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Abstract: Changes in water quality are closely linked to seasonal fluctuations in streamflow, and a
thorough understanding of how these variations interact across different time scales is important
for the efficient management of surface water bodies such as rivers, lakes, and reservoirs. The aim
of this study is to explore the potential connection between streamflow, rainfall, and water quality
and propose an optimised ensemble model for the prediction of a water quality index (WQI). This
study modelled the changes in five water quality parameters such as ammonia nitrogen (NH3-N),
phosphate (PO4

3−), pH, turbidity, total dissolved solids (TDS), and their associated WQI caused by
rainfall and streamflow. The analysis was conducted across three temporal scales, weekly, monthly,
and seasonal, using a generalised additive model (GAM) in Toowoomba, Australia. TDS, turbidity,
and WQI exhibited a significant nonlinear variation with the changes in streamflow in the weekly and
monthly scales. Additionally, pH demonstrated a significant linear to weakly linear correlation with
discharge across the three temporal scales. For the accurate prediction of WQI, this study proposed
an ensemble model integrating an extreme gradient boosting (XGBoost) and Bayesian optimisation
(BO) algorithm, using streamflow as an input across the same temporal scales. The results for the
three temporal scales provided the best accuracy of monthly data, based on the accuracy metrics R2

(0.91), MAE (0.20), and RMSE (0.42). The comparison between the test and predicted data indicated
that the prediction model overestimated the WQI at some points. This study highlights the efficiency
of integrating rainfall, streamflow, and water quality correlations for WQI prediction, which can
provide valuable insights for guiding future water management strategies in similar catchment areas,
especially amidst changing climatic conditions.

Keywords: streamflow; water quality; generalised additive model; XGBoost regressor; Bayesian optimisation

1. Introduction

The pollution of rivers and streams resulting from both point and non-point sources is
increasing due to the emerging influence of extreme rainfall events and their associated
streamflow [1]. Surface water quality and ecosystem health are influenced by a complex
interplay between factors such as climate variability, hydrological processes, geochemical
cycles, and human activities [2–4]. The rapid growth of population demands increased
food production, which consequently disturbs the natural land cover. The increased use of
chemical fertilisers causes pollution as they are transported to surface and groundwater
systems during extreme rainfall events [5]. The change in surface runoff under changing
rainfall patterns induces variations in pollutant transfer to water bodies [6,7]. Rainfall,
associated streamflow, and stream water quality are intimately linked; however, these three
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aspects are often analysed separately, and a comprehensive assessment of their combined
influence on stream water quality has not been explored much [2,8].

Stream water quality encompasses three essential aspects of freshwater: its physical
state (whether it is frozen or not), temperature, and the concentration of constituents. These
factors significantly influence the major processes that regulate stream water quality, such
as transport, exchange, storage, and the decomposition of organic matter [9–11]. The
riverine ecosystem related to water quality is subjected to various stresses due to these
processes, and streamflow patterns significantly interact with the physical and chemical
composition and the state of the water [2,12]. However, there has been limited studies of
how changes in streamflow patterns, influenced by varying rainfall magnitudes, interact
with constituent concentrations in water bodies over different time scales [13].

There are several studies related to process-based hydrological and water quality sim-
ulation models, where streamflow variability was considered as a predictor of water qual-
ity [14]. These include the MIKE 21 and MIKE 31 models [15,16], QUAL models [17], QUAL
2 K model [18], QUASAR model [19,20], SWAT model [21], and IISDHM [22]. These models
have illuminated an improved understanding of how water quality varies with stream-
flow variability. However, the simulation accuracy of these models is affected by spatial
variations arising from hydrometeorological variability within the catchment scale. Addi-
tionally, numerous studies have demonstrated a correlation between land use change and
the concentration of water constituents such as dissolved oxygen, total dissolved solids,
and nutrients. Specifically, these constituents were detected to be higher in agricultural
watersheds compared to forests [23]. However, in addition to land use change, stream
water quality is also influenced by geology, topography, soil characteristics, and climate
variability [2].

Recently, the prediction of a water quality index (WQI) has been advanced through
artificial intelligence techniques such as artificial neural network (ANN), support vector
machine (SVM), and adaptive neuro fuzzy inference system (ANFIS) [24–26]. Among
them, ANN exhibits a poor prediction accuracy if the range of testing data exceeds the
range of training data. Whilst SVM provides high accuracy, it requires determining the
optimum values for a large number of parameters. Whereas, ANFIS is a robust algorithm
which combines ANN and fuzzy logic for modelling nonlinear, complex, and dynamic
systems [27]. Despite having its potency, it is computationally complex, and the accuracy is
compromised by internal parameters which require a precise weight assignment in fuzzy
rule membership [28]. On the other hand, hybrid models can effectively recognise the
nonlinearity of input and output parameters, demonstrating enhanced robustness against
data fluctuations [28].

Extreme gradient boosting (XGBoost) is recognised as a robust ensemble learning
algorithm known for its effectiveness in data mining and regression tasks [29]. It stands
out for its speed, robustness, and ability to deliver precise predictions, as demonstrated
in its performance in major data competitions such as Kaggle and Data Castle [30]. It has
been widely applied in several fields, including predicting concrete electrical resistivity for
structural health monitoring and accurately mapping steel properties [31,32]. However, its
utilisation in predicting streamflow and water quality is limited. We aim to showcase its
potential use in predicting WQI.

Convolutional neural network (CNN) is a prevalent topic in deep learning (DL) re-
search which has proven its effectiveness in tasks of computer vision (CV), computer-aided
diagnosis (CAD), natural language processing (NLP), and pattern recognition [33]. The
hyperparameters are crucial parameters to set before model training, governing its learning
process and improving performance. An efficient hyperparameter optimisation algorithm
can significantly enhance model performance and accuracy [34–36]. The most widely used
hyperparameter optimisation method is grid search, which operates on the principle of
exhaustive searching. However, it is limited by the high computational cost associated
with exhaustive searching [34]. To mitigate this issue, the random search algorithm was
introduced; however, previous studies have found it to be unreliable for training com-
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plex models [36]. Recently, Bayesian optimisation (BO) has emerged as a highly effective
algorithm for addressing machine learning optimisation problems. The optimisation of
artificial neural networks (ANNs), support vector machines (SVMs), and other models can
be effectively carried out using this algorithm [30,37]. There have been studies on the im-
plementation of XGBoost in hydrology [38]; however, there has been a limited investigation
on its application to water quality prediction. Moreover, the estimation and optimisation of
hyperparameters is one of the most important steps in the XGBoost model, and applying a
BO algorithm can improve the prediction accuracy [39].

In this study, we aimed to investigate the impact of rainfall and streamflow on water
quality parameters and associated WQI by applying models using advanced statistical and
ensemble machine learning techniques to describe this relationship. In our previous study,
five water quality parameters (NH3-N, PO4

3−, pH, turbidity, total dissolved solids) were
selected to compute the WQI, and we applied five machine learning and two deep learning
algorithms to predict the WQI [40]. In addition to this, the trend of rainfall and water
quality parameters and the correlation between rainfall and water quality were examined.
Building on our previous study, this research proposed a new statistical technique, the
generalised additive model (GAM), to identify the correlation between rainfall, streamflow,
and water quality parameters. Further, an ensemble learning algorithm (BO–XGBoost) was
used to predict the WQI across three temporal scales. The Toowoomba region of Australia
consists of three major reservoirs, namely, Cooby, Cressbrook, and Perseverance [40]. The
Cressbrook Reservoir was selected as the case study area, being one of the three major
reservoirs for town water supply in the Toowoomba region of Australia. Due to the
availability of streamflow data, this was selected as the representative case study area. The
main focuses of this study are as follows:

• Simulate changes in water quality parameters and the associated WQI with variations
in rainfall and streamflow across three temporal scales: weekly, monthly, and seasonal.

• Propose a novel approach combining XGBoost with a Bayesian optimisation (BO) al-
gorithm to predict the WQI, which considers the influence of streamflow based on the
same three temporal scales. The XGBoost was applied to establish the relation between
the streamflow and water quality data, and the BO algorithm was used to optimise the
XGBoost hyperparameters to improve the accuracy of the prediction model.

2. Materials and Methods
2.1. Study Area

Cressbrook Reservoir is located approximately 80 km northwest of Brisbane and 55 km
northeast of Toowoomba in South East Queensland, Australia (Figure 1). It is situated
at an elevation of 280 m Australian Height Datum (AHD) [41] and flows to the Brisbane
River [42]. The upper Cressbrook Creek comprises Rocky Creek, Bald Hills, Old Woman’s
Hut, and Crows Nest, while the lower subcatchment includes Cressbrook Reservoir and
the major tributaries of Kipper and Oakey Creeks [43]. The geological features in the area
are diverse and characterised by a basalt covering along the mountain range. Rainfall
in the upper subcatchment is relatively higher compared to the middle (above weir and
Kipper Creek) and lower catchment (below weir). The influence of the upstream dams
and the lower Cressbrook weirs has substantially altered the water flow, leading to a
decrease in the number of waterholes. Land use in the upper catchment includes grazing
on native vegetation, animal husbandry, national park, vegetation, and irrigated perennial
horticulture. In contrast, the lower catchment area is utilised for forestry, grazing on native
vegetation, animal husbandry, rural residential areas, and Toogoolawah sewage treatment
plant. The water quality in this area is impacted by salinity resulting due to geology and
modified water flows, as well as erosion and small scalds [43]. The major challenges faced
by the Cressbrook catchment include the removal and degradation of riparian vegetation,
cattle grazing, deforestation, agricultural activities, and residential development [44].
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2.2. Data

The relationship between water quality and local rainfall and stream discharge was
analysed using daily maximum discharge data from site number 143921A (Cressbrook
Creek at Rosentretars Crossing, −27.1361◦, 152.33◦) [45] and daily rainfall data from the
Cressbrook Reservoir weather station number 040808 (−27.2641◦, 152.1959◦) [46]. The data
were obtained from the Queensland Water Monitoring Portal (https://water-monitoring.
information.qld.gov.au/, accessed on 6 March 2024) and the Bureau of Meteorology website
(https://www.bom.gov.au/, accessed on 7 March 2024). The study period covered the
period from 2000 to 2022 due to the availability of water quality data. Weekly water quality
data were provided by the Toowoomba Regional Council (TRC) which is responsible for
maintaining three water supply reservoirs in the Toowoomba region. The rationale for
selecting five water quality parameters (PO4

3−, NH3-N, pH, TDS, and turbidity) and the
computation of the WQI were explained in the previous study [40].

2.3. Mathematical Background
2.3.1. Computation of Variation in Water Quality Parameters Using GAM

The variation in the selected water quality parameters in response to changes in rainfall
and streamflow was predicted using a generalised additive model (GAM). The GAM
integrates elements of both generalised linear models and additive models. It employs
an additive link function to define the relationship between the response variable and
the nonparametric predictor variables [47]. By applying multiple linear smooth functions,
the GAM effectively addresses data nonlinearity, prevents overfitting, and obviates the
requirement of prior knowledge of specific predictive function forms [48].

The GAM model, which captures the variation in the response variable using the
independent variables through smooth functions, can be expressed as follows:

g(E(Y)) = β0 + f 1 (x1) + f 2 (x2) + ....... + fp (xp) + ε (1)

where Y is the response variable, and E(Y) is its expected value. The response distribution
is not required to be normal; instead, the observations are extracted from a member of
the exponential family of the distribution, to be specific Y~EF (µ, φ), where φ is the scale
parameter, and µ is the mean. Similarly, g is the smooth monotonic link function (uniform,
logarithmic, or transpose) that maps the mean of the distribution function to the linear
predictor scale [9]. β0 is the model intercept, and f1, f2...fp are the smooth functions of the
control variables x1, x2, ......xp.

https://water-monitoring.information.qld.gov.au/
https://water-monitoring.information.qld.gov.au/
https://www.bom.gov.au/


Water 2024, 16, 2107 5 of 18

Smooth functions provide a flexible nonlinear illustration of covariates on the response
variable by determining an appropriate basis which defines the function space to which f
belongs. The components of this space are called basis functions. For instance, in the case
of a second-order polynomial, the basis functions would be 1, x, and x2 forming the set

b0(x) = x0 = 1, b1(x1) = x, b2(x) = x2

The sum of the basis functions and their corresponding regression coefficients β
(weights) form the smooth function f, which can be written as

f (x) ∑k
i=1 bj(x)βi (2)

where k denotes the fundamental dimension of the smooth function. Each basis function
constitutes a column in the model matrix, allowing every smooth function f to be written
in a general matrix form fi(xi) = Xiβ, where Xi is the model matrix [9]. Among the various
types of smooth functions, a cubic spline smooth function was applied in this study.

The GAM equation in Equation (1) was modified in this study to illustrate the variation
in water quality. Water quality parameters were predicted as an additive function of two
covariates, rainfall and streamflow, and Equation (1) was reformed as follows.

E(Y) = β0 + fr (Rainfall) + fq (Streamflow) + ε (3)

Here, Y is the predicted concentration of water quality parameters, and fr and fq are the
smooth functions of rainfall and streamflow, respectively. The water quality was modelled
and forecasted on three temporal scales: weekly, monthly, and seasonal. A cubic spline
smooth function was applied in this study, which is a smooth curve composed of segments
of cubic polynomials, seamlessly connected so that the entire spline maintains continuity
in both its value and the first two derivatives [9]. To fit Equation (3) for the interpretation
of changes to water quality parameters, the ‘mgcv’ package of R software (4.3.2) was used.
A generalised cross-validation (GCV) score was considered to check whether the model
overfitted the data, and a p value was used to evaluate the model’s smoothness.

2.3.2. Prediction of WQI

In this study, an XGBoost algorithm with Bayesian optimisation was applied to predict
the water quality index (WQI) using discharge data. This approach aimed to enhance model
accuracy and reliability by fine-tuning hyperparameters through a systematic optimisation
process. A detailed description of the algorithms is explained in the following sections.

Extreme Gradient Boosting

Extreme gradient boosting (XGBoost) is a popular and powerful machine learning
model leveraging a scalable end-to-end tree boosting system capable of capturing a com-
plex nonlinear relationship between a set of predictor and output variables. XGBoost
is distinguished by two fundamental optimisation improvements based on a gradient-
boosting decision tree (GBDT) algorithm. Firstly, regularisation terms are incorporated
into XGBoost’s objective function which helps to mitigate overfitting. Secondly, XGBoost
utilises a second-order Taylor expansion of the target function, enhancing the precision of
its loss function [30].

If a dataset is assumed to have n number of variables and is denoted as A = (xi, yi)
where i = 1, 2. . ., n and xi represent the input variable, while yi represents the response
variable, a tree model based on the general form of classification and regression tree-based
algorithm can be generated for the following output:

ŷi = φ (xi) =
M

∑
m=1

fm (xi), f m ∈ W (4)
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where M is the number of trees trained, W is the space of regression trees, (W = [f (x) = µlx]),
and f (x) represents a single tree structure. Similarly, µ represents the leaf weight, and lx
denotes the leaf node of the xth sample.

The objective function in XGBoost incorporates both a regularisation term and a loss
function as explained by Chen and Guestrin [49]:

L( ft) =
n

∑
i=1

L
(

yi,ŷi
t−1 + ft(xi) + Ω ( ft)

)
(5)

where L is the loss function, and Ω is the regularisation term which deals with the objective
function depending on the complexity of the model, which can be expressed as follows:

Ω ( ft) = γ. Tt + λ
1
2

T

∑
j=1

µ2
j (6)

where T denotes the number of trees, and γ denotes the penalty coefficient. The objective
function in Equation (5) can be simplified using a second-order Taylor series expansion as
follows [50]:

L( ft) =
n

∑
i=1

[L (yi, ŷi
t−1 + gi ft(xi) +

1
2

hi f 2
t (xi)] + Ω ( ft) (7)

n for the first-order gi and second-order hi can be expressed as follows [30]:

gi =
∂ L

(
yi , ŷi

t−1
)

∂ŷi
t−1 (8)

hi =
∂2 L

((
yi , ŷi

t−1
)

∂ŷi
t−1 (9)

The final form of the objective function can be derived as follows [30]:

L( ft) =
n

∑
i=1

[ giµl(xi) +
1
2

hiµ
2
l (xi)] + γT + λ

1
2

T

∑
j=1

µ2
j (10)

Bayesian Optimisation

Hyperparameters directly influence the behaviour of training algorithms and exert a
significant impact on machine learning models. Efficient optimisation of hyperparameters
is important for enhancing the efficiency of machine learning models [34]. Bayesian
optimisation provides an effective way to solve computationally expensive functions by
identifying optimal points. It integrates previous information about the objective function
with sampled points to gather updated information about the function’s distribution using
a Bayesian formula. By applying this updated information, global optimum values can
be assessed [34]. Bayesian optimisation involves two major steps: first, the selection of
a surrogate model, typically a Gaussian process to incorporate prior information about
the objective function; and second, choosing an acquisition function to propose sampling
points in the search space [51].

Establishment of the Prediction Model

To predict the WQI, we introduced a XGBoost-BO model, which involved the following
steps, and the methodological flow chart is illustrated in Figure 2.
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(i) Data preparation and processing:

The data were preprocessed by selecting the relevant features, specifically ‘Discharge’
and ‘WQI’. The daily time series of discharge data was converted to weekly, monthly, and
seasonal values, while weekly WQI data were aggregated into monthly and seasonal values
to facilitate prediction across three temporal scales. The selected features were then divided
into training and testing sets, where 70% of the data were allocated for training and 30%
for testing. This division ensures that the model’s performance can be effectively evaluated
on unseen data.

(ii) Definition of the objective function for Bayesian optimisation:

An objective function was defined for the Bayesian optimisation (BO) to minimise the
mean absolute error (MAE) of model predictions. The primary goal was to enhance the
model’s accuracy for predicting the WQI by minimising the MAE.

(iii) Specification of hyperparameter bounds:

Defining the specification of hyperparameter bounds is fundamental for effectively
optimising a machine learning model. The common hyperparameters are learning rate,
maximum depth of trees, subsample ratio of training instances, column subsample ratio
for constructing each tree, and regularisation parameters such as gamma and lambda.
The search space for the hyperparameters of the XGBoost model was specified. These
included the learning rate (0.001, 0.2), maximum depth of trees (3, 10), subsample ratio of
training instances (0.8, 1.0), column subsample ratio for constructing each tree (0.3, 1.0),
gamma (0, 0.3), and lambda (0, 1.0).

(iv) Implementation of Bayesian optimisation:

In the process of optimisation, the BO algorithm was employed, which balances explo-
ration (trying new parameter configurations) and exploitation (using known configurations
that are likely to be minimal) to minimise the objective function. It iteratively updates
the probabilistic model based on observed outcomes using a Gaussian process to suggest
new configurations for evaluation, aiming to find the optimal set of hyperparameters. In
the proposed model, the acquisition function selected was based on a Gaussian process.
The number of initial points was set to 10, and the optimisation process continued for
100 consecutive iterations.
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(v) Training the XGBoost model and evaluation:

Using the optimal hyperparameters identified through Bayesian optimisation, an
XGBoost model was trained on the training dataset. The trained XGBoost model was then
evaluated on a separate test dataset. Three performance metrics such as coefficient of
determination R2, mean absolute error (MAE), and root mean square error (RMSE) were
computed. These metrics provided a comprehensive evaluation of the model’s accuracy
and reliability.

If y1, y2..., yn are observed values and ȳ1, ŷ2..., ŷn are the predicted values, with ȳ
representing the mean of yi, the four metrics can be calculated as follows:

R2 = 1 −

n
∑

i=1
(ŷ − yi)

2

n
∑

i=1
(yi − ȳ)

(11)

MAE =
1
n

n

∑
i=1

|ŷ− ȳ| (12)

RMSE =

√
1
n
(ŷ − ȳ)2 (13)

The coefficient of determination R2 measured the proportion of variance in the depen-
dent variable that was predicted from the independent variable. The MAE measured the
average magnitude of the errors in a set of predictions, and the RMSE quantified the square
root of the average of the squared differences between predicted and actual observations.
The methodological flow chart of the proposed XGBoost-BO model is illustrated in Figure 2.

(vi) Analysis of predicted results:

Firstly, to demonstrate the appropriate fitting of the proposed model, line plots of the
actual and predicted data on the training and test sets were generated. This was conducted
to indicate the suitability of the proposed model for WQI prediction on different time scales.
In addition, to identify patterns in model performance, a comparative analysis of metric
values across three time scales was performed. The results from this analysis were then
interpreted to determine the overall efficiency and reliability of the model in forecasting
WQI, conferring insights into its applicability for practical water quality management.

3. Results
3.1. Descriptive Statistics

Table 1 presents a comprehensive summary of the key hydrological and water quality
parameters across three temporal scales spanning 22 years (2000–2022). WQI is a mathe-
matical expression that transforms large and complex datasets into a single quantitative
value, enhancing water quality [52]. Based on the value of the water quality indicators and
assigned weightage, the WQI was calculated in our previous work related to this study. In
the computation of WQI, the maximum weightage 5 (on a scale of 1–5) was assigned to
NH3-N and PO4

3−; TDS and pH had a given weightage of 4, and the lowest weightage was
assigned to turbidity [40]. The weight assigned to the five selected water quality parameters
was based on different authorised standards and their potential impact on surface water
pollution [40,53,54].

Weekly rainfall averaged 14.41 mm, ranging widely from 0 to 457 mm, while weekly
streamflow showed a mean of 1.08 m3/s, with a maximum value of 270.98 m3/s, indicat-
ing substantial variability. Monthly data exhibited a higher average rainfall (64.22 mm)
and showed the same streamflow (1.08 m3/s), although the maximum value was notably
lower compared to weekly extremes. Seasonal patterns revealed that spring and sum-
mer recorded the highest average rainfall (175.50 mm and 338.80 mm, respectively) and
streamflow (0.24 m3/s and 2.81 m3/s), while the winter value was lower (0.19 m3/s). The
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pH of water remained consistent at an average of 7.86 across both weekly and monthly
scales. The maximum pH was observed in weekly data (8.90), indicating an increase in
alkalinity. The average value of PO4

3− and NH3-N ranged from 0.01 to 0.02 and 0.02 to 0.04,
respectively, across the three temporal scales. The turbidity was found to be maximum at
the monthly scale (10.45), while rainfall was 477.60 mm. Moreover, in the weekly data, the
TDS was maximum (325), and the WQI had a mean of 8.09 with values ranging from 4.03 to
12.38, which were slightly higher in the monthly data, ranging from 5.49 to 11.17. The mean
value of WQI was 8.1 with the values ranging from a minimum of 5.86 to a maximum of
10.58 across the four seasons. The seasonal statistics of WQI indicated that the WQI was
generally consistent over different seasons. Overall, these descriptive statistics illustrate
significant variations across different temporal scales, providing insights into the influence
of rainfall volume and streamflow on water quality parameters.

Table 1. Descriptive statistics of water quality parameters, rainfall, and streamflow.

Time Period Statistics

Variable

Rainfall
(mm)

Streamflow
(m3/sec)

PO43−

(mg/L)
NH3-N
(mg/L) pH Turbidity

(NTU)
TDS

(mg/L) WQI

Weekly

Min 0.00 0.00 0.00 0.00 6.00 0.47 106.00 4.03
Mean 14.41 1.08 0.01 0.03 7.86 2.28 210.70 8.09
Median 4.60 0.03 0.00 0.00 7.94 2.10 203.50 8.11
Max 457.00 270.98 0.95 0.77 8.90 12.30 325.00 12.38

Monthly

Min 0.00 0.00 0.00 0.00 6.83 0.60 141.50 5.49
Mean 64.22 1.08 0.01 0.03 7.86 2.28 210.70 8.09
Median 43.70 0.04 0.01 0.002 7.88 2.11 202.90 8.12
Max 477.60 68.90 0.21 0.67 8.55 10.45 297.00 11.17

Autumn

Min 43.30 0.00 0.00 0.00 7.19 0.66 153.60 5.99
Mean 161.40 1.11 0.02 0.03 7.81 2.56 214.30 8.16
Median 127.60 0.11 0.01 0.01 7.79 2.31 214.20 8.36
Max 381.60 11.11 0.09 0.22 8.25 7.03 290.40 10.58

Winter

Min 33.20 0.00 0.00 0.00 7.15 0.75 154.40 6.46
Mean 89.17 0.19 0.01 0.04 7.76 3.37 208.90 8.04
Median 85.00 0.05 0.01 0.02 7.80 3.30 212.80 7.73
Max 164.60 1.66 0.04 0.35 8.15 36.36 267.00 10.34

Spring

Min 47.00 0.00 0.00 0.00 7.27 0.96 161.20 5.96
Mean 175.50 0.24 0.01 0.02 7.95 2.94 209.50 7.95
Median 169.20 0.08 0.01 0.004 7.98 2.21 211.70 7.48
Max 373.30 2.42 0.03 0.18 8.55 4.75 273.30 10.58

Summer

Min 65.40 0.00 0.00 0.00 7.36 1.56 171.70 5.86
Mean 338.80 2.81 0.01 0.02 7.99 2.49 210.80 8.25
Median 304.00 0.18 0.01 0.004 8.06 2.33 217.50 8.07
Max 640.40 23.54 0.03 0.10 8.36 4.54 277.70 10.39

3.2. Variation in Water Quality Indicators

This study did not explore and compare all possible combinations of predictors,
rather it focused on using the GAM methodology to observe the influence of rainfall and
streamflow on the variation in water quality parameters. Water quality parameters often
exhibit profound seasonality along with temporal changes. Further, it is also recognised
that within a watershed, the primary source of water (such as baseflow versus surface
runoff) and its subsequent impact on water quality can fluctuate over time [9]. Therefore,
this study examined these dynamics across three temporal scales, such as weekly, monthly,
and seasonal, to observe the responses of water quality indicators. The response of each
parameter was measured individually using the GAM model. The GAM model was applied
to the raw data without altering the actual values to observe the true impact. The results
derived from the GAM analysis are presented in Table 2.
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Table 2. Output of the GAM model for WQ parameters.

Time Scale WQ Parameter Model Intercept GCV edf (Streamflow) edf (Rainfall)

Weekly

PO4
3− 0.01 0.00 1.00 1.00

NH3-N 0.03 0.01 1.00 1.00
pH 7.86 0.16 1.00 *** 7.06 **

Turbidity 2.28 1.94 8.58 ** 5.46
TDS 210.65 0.13 9.00 *** 7.83 ***
WQI 8.09 1.77 8.73 *** 1.58

Monthly

PO4
3− 0.01 0.00 1.00 1.00

NH3-N 0.03 0.00 1.00 1.57
pH 7.56 0.12 2.22 * 1.00

Turbidity 2.29 1.65 6.36 2.05
TDS 210.73 0.12 8.49 *** 1.65
WQI 8.09 1.68 8.17 ** 1.64

Autumn

PO4
3− 0.02 0.01 1.00 1.00

NH3-N 0.02 0.00 8.79 ** 5.81 ***
pH 7.81 0.08 1.00 * 1.00

Turbidity 2.55 0.78 8.49 ** 2.73
TDS 214.32 0.13 1.00 * 2.37
WQI 8.16 1.87 1.00 2.53

Winter

PO4
3− 0.01 0.01 5.28 * 5.18 **

NH3-N 0.04 0.00 1.00 1.00
pH 7.76 0.05 2.86 * 1.00

Turbidity 2.24 0.14 2.87 * 1.00
TDS 208.93 0.12 1.86 * 1.00
WQI 8.04 1.46 1.75 1.35

Spring

PO4
3− 0.01 0.01 1.00 1.00

NH3-N 0.03 0.00 1.00 1.00
pH 7.94 0.11 1.00 * 1.00

Turbidity 2.21 1.04 2.23 1.11
TDS 209.45 0.11 3.93 * 1.00
WQI 7.94 1.72 1.00 1.00

Summer

PO4
3− 0.01 0.00 1.00 6.51 **

NH3-N 0.03 0.00 5.15 ** 2.08
pH 7.99 0.08 1.00 1.00

Turbidity 2.49 0.25 7.52 *** 1.00
TDS 219.81 0.16 1.00 1.00
WQI 8.25 1.81 1.00 1.00

N.B: GCV = generalised cross-validation, edf = effective degree of freedom. *** refers to p < 0.001, ** refers to
p < 0.01, and * refers to p < 0.05.

The model intercept, which represents the baseline level assuming no influence from
the predictor variables, was found to be significant (p < 0.001) across all temporal scales.

The GCV score in the ‘mgcv’ package in R can be taken into consideration for selecting
the appropriate level of smoothness and serves as an estimator of prediction error, with
smaller values indicating a better fit of the model [55]. The GCV scores in the developed
GAM models varied across different temporal scales and water quality parameters, and
the average values were 0.67, 0.59, 0.48, 0.30, 0.50, and 0.38 in the weekly, monthly, and
four seasonal scales (autumn, winter, spring, and summer), respectively. These values
indicated that the model fitted with appropriate smoothing to the data and minimised
the risk of overfitting. In the weekly scale, the lowest GCV score was observed for the
PO4

3− model, which was found to be better compared to the turbidity (1.94) and WQI
(1.77) models. The values on the monthly scale also achieved a good balance in capturing
the underlying patterns in the data, where the PO4

3− and NH3-N models exhibited the
lowest values (close to zero), and the turbidity (1.65) and WQI (1.68) models had the highest
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values. The values of seasonal scales indicated that the model’s performance might vary
due to seasonal changes.

The smooth functions of each covariate were found to be most significant in weekly
data. The effective degree of freedom (edf) for rainfall and streamflow are presented in
the last two columns (five and six) in Table 2, and the significance of each edf is almost
consistent for pH, turbidity, and TDS. edf is a summary statistic of GAMs which represents
the degree of nonlinearity of a smooth function. An edf of 1 corresponds to a linear
relationship, while an edf greater than 1 but less than or equal to 2 signifies a weakly
nonlinear relationship, and an edf greater than 2 indicates a highly nonlinear relationship.
Based on the edf values, highly non-linear relationships were observed between streamflow
and turbidity, and TDS and WQI. However, a significant linear correlation was observed
between pH and streamflow, particularly in weekly and autumn seasonal data, where the
edf values ranged from 1 to 2.86.

This finding strongly agrees with the results from previous studies, where pH was
found to increase significantly in surface waters adjacent to agricultural lands compared to
urban and natural landscapes, as well as from paved and unpaved forest roads [56,57]. In
the case of PO4

3−, there was a nonsignificant linear relationship between discharge and
rainfall. However, during the winter season, a significant nonlinear (5.28) relationship was
observed. Moreover, NH3-N showed a nonsignificant linear relationship in the weekly
and monthly scales, as well as in the winter and spring seasons, but exhibited significant
nonlinear variations during the summer (5.15) and autumn (8.79) seasons. Finally, WQI
showed a linear relationship in three seasons (autumn, spring, and summer) and a weakly
linear relationship in the winter season.

On both the weekly and monthly scales, WQI showed a significant nonlinear variation.
Short time variations often reflect the impact of storms or dry spells, leading to substantial,
however, temporary changes, and the seasonal variability underscored the influence of
prolonged climatic conditions on water quality parameters and associated WQI. From the
analysis of weekly and monthly outputs, it was observed that the significant nonlinearity
of pH, TDS, and turbidity collectively caused the significant nonlinearity of WQI, whereas
NH3-N and PO4

3− exhibited a minimal influence. The notable response of pH, TDS, and
turbidity to streamflow played a significant role in influencing WQI, highlighting the impor-
tance of monitoring these parameters during heavy rainfall. Storm water runoff increases
turbidity levels in both surface and subsurface flows, which sometimes exceeds the upper
limits as recommended in water quality guidelines. High TDS levels in surface water
are often the results of agricultural runoff, unsustainable farming practices, uncontrolled
animal grazing, and wildlife influences. Tourist destination places, near water sources
such as recreational parks, can gradually contribute to an increase in the concentration
of dissolved solids over time [58–60]. This analysis provides insights into the dynamic
relationships between rainfall, streamflow, and various water quality parameters across
different temporal scales.

3.3. Performance Analysis of the WQI Prediction Model

In this study, six models were developed to predict WQI using streamflow as input data
on three temporal scales (weekly, monthly, and seasonal). Among the six prediction models,
the XGBoost-BO optimised model provided the best accuracy on monthly aggregated data.
The plots of observed and predicted data during both the training and testing phases of the
proposed model are summarised in Figures 3 and 4.

Upon examining the comparison plots of different temporal scales, it was observed
that during the training phase (Figure 3), there was a strong agreement between the actual
and predicted values, particularly notable in the weekly and monthly data, where the
lines closely aligned. However, the seasonal data (autumn, winter, spring, and summer)
also showed a satisfactory match, although slight deviations could be noted. In the sub-
sequent set of plots (Figure 4) during the testing phase, the weekly and monthly data
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showed a noticeable discrepancy, with the predicted values often either underestimating or
overestimating the observed values.
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As described in the methodology section, Bayesian optimisation was applied to opti-
mise the parameters to develop the XGBoost regression model to predict the WQI. BO only
optimises the machine learning model during the training phase, and hyperparameter optimi-
sation can vary with different datasets. The optimum hyperparameters identified by BO are
those which perform best at the cross-validation of training data, without certainty that they
perform best on the testing data [61]. The prediction performance of the model was assessed
using three accuracy metrics such as R2, RMSE, and MAE. Table 3 shows the values of these
accuracy metrics for both the training and testing phases of the proposed models.

Table 3 and Figure 5 represent a comprehensive overview of the performance metrics
for the proposed WQI prediction model across different time scales during both the training
and testing phases. The R2 values indicate a strong correlation between the observed and
predicted WQI values during the training phase, ranging from 0.75 to 0.96 across various
time periods. However, the testing phase shows a moderate decline, with R2 values ranging
from 0.52 and 0.70, highlighting a slight reduction in model accuracy.
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Table 3. Summary of the performance metrics of the regression models at six different temporal scales.

Performance
Metrics Phase

Time Period

Week Month Autumn Winter Spring Summer

R2 Training 0.75 0.91 0.92 0.86 0.75 0.96
Testing 0.67 0.70 0.66 0.52 0.68 0.62

MAE
Training 0.58 0.20 0.14 0.15 0.23 0.08
Testing 0.55 1.44 0.24 0.64 0.35 0.63

RMSE
Training 0.48 0.42 0.35 0.38 0.61 0.22
Testing 0.79 1.69 1.62 1.86 1.20 0.95

The mean absolute error (MAE) values further elucidate the model’s performance,
where the lower MAE values during the training phase (ranging from 0.08 to 0.58) suggest
a high level of accuracy in the model’s predictions. In contrast, higher MAE values were
observed during the testing phase, particularly for the monthly data (1.44), indicating
greater discrepancies between the observed and predicted values during this period.

The root mean squared error (RMSE) values reinforce these findings, with the training
phase showcasing relatively low RMSE values (ranging from 0.22 to 0.61), reflecting the
model’s robust performance. Conversely, the testing phase exhibits higher RMSE values,
especially for the winter and autumn periods (1.86 and 1.62, respectively).
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4. Discussion

The GAM model applies an additive link function to enumerate the relationship
between the response variable and the nonparametric predictor variables [47]. In this
study, each water quality parameter was considered a response variable, while rainfall and
streamflow were the predictor variables. The application of the generalised additive model
(GAM) proved to be an effective and insightful way of characterising the complex, nonlinear
relationships between the individual water quality parameters and hydrological variables
in our study. We visualised these relationship and quantified their significance, aligning
with previous studies that correlated streamflow metrics, rainfall, and flow diversion
with water quality variations [13]. This evaluation can facilitate easy interpretation across
different covariates and models, which is particularly useful for communicating findings to
nonspecialised audiences [62].

The WQI provides a standardised statistical approach to support the assessment of
management strategies and the identification of areas that require reform [63]. A thorough
understanding of the temporal dynamics of lake or reservoir water is crucial because it
allows water quality managers to identify factors driving changes in water quality, predict
future conditions, and take targeted measures [64]. The detailed analysis of the variability
in water quality parameters across weekly, monthly, and seasonal scales reveals that weekly
and monthly variations often imitate acute events such as storms or dry periods, which
may cause temporary, but significant, changes in water quality. However, conducting a
monthly analysis helps to identify the persistence of certain water quality issues which
may not be evident on a weekly scale. This is because the cumulative effects of rainfall and
streamflow over a month show more stable patterns. The assessment of seasonal patterns
captures the impact of different climatic conditions (autumn, winter, spring, and summer)
and provides insights into how prolonged periods of rainfall and dry seasons influence
water quality, which is vital for developing long-term water management strategies.

Moreover, an ensemble machine learning model combining XGBoost and a BO
algorithm was proposed for the first time to predict WQI, considering discharge as
the input parameter, with an average accuracy of 85% (R2), MAE of 0.33, and RMSE
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of 0.42. The XGBoost model’s distinct advantages include mitigating overfitting, par-
allelised tree building, and portability [39]. The results presented by combining the
statistical methods and machine learning models across different temporal scales can
easily be compared and understood.

However, our approach did not account for other factors such as soil classification and
flow diversion during correlation analysis, and the WQI prediction relied solely on a single
dominant variable. Furthermore, the analysis and results were based on observational
data, which may introduce uncertainties. The exclusion of additional variables could have
underestimated the overall impact on water quality. An improvement in this approach
may include considering more variables alongside streamflow for the prediction of WQI.
While the proposed model performed well during the training phase, further refinement is
necessary to achieve a comparable accuracy during the testing phase. Another limitation
of our study was that it considered a single case study due to the unavailability of the
streamflow data of other reservoirs. Future study is recommended to use remote sensing
data and machine learning algorithms to estimate streamflow and WQI prediction.

5. Conclusions

Our study leveraged a generalised additive model (GAM) to explore the correlations
between hydrological variables (rainfall and streamflow) and various water quality param-
eters (PO4

3−, N_NH3, pH, turbidity, TDS, and WQI). This study introduced an optimised
ensemble model XGBoost-BO designed for predicting WQI which can improve the accuracy
and reliability in forecasting WQI values, offering a deeper understanding of the factors
influencing water quality. The Cressbrook Reservoir was selected as the representative case,
and the applicability of our method was verified at different temporal scales. The main
findings of this study can be summarised as follows:

• The GAM results reveal significant correlations between streamflow and several water
quality parameters. Specifically, on a weekly temporal scale, turbidity, TDS, and WQI
showed a significant nonlinear relationship with discharge, which indicates that short-
term variations in runoff may have pronounced effect on these parameters. On the other
hand, pH, PO4

3−, and NH3-N showed a linear relationship with discharge. The high
sensitivity of turbidity and TDS to discharge suggests that managing flow rates and
reducing runoff during storm events could be crucial in water quality management.

• On a monthly basis, streamflow exhibited smoother relationships for most parame-
ters but still influenced TDS and WQI nonlinearly. These correlations highlight the
sustained influence of hydrological variables over longer periods.

• Seasonal analysis provides further insights; in autumn and winter, NH3-N and PO4
3−

displayed high edf values, respectively. However, pH showed a linear and WQI
exhibited a weakly linear to linear relationship with discharge over four seasons. The
seasonal interrelationship of various water quality parameters with the hydrological
variables implies that management practices need to be adjusted seasonally to address
the specific challenges posed in each period.

• The accuracy metrics of the WQI prediction model using XGBoost-BO, as previously
discussed, are consistent with these findings. The model’s performance varies across
different temporal scales, exhibiting a higher accuracy during the training phase
compared to the testing phase. This variation underscores the complexity of predicting
water quality, influenced by the dynamic interplay of hydrological variables.

Understanding the temporal dynamics of rainfall and streamflow and their influ-
ence on water quality is paramount for developing effective management strategies,
particularly amidst climate change challenges. Surface water quality can fluctuate in
response to climate disruptions such as extreme rainfall and droughts, such as the di-
lution and concentration of water quality parameters and physical processes like bank
erosion. Additionally, water quality is influenced by the interactions of surface runoff
with organic matter on the land [65,66]. Heavy precipitation causes increased runoff
which may increase water contamination and public health concerns [66]. In our previous
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study, the water quality parameters were selected based on the fact of which parameters
were being affected due to extreme rainfall events as a result of climate change [40]. The
findings of this present study suggest that addressing significant climate impacts and
site-specific determination and modelling with long-term precipitation, streamflow, and
water quality data is essential to achieving sustainable water quality objectives. By
applying a similar comprehensive analysis and modelling, the regional evaluation of
climate impacts on water quality could be explored.

Additionally, understanding how water quality parameters vary across different tem-
poral scales in response to rainfall and streamflow enables local authorities to develop more
effective and targeted strategies for maintaining and improving water quality. Specifically,
weekly responses can help to detect and respond to sudden or critical events swiftly, while
monthly analyses provide guidance for medium-term interventions to address significant
water quality issues. Seasonal observations offer valuable insights into the long-term effects
of climatic variations, enabling policy makers to implement proactive measures in anticipa-
tion of seasonal changes. The proposed multi-temporal approach ensures a comprehensive
understanding of the measures for the development of adaptive strategies and management
practices that are responsive to both short-term and long-term fluctuations.
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