z-direction flow interacts with the imposed x-magnetic field
to suppress the y-direction flow.

In deriving analytical solutions, we follow the prescription of
Miller48 and work with the system of equations presented in Sec. II.
The problem is two-dimensional and uses the assumptions of slab
geometry (@/=@z ¼ @/=@y ¼ 0 for any property /), incompressible
flow, steady state conditions, no slip, and adiabatic walls (plates) to
simplify the governing equations. The assumptions are applied to the
system of equations, focusing on conservation of momentum and

substituting the simplified conservation of mass and Maxwell equa-
tions, to reduce the problem to the following equations:

@2ua
y

@x2
¼ �kaua

z þ ca ua
y � ub

y

� �
(52)

and
@2ua

z

@x2
¼ �kaua

y þ ca ua
z � ub

z

� �
: (53)

Here, we have

ak ¼
menea0

se
;

ce;i ¼ ak=ge;0; ci;e ¼ ak=gi;0;

ke ¼
ffiffiffi
2
b

r
neqe
dSge;0

Bx; and ki ¼
ffiffiffi
2
b

r
niqi
dSgi;0

Bx:

(54)

The reduced equations are solved by assembling a matrix equation
of the form U 00 ¼ AU with a change of variables. We first perform

FIG. 2. Comparison of the inter-species elastic collisional terms implemented in Cerberus to the results presented by Ghosh et al.64 (a) nA ¼ nB ¼ 1 and initial temperatures
of TA¼ 1 and TB ¼ 0:25, (b) nA ¼ 0:1, nB¼ 1, and initial temperatures of TA¼ 1 and TB ¼ 0:25, (c) nA ¼ nB ¼ 1, initial temperatures of TA ¼ TB ¼ 0:5, and x-velocity of
uA ¼ 2:115, and (d) nA ¼ 0:1, nB¼ 1, initial temperatures of TA ¼ TB ¼ 0:5, and x-velocity of uA ¼ 2:115.
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eigendecomposition of the coefficient matrix, A ¼ R � D � R�1, such
that U 00 ¼ R � D � R�1U . If we take an eigenspace velocity to be
defined as S ¼ S ¼ R�1U , the problem is now recast as an orthogonal
equation set S00 ¼ DS where D is a diagonal eigenvalue matrix. The
components of S must therefore obey the boundary value problem
S00i ¼ DiSi with general solution

siðxÞ ¼ C0
i e
ffiffiffiffi
Di
p

x þ C1
i e
�
ffiffiffiffi
Di
p

x; (55)

where the boundary conditions are ua
yðxlÞ ¼ �V ; ua

yðxrÞ ¼ V , and
ua
zðxlÞ ¼ ua

zðxrÞ ¼ 0. Solving for the coefficients C0
i and C1

i is analyti-
cally challenging due to the complex nature of the system; therefore,
numerical methods are used. The general solution for velocity profiles

is found from changing variables back to the primitives. The magnetic
field profiles are found from the steady state Ampère’s law integrated
in space and enforcing flux conservation.

Cerberus was compared against the analytical solution described
above for non-dimensional parameters of

V ¼ 1� 10�3; Bx ¼ 1; ni ¼ ne ¼ 1; (56)

Ti ¼ Te ¼ 1; mi ¼ 1; and me ¼ 1=100: (57)

Good agreement was found for the conditions tested and is shown in
Fig. 4. Note that the difference in the extreme x values is due to the
absence of the ghost cells—the no-slip condition is enforced with ghost

FIG. 3. Comparison of the implementation of the Braginskii transport inter-species elastic collisional terms with the Cerberus implementation of the model presented by Ghosh
et al.64 (a) ni ¼ ne ¼ 1 and initial temperatures of Ti¼ 1 and Te ¼ 0:25. The Braginskii formulation thermalizes slower than the implementation of Ghosh et al.,64 due to a dif-
ferent expression for the inter-species drag term. (b) ni ¼ 0:1, ne¼ 1, and initial temperatures of Ti¼ 1 and Te ¼ 0:25. The difference between the Ghosh and Braginskii
implementations is due a different coefficient comprising the momentum drag term.

FIG. 4. Cerberus solution compared to the analytic solution for the Hartmann flow test case. The prefixes “C-” and “A-” represent the Cerberus and analytical solutions, respec-
tively. (a) Current density profile that is normalized by the product of reference number density and reference velocity and (b) magnetic field profile.
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cells, making the zero velocity point (and therefore, current density)
on the domain boundary.

V. THE IDEAL AND HYDRODYNAMIC REFERENCE
CASES

The analogous single-fluid hydrodynamic simulations are pro-
vided as part of the reference simulations for comparison to the new

collisional MFP RMI simulations. Note the Braginskii transport coeffi-
cients are not modeled in the hydrodynamic simulation. In the absence
of an applied magnetic field, single-fluid hydrodynamic and ideal
MHD simulations are identical (when the same density ratio is used).
We provide two reference cases for the single-fluid hydrodynamic sce-
narios, pressures of p¼ 1 and p¼ 0.5. In the case of very loose cou-
pling, the ion and electron fluids are permitted to experience large

FIG. 5. Hydrodynamic RMI (HRMI) reference solution at simulation end time. The ion mass density, qi, is plotted for both the P ¼ 0:5 andP ¼ 1:0 reference cases.

FIG. 6. Final time mass-density and temperature contours (electron and ion) for ideal, intra-species, inter-species, and full Braginskii cases with isotropic transport coefficients.
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relative motions and act as if almost independent from each other;
thus, the partial pressure of 0.5 in the single fluid case is an appropriate
comparison to large skin depths. In the case of very tight coupling, the
converse is true, and the two fluids behave as one; thus, a partial pres-
sure of one in the hydrodynamic case is the most appropriate compar-
ison for small skin depth cases. In this manner, the p¼ 1 and p¼ 0.5
hydrodynamic results create an envelope of theoretically expected
behavior for the RMI in the ion fluid. The final time mass-density and
temperature contours for these cases are shown in Fig. 5.

Moving to the MFP RMI, our reference case is the “ideal” MFP
solution, where collisions are absent from the model. Notably, this
solution has many more flow features present (Fig. 6 row “S16-
IDEAL”). The final time contour plots show a highly perturbed

density interface, shock laden region behind the transmitted shock,
strong lateral flows behind the density interface (facilitated by the peri-
odic boundaries), and an early time suction effect pulling fluid through
the density interface at the spike. A full analysis of comparable ideal
MFP RMI is provided in Bond et al.18 and Tapinou et al.19

Figure 7 shows interface statistics that aid in understanding the
evolution of the RMI and secondary instabilities. When interpreting
the results of the two-dimensional cases, terminology introduced in
Fig. 1 is used: (1) whenever the y-dimension is discussed in the context
of the density interface, the lower x-symmetry plane is considered
(where positive and negative vorticity will destabilize and stabilize the
RMI, respectively, on the lower x-symmetry plane), (2) the “spike”
refers to a region of high density fluid penetrating lower density,

FIG. 7. Interface statistics for the ion fluid in the cases simulated. In the legend labels, “IDL” refers to the ideal case, “INTRA” and “INTER” refer to the intra-species and inter-
species cases, respectively, the appended “A” and “I” refers to the anisotropic and isotropic cases, respectively, and the “H” refers to the hydrodynamic cases for pressures of
0.5 and 1, respectively. (a) Accumulated circulation over half-plane, (b) perturbation width, and (c) perturbation width growth rate.
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(3) the opposite case to point 2 is referred to as a “bubble,” (4) the region
transitioning between the spike and bubble is referred to as the “neck,”
and (5) the bottom left numbers within brackets on contour plots are
the minimum andmaximum values for the quantity of in that figure.

The interface statistics used are the circulation (Cz, on a half
period of the interface), generation of circulation ( _CZ;total, total), and
the ion fluid density interface amplitude width (g) and growth rate
( _g). The vorticity equation is

Dx
Dt
¼ ðx � rÞu� x r � uð Þ þ 1

q2
a
rqa �rpað Þ

þr �
ffiffiffi
2
b

r
qa

dSma
cEþ ua � Bð Þ

 !

þr� 1
qa
r �P

$

a þ
X
f6¼a

Raf

 ! !
(58)

shows the terms that combine to describe the evolution of vorticity.
The terms from the left to the right are the effect of stretching/tilting
due to velocity gradients (zero in the z-dimension for 2D), stretching
due to flow compressibility ( _Ccomp), baroclinic generation ( _Cbaro) that
is the primary driver of RMI growth, the electric ( _CL;E) and magnetic
field ( _CL;B) torques, and viscous dissipation ( _Cvisc), and inter-species
drag exchange terms ( _Cdrag). The viscous terms dissipate vorticity and
the inter-species collisional terms exchange vorticity between species.
The vorticity is related to circulation by

@C
@t
¼ @

@t

ð ð
~x � d~S ¼

ð ð
@~x
@t
� d~S: (59)

For an infinitesimal finite area in the x-y plane, we have
@CZ
@t ¼ dA @xz

@t , where dA is the area of fluid enclosed by a loop with
vorticity. If we take a cell to be the area enclosed by the enclosing loop,
we can estimate the instantaneous circulation generated by multiply-
ing terms from Eq. (58) by the area of a cell. Summing the contribu-
tions from the cells that comprise the interface is how the
instantaneous circulation generation terms are calculated. Likewise,
the circulation is found from the sum of vorticity multiplied by cell
area for all cells comprising the interface:

@CZ

@t
¼
X
i

Ai
@xZ

@t
for i 2 interface cells; (60)

CZ ¼
X
i

AixZ;i for i 2 interface cells: (61)

FIG. 8. Final time mass-density and temperature contours (electron and ion) for ideal, intra-species, inter-species, and full Braginskii cases with anisotropic transport
coefficients.

TABLE III. Final time amplitude width of the primary RMI perturbation. The amplitude
is measured using the y-averaged tracer value according to Eq. (62).

Ideal

Intra-species Inter-species Full-Braginskii

Iso Aniso Iso Aniso Iso Aniso

g 0.41 0.385 0.39 0.37 0.37 0.34 0.35
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The interface cells are determined by a heuristic based on the volume
of fluid tracer, q, value that is convected with the flow. The threshold
of tracer value in the x-direction, ½0:05; 0:95�, is used to establish a pre-
liminary search area. The fluid mass-density gradient and charge den-
sity are then used to establish the final interface region, accounting for
hydrodynamic and electromagnetic sources of circulation, respectively.
The peak of mass-density gradient magnitude in the preliminary
search area is used to expand the preliminary region based on the loca-
tion of the peak. The same procedure is followed for the charge den-
sity, and threshold values of 5% of the peak density gradient and
charge density are used to establish a final density interface region, for
a discrete y-dimension position. This procedure is followed for each
discrete y-dimension position until the entire interface region

identified. We note that while this heuristic is useful in finding contri-
butions of terms affecting the rate of change of circulation, it is imper-
fect. It is used as an indicator of behavior, not an accurate quantitative
metric.

The interface width is calculated from the tracer average across
the y-dimension where the X coordinates of qy 2 ½0:05; 0:95� define
the interface width,

qy ¼
Ð

qdyÐ
dy

: (62)

The maximum and minimum transition points are then used to define
the interface width and a numerical derivative in time is used to find
the growth rate of the interface.

FIG. 9. Contour plots for the inter-species isotropic case showing the gradients in pressure and density, as well as the pressure, for various times.
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VI. MFP RMI WITH BRAGINSKII TRANSPORT

The presence of elastic collisions dramatically stabilizes the inter-
face evolution. In comparison to the collisional cases, Fig. 7, the ideal
case experiences the most significant RMI and secondary instabilities
by measures of amplitude width, amplitude growth rate, and surface
perturbations (Figs. 6 and 8). All simulations with collisions produce a
significantly reduced amplitude growth, see Table III, compared to the
ideal case. The electromagnetically driven RTI (ERTI) is the most sig-
nificant secondary instability present after shock traversal by way of
circulation generation. Previous work18,19 has shown the importance
of the electron fluid’s interaction with the ion fluid. The relative
motion between the two fluids is vital in generating electromagnetic
fields that can enhance the secondary instabilities and also perturb the
ion fluid density interface. The incorporation of collisions appears to
dramatically reduce the (1) relative motion between the species in the
case of inter-species collisions and (2) significantly dissipates the waves
and high-wave number disturbances in the intra-species collisional
case. The result is a suppression of the ERTI acting on the primary
mode perturbation and an inhibition of low-wave number interface
perturbation mechanisms.

Comparing the first and second rows of Fig. 6, we see that the
intra-species collisions significantly dissipate many of the features
observed in the ideal case but permits appreciable RMI growth. The
intra-species cases exhibit significant electromagnetic fields around the
density interface, a consequence of significant relative motion, which
will be explored in Sec. VII. All scenarios simulated have the same level
of electromagnetic coupling, so that a disturbance in the electrons is
imprinted on the ions (and vice versa) by way of the Lorentz force. In
this way, any electromagnetic fields that evolve will influence the ions
and electrons. The fields that are evolved in the ideal and intra-species
cases (discussed in more detail later in this section), Fig. 13, vary in
complicated patterns across the ion and electron fluid density interfa-
ces, thereby seeding perturbations at points of alternating sign and
intensity. The perturbations are then amplified by continuous deposi-
tion of vorticity through baroclinic and electromagnetic sources driv-
ing their growth. The intra-species RMI dissipates most of the small
scale features seen in the ideal case whilst allowing some characteristic
mushrooming and EM seeded features to develop.

Comparing rows 1 and 3 in Fig. 6, the inter-species collisions are
seen to dramatically change the MFP RMI, suppressing the instability
of the primary mode far more strongly than the intra-species colli-
sions. As described in the case of the intra-species collisions, points
surrounded by alternating EM fields can seed perturbations. In the
inter-species case, the mostly homogeneously signed EM fields along
the interface removes this mechanism except at the spike and bubble
where small perturbations are seeded. Driven by EM interface acceler-
ation, these initially very small perturbations are permitted to grow by
the absent viscosity and act as heterogeneous growth points. The per-
turbation’s growth disturbs the EM fields in its surrounding region,
seeding perturbations adjacent to it. Figure 9 shows the trail of pertur-
bations emanating from the spike and bubble growing in time. This
effect does not occur in the intra-species or full-Braginskii case as the
initial small scale perturbations are dissipated before they can grow
and seed adjacent perturbations, generating the instability observed
here. The inter-species density interface perturbation mechanism is
characteristically different in terms of origin, evolution, and physical
form. The ERTI of the primary small wave number perturbation is

therefore suppressed while high-wave number perturbations grow
instead.

Comparing the bottom row of Fig. 6 to the others, we find that
the plasma RMI is suppressed by the full-Braginskii terms and evolves
similarly to the hydrodynamic reference solutions with the exception
of a unique perturbation mechanism. The packets of transverse
reflected waves, clearly visible in the inter-species case, have coalesced
into a single diffuse wave front similar to the intra-species case, that is
difficult to observe. The full-Braginskii case appears to inherit all of the
stabilizing effects present in the preceding cases; consequently, the
density interface amplitude and the growth rate are the lowest out of
all cases studied. The ion and electron density interfaces are, however,
subject to an apparent dual-layer instability (DLI). The combination of
inter- and intra-species collisional terms produces a dual-layer—a
dual-layer is structure composed of parallel layers of opposite charge-
density—between the density interfaces, see Fig. 10. The current densi-
ties on the dual-layer initiate an instability that culminates in high-wave
number features, resembling filaments emerging from the surface and
contorted by the electromagnetic fields. Despite the small scale of these
resulting perturbations (see Fig. 8), their effect on shock transmission
may be of interest, given the resulting charge distribution and inhomo-
geneous character along the density interface.

Figure 11 demonstrates how significantly the collisional terms
can influence the momentum and energy conservation equations. The
primitive variables from the ideal MFP RMI reference case are used to
calculate the transport coefficients post-simulation and their contribu-
tion to the conservation equations is shown in the contour plots.
Immediately obvious from the figures is the dominating effect of inter-
species collisional terms on the conservation equations (note the dif-
ferent scales used). The cases that we investigate experience a high
thermal equilibration effect because of the initial temperature differ-
ence between the ions and electrons in zone 2, a result of enforcing ini-
tial charge neutrality and mechanical equilibrium. Generally, the
Braginskii transport coefficients in the intra- and inter-species terms
vary directly and inversely with the collision timescale, respectively.
Since this number is typically small, the inter-species collision terms
tend to greater magnitudes but are also dependent on other properties.
Figure 12 shows the influence of the transport coefficients in the full-
Braginskii case, where these values are actually applied during the sim-
ulation run. The magnitudes are much smaller than in the preceding
ideal case, simply because the ideal case allows relative magnitudes

FIG. 10. The dual-layer in charge density at t¼ 0.2, after shock processing of the
interface. The lower half of the primary perturbation is shown, with the interface
dual-layer (top) and the ion and electron transmitted shocks (bottom) traveling in
the positive x-direction (down the figure).
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FIG. 11. Contour plots at time t¼ 1 showing the calculated values for the Braginskii transport effects on the conservation equations when applied to the ideal MFP RMI results
(after simulation). The simulation result did not include the effect of the Braginskii terms when it was simulated. The columns indicate that intra- or inter-species collisional
effects are calculated for the ion or electrons. Each row indicates which Braginskii term is contributing. The variables qvx ; qvy , and ep denote the viscous stress contribution
to x-momentum-density, y-momentum-density, and energy-density, respectively. eq indicates the thermal conductivity effect on energy-density. RU;x ; RU;y , and eR denote the
influence of inter-species drag on the x-momentum-density, y-momentum-density, and energy-density, respectively. eQ indicates the contribution of thermal equilibration to the
energy-density.
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FIG. 12. The effect of the Braginskii transport coefficients on the conservation equations for the full-Braginskii case with anisotropic transport coefficients. Refer to the caption
of Fig. 11 which describes the has the same variables and sub-figure ordering.
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and strain-rates to develop to magnitudes that would be opposed
before forming in the case with transport terms applied.

The inter- and intra-species elastic collisions effect the generation
of Z-magnetic fields vary differently. The key factor, which we will con-
tinue to encounter repeatedly, is the relative motion between the two
species that is permitted by the different retarding forces. The intra-
species collisions permit the self-generation of stronger Z-magnetic
fields, relative to the inter-species case, through the appreciable current

densities that evolve. The intra-species collisional terms affect each spe-
cies through the effects of viscosity and thermal conductivity. The
transport coefficients within ion and electron fluids for these effects are
calculated individually, according to the derivation of Braginskii.42 The
fluid evolutions diverge significantly due to these differing transport
coefficients within each species (in addition to differing particle mass
and charge), producing strong current densities, greater than even the
ideal case at some times, see Fig. 13. The inter-species effects, however,

FIG. 13. Contour plots of electromagnetic properties at time t¼ 0.5 non-dimensional time. The properties are (a) x-electric field, (b) y-electric field, (c) z-magnetic field, (d)
x-current density, and (e) y-current density.
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work to diminish the relative motion, consequently producing current
densities that are insignificant in comparison to the intra-species and
ideal MFP RMI. The differing evolution of the EM fields is exemplified
by Fig. 13 where we see not only the difference in magnitudes but also
the sign and regions of action. The ideal and intra-species cases having
less terms retarding relative motion produce greater magnitude mag-
netic fields and more complex EM field arrangements via permitted
bulk fluid movements. The inter-species and full-Braginskii cases pro-
duce much smaller magnetic fields and homogeneous field orientations
in comparison.

Modeling the transport coefficients magnetic field induced
anisotropy is important in the case of significant applied or self-
generated magnetic field. In the case of the intra-species collisions, the
anisotropy in the transport coefficients produces significant differences
in the evolution of the RMI. Comparing Figs. 6 and 8, we can see a sig-
nificant difference in the final time density interface for the two cases.
However, we see the inter-species case does not show a significant dif-
ference due to the anisotropy because of the insignificant magnetic field
generation. In the full-Braginskii case, however, the anisotropy enables
the formations of the dual-layer instability, discussed in Sec. VII.

VII. INTERFACE ANALYSIS OF THE MFP RMI
WITH FULL-BRAGINSKII TRANSPORT

The evolution of the plasma RMI is dictated by the initial deposi-
tion (primary circulation) of baroclinically generated circulation by
the initiating shock-wave and the subsequent (secondary circulation)
deposition of circulation from electromagnetic fields, the ERTI, and
the collisional sources. In the ideal plasma RMI, secondary instabilities
are governed by seeding of perturbations at early time (post shock-
traversal) and their subsequent amplification through secondary
sources of circulation. The elastic collisions fundamentally alter this
process—the small perturbations seeded in the ideal, intra-, and inter-
species cases are prohibited from forming, and the relative motion of
ion and electron fluids (crucial in self-generating electromagnetic
fields) is restricted. We may consider the elastic collisions as further
reinforcing the coupling between ion and electron fluids that already
exists as a result of the Lorentz terms. Additionally, the initial distur-
bance caused by elastic-collisions in the ion and electron fluids forms a
charge density dual-layer that goes unstable. Overall, the plasma RMI
with elastic collisions is significantly stabilized and resembles the
hydrodynamic solution in terms of growth and large scale features.

The full Braginskii transport terms inhibit the seeding of pertur-
bations on the density interface within both the electron and ion fluids.

The inter-species terms prevent the significant relative motion that
generates alternating (in sign) electromagnetic fields that can seed
low-wave number perturbations along the density interface. Similarly,
the intra-species terms dissipate the high-wave number perturbations
that were observed in the inter-species case along the spike and bubble,
Fig. 9. The combination of the intra- and inter-species elastic collisions
produces a final time density interface that lacks the particular second-
ary instabilities observed in the intra-species and inter-species cases;
however, the dual-layer instability emerges due to these two collisional
influences combining.

The necessary conditions for emergence of the dual-layer insta-
bility are established prior to the initiating shock arrival at the density
interface. The initial temperature discontinuity in the electrons, see
Table I, leads to an early time charge density that is intensified by the
driving shock traversing the density interfaces: on the interface
between zones 1 and 2, thermal conduction is active from the first
time step, heating (cooling) the electrons in zone 2 (1), thereby
decreasing (increasing) the number density of electrons in zone 2 (1)
adjacent to interface. This results is a negative to positive dual-layer in
charge density on the interface of zones 1 and 2. Additionally, thermal
equilibration between the ions and electrons in zone 2 cools (heats)
the ions (electrons), reinforcing the positive charge density in zone 2,
and the dual-layer. The resulting electric field accelerates the fluids in
opposing directions, a band of electrons in the negative x-direction
and a band of ions in the positive x-direction. At the time of RMI-
driver shock-wave interaction with its respective density interface,
within the ion and electron fluids, the ion interface is ahead of the elec-
tron interface—the charge-density distribution is unable to neutralize
itself (or oscillate as in the ideal case Bond et al.18) prior to the shock-
wave arrival because of the inter-species drag term. The shock-waves
intensify the dual-layer, but the instability only proceeds in the case
where magnetic field induced anisotropy is modeled, see Fig. 14. The
anisotropy allows current densities to evolve inhomogeneously along
the interface, initiating the dual-layer instability.

The instability begins to develop on the dual-layer through
small-scale perturbations attempting to neutralize the charge density,
Fig. 15. High-wave number features grow along the extent of the inter-
face but first grow at the spike and bubble; we shall refer to these as
dual-layer features (DLF). The absence of the dual-layer instability in
the isotropic full Braginskii case points to the anisotropy as the
enabling ingredient for the instability. The dual-layer charge density
induces electromagnetic fields that work to neutralize the instability.
The anisotropic collisional effects provide paths of least resistance for

FIG. 14. Magnitude of current density showing the different evolution of the dual-layer in the full-Braginskii anisotropic (top) and isotropic (bottom) cases.
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the interface perturbations to evolve into, the momentum contribu-
tions applying forces and energy contributions driving changes in the
plasma properties, i.e., increasing/decreasing density/pressure.
Without anisotropy, the collisional effects provide much more consis-
tent influence (directionally) and do not destabilize the dual-layer.
Consider the inter-species drag Ru (note the following argument holds
for thermal force, thermal conductivity, and viscosity) in the isotropic
case, the momentum contribution is homogeneous (along the direc-
tion of the relative velocity u ¼ ue � ui); however, in the anisotropic
case, there is anisotropy with regard to the component of relative
velocity parallel and perpendicular to the magnetic field, and with

regard to the diamagnetic effect (perpendicular to both the magnetic
field and relative velocity). This strong anisotropy destabilizes the
interface as complex current densities are allowed to evolve (Figs. 16
and 17).

At simulation end, complex DLF proliferate the extent of the pri-
mary instability interface. The DLF resemble ERTI mushrooms on the
spike/bubble tips, and contorted filaments along the remaining extent
of the interface. We see from 17 and 16 that the dual-layer instability,
after perturbing the entire extent of the density interface with high-
wave number features, produces a charge density distribution that is
reduced (in magnitude) along most of the density interfaces. From the

FIG. 15. Magnitude of current density (top) and charge density (bottom) for the full-Braginskii anisotropic case showing the early time evolution on a zoomed view of the spike.

FIG. 16. Magnitude of current density (top) and charge density (bottom) for the full-Braginskii anisotropic case showing for late time a zoomed view of the spike.
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onset of the instability to simulation end time, we see the dual-layer
becomes highly perturbed, exhibiting localized regions of increased
charge density and then a decrease in most regions along the primary
instability interface. At simulation end, the dual-layer instability has
thickened the density interface along its extent.

The unique deposition of circulation along the density interfaces
within the ion and electron fluids produces relative motion between
the fluids that influences growth after initial shock traversal. Compare
the deposition of circulation for the ion and electron fluids in Fig. 18.
Note that in referring to the instabilities, unstable circulation deposi-
tion (positive circulation on the lower x-symmetry plane) is considered
that which would reinforce the growth of interface amplitude resulting
from the primary RMI. All ion fluid sources of circulation, except the
viscous term, destabilize the ion fluid density interface during the ini-
tial shock traversal (t 	 0:05 to 0.2 non-dimensional time). During
the same time within the electron fluid, the baroclinic circulation rein-
forces the instability, but the inter-species drag driven circulation term
stabilizes the instability. The inter-species drag term has a much
smaller influence in the ion fluid due to their much greater mass, rela-
tive to the electrons. Figure 18 indicates that the electron fluid imparts
significant circulation on the ion interface via the inter-species colli-
sions. The DLI begins to affect the interface significantly around
t 	 0:5 (Fig. 15 which coincides with common disturbance in the ion
and electron rate of circulation deposition). The baroclinic, intra-
species, and inter-species terms appear to be the most active during
the DLI. The electron and ion fluids experience large negative intra-
species (viscous) circulation generation, as the viscous stresses resist
the strain that results from the evolution of the DLI perturbations. At
this point, the reliability of the interface statistics is questionable as the
heuristic used is intended for the primary RMI perturbation and not a
DLF proliferated interface that is emerging. An indication of the
decreased reliability is the total interface circulation, which becomes
non-zero, meaning the interface has lost its symmetry (the half-plane
analysis becomes less reliable). Regardless, the interface statistics dem-
onstrate that the DLI affects the interface circulation dynamics in a

localized sense, but may not affect the macro scale evolution, i.e.,
primary RMI perturbation width, g, as this metric’s trend does not
change significantly during late time.

The coherence of the electron density interface during the
simulation—the electrons do not breakup into a well-mixed region as
in loosely coupled cases (Fig. 19)18,19—is vital for stabilizing the pri-
mary and secondary ion instabilities. A naive cause is that a coherent
electron interface reduces the seeding of perturbations along the ion
density interface at early times. However, the more significant but
nuanced cause is that it allows the fluids to more easily neutralize the
charge discontinuity coincident on the ion-fluid density interface that
can drive the secondary ERTI and perturb the interface at late time.
First, the coherent electron interface produces a charge distribution
and associated fields that are localized to the ion density interface. This
produces consistent and well behaved fields along the extent of the
density interfaces, i.e., there are no significant alternating patterns of
EM fields that further develop perturbations and complicated circula-
tion deposition that can seed secondary instabilities. Additionally, the
electron density interface matches closely the contour of the ion-
interface, allowing the plasma to more easily neutralize the charge den-
sity and consequent fields that contribute to the ERTI. Second, the
coherent electron density interface can accumulate circulation that
then influences the ion interface. The individual circulation deposi-
tions the interfaces experience in each fluid produce relative motion
between the interfaces which may introduce interesting behavior
though further investigation is required. As the dual-layer instability
develops, it influences the circulation significantly, seen in Fig. 18
around t 0:5 to 0.75. The complicated structures that emerge from the
DLI require a more detailed vorticity analysis heuristic, as the currently
used heuristic is only appropriate for the primary RMI perturbation.

VIII. CONCLUSION

Elastic collisions, at the conditions simulated and modeled by the
Braginskii transport coefficients, significantly stabilize the MFP RMI.
Deposition of circulation dictates the evolution of the RMI and has

FIG. 17. Ion mass-density (top) and charge density (bottom) for the full-Braginskii anisotropic case showing the full interface development for select times.
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many sources in the MFP case. The primary source of circulation is
baroclinically generated by the initiating shock traversing the density
interface. Secondary circulation is from secondary instabilities, i.e., the
ERTI and dual-layer instability, and direct influences, i.e., the electro-
magnetic torques and elastic collisions. In the ideal plasma RMI, sec-
ondary instabilities are governed by seeding of perturbations at early
time (post-shock-traversal) and their subsequent amplification
through secondary sources of circulation. The full-Braginskii imple-
mentation (both intra- and inter-species) of elastic collisions funda-
mentally alters this process—inter-species collisional terms prohibit
the mechanisms observed in the ideal and intra-species cases due to
the relative motion between species, and vice versa for the intra-
species collisional terms affecting the inter-species mechanisms.

FIG. 18. Deposition of circulation on the ion and electron fluid density interfaces for the MFP RMI with anisotropic full-Braginskii collisions modeled. The most active time is dur-
ing the shock traversal, where the baroclinic deposition from the shock is evident, as well as the collisional effects. After t¼ 0.5, we observe circulation evolution that corre-
sponds with the dual-layer instability, which does not appear to affect the RMI growth.

FIG. 19. An example of an electron fluid density interface that has become incoher-
ent and well mixed. The outline of the ion density interface is traced in purple.
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Additionally, the dual-layer that forms in the anisotropic full-
Braginskii case, caused by elastic collisions, becomes unstable (though
the characteristic scale of the instability is small). The viscous effects
within each fluid contribute significant circulation to the density inter-
face during the DLI. The circulation does not appear to affect the pri-
mary RMI perturbation, but instead affects the features emerging from
the DLI locally—the viscosity resists the deformation and growth of
the small scale DLFs. Modeling the magnetic field anisotropy can be
important when there is significant externally applied or self-
generated magnetic fields—the anisotropic effects alter transport coef-
ficients, leading to varying of RMI evolutions and self-generation of
EM fields. Overall, elastic collisions suppress the (1) ERTI of the pri-
mary mode perturbation and (2) high-wave number interface pertur-
bation growth mechanisms that were present in the ideal case. The
MFP RMI is significantly stabilized and resembles the hydrodynamic
solution, a positive result for fusion.

Extension of the current work (two-dimensional three-vector sim-
ulations) to full three-dimensional simulations will reveal additional
effects with the same underlying principles. The electromagnetic field
evolution is a fundamentally three-dimensional phenomena, in that the
each field component rate of change is dependent on spatial derivatives
in the other dimensions [see the cross product terms in Eqs. 3(a) and
3(b)]. Simulating a 3D perturbation will drive fluid flows and gradients
in all spatial dimensions that will generate significant electromagnetic
fields in configurations not observed in 2D. These fields will drive evolu-
tion of the secondary ERTI in previously unobserved directions, as well
as direct Lorentz forcing and EM torques. However, the elastic collisions
will still have the same fundamental effects in 3D simulations as for 2D,
i.e., the reduction in relative motion between ions and electrons, and dis-
sipation of high-wave number seeded perturbations will still occur.
Diamagnetic effects may become more pronounced as significant mag-
netic field generation permitted in x- and y-directions will produce out
of plane forcing. Therefore, we expect the stabilization by the elastic col-
lisions would remain effective in the 3D case with the addition of sec-
ondary instabilities in the z-dimension.
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