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Abstract

This paper examines the probabilities of outcomes

from rolling dice with the dimension 1 × 1 × r for vari-

ous values of r. Experiments were conducted by school

students and University students. The results of the ex-

periments are given and the probabilities examined using

a generalized linear model. Notes are also made about

the value of the experiment in teaching each group of

students.

Keywords: binomial; generalized linear model; probabil-

ity; experimentation; dice

1 INTRODUCTION

Dice have been used for centuries in gambling. Probabilities
of various outcomes have been studied since about 1654 when
Blaise Pascal and Pierre de Fermat began discussions. All of
these discussions naturally focus on the use of standard cubic
dice. But what happens if we consider dice of dimensions 1 ×
1 × r? (Note that r can be considered the aspect ratio of the
die.)

This problem was recently posed to a group of Year 11 and 12
students (ages about 16 and 17) and then a few weeks later to
a small group of undergraduate university students studying
generalized linear models. A picture of the dice in question (see
Figure 1) was presented to the students and the students were

∗Peter K. Dunn is a Lecturer in Statistics in the Faculty of Sciences, Uni-
versity of Southern Queensland, Toowoomba QLD Australia, 4350 (email:
dunn@usq.edu.au). The author acknowledges the workmanship of Oliver
Kinder in producing the three sets of dice used in the experiment and the
dedication of the students in rolling so many dice; and would like to thank
the reviewers for some important corrections and suggestions that improved
the article.

1



asked a series of questions. Note that both 1 × 1 faces on the
die are labelled with a 6. The students then performed a set of
experiments on some dice constructed for various values of r.

This paper has two foci: First, the results of rolling the
non-standard die and the associated probabilities are discussed.
Secondly, the approach of the two different student groups is ex-
amined. Initially, the Year 11 and 12 will be considered followed
by the University students. Some results will then be presented.

2 YEAR 11 AND YEAR 12 STUDENTS

I was asked to conduct a one-hour session for Year 11 and 12
school children at a Maths Day conducted by a local school.
The Maths Day consisted of four one-hour activities throughout
a day, conducted by willing school teachers and University staff
(namely myself).

As a statistician, I was keen to be involved as previous Maths
Days (and their precursor, Maths Camps) had been devoid of
any statistical activities; I was hoping to change that. The
result is the activity discussed in this paper, prompted by a talk
by Dave Griffiths which I had the pleasure of attending at the
Australian Statistics Conference in Adelaide in 2000.

2.1 Preliminaries

Before approaching the problem of rolling a 6 with non-standard
dice, I tried to raise a bit of interest in the old (and potentially
uninteresting) problem of rolling dice. I began by examining
some data of actual dice rolls from history (using data found
in Hand, Daly, Lunn, McConway and Ostrowki (1996); data
set 131 shows Wolf’s data, the frequency of each face in 20 000
rolls; data set 263 gives Weldon’s dice data, showing counts of
various outcomes). We discussed sampling errors and computed
some simple probabilities.

I then showed them Efron’s dice, invented by Bradley Efron.
The dice consist of four cubes as shown in Figure 2. With
Efron’s dice Pr(A beats B) = 2/3, Pr(B beats C) = 2/3, Pr(C beats D) =
2/3, but also Pr(D beats A) = 2/3. The students were rather
interested in this outcome.

Having created some interest, the students were then asked
about the probabilities of various faces showing up for dice with
dimensions 1 × 1 × r. After showing a picture of teh die for
clarity (see Figure 1), they were asked to consider the plot of r
against the probability of rolling a 6, say p. Many students were
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not sure, though some proposed linear solutions while others
suggested curved and sigmoid shaped solutions.

As a guide, students were asked to consider some special
cases: When r = 1 (standard cubic dice), as r → 0 and as
r → ∞. They were then asked to make some guesses for r = 2,
r = 0.75, and r = 0.5. After discussing these issues, most
students were happy to accept that a linear relationship was
unlikely.

I then suggested an experiment be conducted to find the
form of the relationship (fortunately, I had suitable equipment
with me).

The relationship is interesting; it is not symmetric about
r = 1 for example since the probability of obtaining a 6 then
is 1/3 (remembering the two 1 × 1 faces are both marked with
a 6), which is not halfway between the limits of 0 and 1.

2.2 Experimentation

The idea of an experiment was initially treated with enthusiasm
by approximately half the students. Nonetheless, the discussion
of how to conduct the actual experiment was engaged in by all
students with an increasing degree of interest. The purpose of
the experimentation was to promote discussion of some statis-
tical concepts using a concrete example, and to then have the
students conduct a simple experiment.

Some of the question posed to the students included:

1. What values of r should we use, and why?

2. How many times should we roll each die of side r? Should
there be a different number of rolls depending on r? Ex-
plain!

3. What other factors are there that might affect the answers
besides the value of r?

4. How should the data be reported?

5. What steps should be taken to conduct the experiment?

6. How should the dice be rolled?

Naturally, the questions did not have simple correct answers,
and many students seemed (initially at least) to be reluctant to
answer because they didn’t know the ‘right’ answer. The data
were briefly analyzed; we leave this discussion until Section 4.
First, we discuss the above questions and the student repsonses.
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2.2.1 What values of r to use?

The first question was approached with some trepidation. One
student, on seeing the box of tricks I had with me, offered the
solution “Whatever you have brought along”. Some students
thought just a few values of r would be sufficient, while others
were keen for many values of r. After some discussion, most
seemed to agree that lots of dice with values of r near 1 would
be more helpful than having lots of dice with larger and larger
values of r (such as r = 2, r = 3, r = 4 and so on). Students
had previously deduced, not using this notation, that p → 0 as
r → ∞ and p → 1 as r → 0. It was also noted that if r was
too small (or too large), the probability of rolling a 6 would be
effectively one (or zero) and the notion of an experiment with a
random outcome would then fail.

Having never done the experiment myself, I was not sure of
useful values or r to use either; I was also unsure what consti-
tuted values of r that were too large or too small to remove the
random outcome element. I did have, however, a selection of
dice with me which I revealed at this time. The props consisted
of three sets with dice having the following (approximate) val-
ues of r: 0.25, 0.5, 0.75, 0.85, 0.9, 1, 1.1, 1.15, 1.25, 1.5, 1.75,
and 2. A unit was about 5cm (2 inches). I divided the students
into three groups for conducting the experiment.

2.2.2 How many times should each die be rolled?

The second question was probably the most keenly discussed of
all, and from that point discussion was more open. Some stu-
dents were of the belief that no rolls were necessary for ‘small’
and ‘large’ values of r since “everyone knows what the answer
will be” (despite some of their previous answers!). Others stu-
dents, however, were keen to roll dice numerous times in the
hope that an unusual event would appear, and probabilities very
close to, but not exactly, 0 or 1 could be estimated with some
accuracy. The students finally decided that 30 rolls for each
value of r would be used.

While 30 rolls may not seem a large number, it should be
remembered that each of the twelve die would be rolled 30 times
for a total of 360 rolls. There were also pragmatic issues: the
potential for boredom was real, and the discussion thus far had
taken about 30 minutes so there was about 30 minutes left.
The sample of size 30 therefore represented a compromise be-
tween completing the experiment in a reasonable time and hav-
ing enough data points to make some sensible conclusions.
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2.2.3 What other factors might affect the results?

Other factors that might affect the outcome were then discussed;
I was fishing for some kind of randomization and experimental
design. The students found it easy to accept that all other
variables should be kept as constant as possible—in particular,
the same person in each group should be responsible for rolling.
After some discussion, I was able to persuade the students that
randomly choosing a die to roll might be preferred over each
group starting (for example) with the largest value of r and
systematically working through the set.

These issues appeared to be received better in theory than in
practice; in practice, some students were systematically working
through the sets of dice until I reminded them of the discussion
on randomization. The groups did, however, stick with the one
person rolling the dice. However, in general it would be untrue
to say the same person rolled the dice in similar fashion; there
were some very creative rolling techniques in place to avoid the
potential problems mentioned in Section 2.2.6.

One further issue discussed was how to ensure each face had
a chance of appearing face-up. This is discussed more in Sec-
tion 2.2.6.

2.2.4 How should the data be reported?

The students answered this question easily, but I believe it is an
important question to ask. If it hadn’t been asked—even though
it was easily answered—I suspect the data recording would have
been insufficient or haphazard. Since the students had decided
to use 30 rolls for each value of r, however, reporting the number
of rolls was less prone to error than if different numbers of rolls
were chosen for various r.

2.2.5 What steps should be taken to conduct the ex-

periment?

To address this question, we simply discussed some practical
issues: Who would roll? Who would record? How would dice
be randomly selected? There were (conveniently) three groups
of four, and it was decided that each group would divide into
pairs and do half the dice each (time was scarce).

2.2.6 How should the dice be rolled?

An important issue to discuss is how to ensure each face had
a chance of appearing face-up. Unless the students were made
aware of this problem, the natural tendency, especially for the
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larger values of r, was to roll the dice out of the hand in a
systematic manner giving the faces with a six little chance of
appearing; naturally this must be warned against.

This question is of particular importance since a die rolled
on a side with r 6= 1 will (almost) never show a 6 (unless per-
haps r is very small), and a die rolled on a side length 1 will
show a 6 with probability 0.5 (unless perhaps r is very large).
Gentle rolling to give each face a reasonable chance to appear
uppermost should be the aim; extremes rolling techniques ap-
proaching those mentioned above should be avoided. A simple
demonstration of rolling dice in these extreme cases is generally
sufficient to identify and explain the problem. Indeed, attention
can be drawn by taking the cubic die and claiming the probabil-
ity of rolling a 6 is 0.5, and then demonstrating this by rolling
the die a number of times on a appropriate edge.

3 UNIVERSITY STUDENTS

A few weeks after the session with the school children, after
returning to the corridors of academia, I was teaching a course
on generalized linear models to group of three undergraduate
students. In discussions with the students (during a sidetrack),
the dice experiment was mentioned. The students seemed very
interested in the problem and proceeded to speculate on the
relationship between r and p. Because of their interest, I then
decided to use the experiment as an assignment question. The
response of the students exceeded my expectations.

Similar questions to those used for the school students (see
Section 2.2) were initially asked of the University students. Pleas-
ingly, the response was quite enthusiastic. I encouraged the stu-
dents to talk among themselves about the questions and tried
to keep myself from interjecting (except to keep them on-task).
It should be noted that the students were not aware which size
dice I had available until after the questions were answered.

The students were asked to consider the plot of r against the
probability of rolling a 6, p. Thankfully, none of the students
proposed linear solutions; indeed, they all suggested curved and
sigmoid shaped solutions between the limits of p = 0 and p = 1.

One more formal suggestion was that the probability of ob-
taining a 6 might be related to the ratio of the surface areas.
Since the total surface area is 2 + 4r, the probability of obtain-
ing a 6 then might be 2/(2 + 4r) = 1/(1 + 2r). Interestingly,
the shape of this graph is certainly not correct even though it
satisfies the limits conditions as r → 0 and r → 1, and also that
r = 1 produces the correct probability of 1/3.
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Similar questions to those asked of the school students were
asked of the university students. Only three warrant any further
discussion.

3.1 What values of r to use?

There was much discussion on this topic. The students finally
decided that numerous values of r near 1 would be beneficial,
while fewer values of r between 0 and 1 would be beneficial.
There was more discussion on values of r > 1, since this is an
unbounded region.

One student suggested values of r up to 5; others were happy
to restrict to values up to r = 2.

3.2 How many times should each die be rolled?

The second question was again the most keenly discussed of
all. Initially, the students’ answers were ad hoc like the school
students, until one student suggested determining the size of the
sample necessary to achieve given accuracy using, as found in
numerous introductory statistics classes,

n = (z∗α/2
)2p(1 − p)/B2,

where z∗α/2
is the z-score for an 100(1 − α) confidence interval;

p is the proportion; and B is the bound placed on the estimate
of p. For a 95% confidence intervals with p = 0.5, the conclusion
was that around 380 rolls would be needed for a margin of error
of ±0.05.

This was an interesting exercise as the students grappled
with the issue of estimating the necessary sample size when the
value of p was unknown (and indeed, was the quantity being
estimated). All the students knew the formula and this potential
problem, but I believe they all better understand the implication
having encountered it themselves.

3.3 What other factors might affect the re-

sults?

The students quickly realized the potential for experimental de-
sign techniques to be used. They all, thankfully, identified ran-
domization as important (especially if they were to roll each
of the twelve dice 380 times!). They also nominated control-
ling variation as important, and explained how the experiment
should be conducted so that each roll was as similar as possible.
The important issues from Section 2.2.6 were discussed at this
point.
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One student raised an interesting issue after the experiment
had been completed: He noted that in rolling dice with r near 0
or for large r that there was a human inclination (for him at
least) to try and roll the “unlikely” event. Another raised the
issue, after experimentation had been completed also, of the
physical size of the dice. For dice with small r, there is a small
physical area on which the dice could balance; in contrast, the
smaller surface areas of the dice with larger r still had a reason-
able surface area on which to land.

All the students did exceptionally well in this assignment,
and each spent many hours (probably far too many) rolling dice
to get accurate data on the probabilities. Their analyses were
thorough and thoughtful (and also submitted late, incidentally).

4 RESULTS

4.1 Initial analysis

The results are given in Table 1 and plotted in Figure 3. The
first three groups are for the school students, and the last three
‘groups’ are the University students (the letters correspond to
the students first initials). Note that the last student actually
measured the aspect ratio, r, rather than taking the (approx-
imate) values I had supplied. The school students performed
calculations on their calculator, and some plotted the data us-
ing a graphics calculator; the University students used the R
software (see Ihaka and Gentleman (1996)) for analysis. The
results at r = 1 offer a kind of check against bias: the ex-
pected proportion is 1/3, while the overall observed proportion
is 253/780 ≈ 0.33289, suggesting that there is no large bias in
the results.

Note that the University students did not have the patience
to roll the calculated 380 rolls for each of the twelve dice. That
the students rolled from 1200 to 3600 dice in total, however, is
a testament to their patience and reflects the high level of en-
thusiasm and interest that the students had for the experiment.

Combining all the data for the various values of r (for Group A,
the results were combined with the closest nominal value of r
used by the other groups), estimates of the probabilities can be
found. A plot of the probabilities is shown in Figure 4 and the
probabilities are given in Table 2. From the plot it becomes
apparent that some dice with r < 0.25 could be useful to fix the
left tail of the plot.
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4.2 Generalized linear models: background

More sophisticated analyses are possible. The University stu-
dents were asked to find a model for predicting the probability
of rolling a 6, say p, from the aspect ratio r. Since the re-
sponse variable is a proportion, all three chose to use a general-
ized linear model (glm) based on the binomial distribution (see,
for example, Dobson (1983) or McCullagh and Nelder (1989)).
Standard regression and appropriate transformation could also
be used, for example.

Generalized linear models, as proposed by Nelder and Wed-
derburn (1989), enable fitting models to a wide range of data
types. These models are based on the family of distributions
called exponential dispersion models, or EDMs, of which the
binomial is a member (as are the normal, gamma and Poisson
distributions, for example). Generalized linear models consist
of two components:

1. The response variable, yi (p̂i is used for binomial data),
comes from an EDM with mean µ (or 0 < p < 1) and
dispersion parameter φ (nominally, φ = 1 for the binomial
distribution); and

2. The expected values of the yi, µi (0 < pi < 1 is used for
the binomial distribution), are related to the covariates xi

through a monotonic, differentiable link function g(·) so
that

g(µi) = xT
i β

where β is a vector of unknown regression coefficients.

Often, the linear component xT
i β is given the symbol ηi (the

linear predictor), so that

g(µi) = ηi = xT
i β.

There are three link functions commonly used for binomial
glms to map 0 < p < 1 onto −∞ < η < ∞: the logistic,
η = log(p/{1 − p}); probit η = Φ−1(p), where Φ(·) is the in-
verse cumulative distribution function for the standard normal
distribution; and complementary log-log η = log{− log(1 − p)}.
The first two are often very similar and are symmetric about
p = 0.5; the third does not share this symmetry. For this rea-
son, the complementary log-log link function may prove to be
the best of the three, as the data are not expected to be sym-
metric (see Section 2.1).

To asses the models, a quantity called the deviance can be
used (for example, see Firth (1991)). In the case of a binomial
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distribution, the deviance is

D(y, µ̂) = D(y, p̂) = 2
n

∑

i=1

{(

1 −
yi

mi

)

log
1 − (yi/mi)

1 − p̂i
+

yi

mi
log

(yi/mi)

p̂i

}

for a sample of size n (in this application, the number of values
of r), where yi are the number of 6’s rolled for each r, mi are
the total number of rolls for each r, and p̂i are the predicted
proportions for each r. The deviance plays a role similar to the
residual sums-of-squares for standard regression models; indeed,
in the case of a normal distribution the deviance can be shown
to be exactly the residual sum-of-squares. It can also be shown
that the deviance has approximately a χ2-distribution on n− p
degrees of freedom (where n is the sample size and p = rank(X)
where X is the design matrix) when φ is known, otherwise an
F -test is appropriate (details can be found in, for example, Mc-
Cullagh and Nelder (1989), Section 2.3.2). Two nested models
can then be compared by using an analysis of deviance table
in a similar way to how the variance is used in an analysis of
variance table for normal-based models.

Generalized linear models can be fitted using most popular
statistical software packages. The software used here is R.

4.3 Generalized linear models: results

While each of the students were to analyze their own data, I have
the luxury here of using the combined results. This means the
possible explanatory variables are the aspect ratio r, the group,
and the interaction between them. Note that the dice were not
constructed as three separate sets of 12 so any effect due to the
set of dice used cannot be definitely measured. However, since
the University students rolled far more times than the school
students, any group effect can be primarily attributed to the
properties of the dice also.

Two results become quickly apparent. First, the comple-
mentary log-log link function is the superior link function (on
the basis of the residual deviance); see Table 3. Secondly, the
interaction is statistically significant; more formally, an analysis
of deviance test indicates that all three possible covariates are
statistically significant; see Table 4. The model with the interac-
tions and using the complementary log-log link function will be
assumed hereafter unless indicated. In addition, for Group A,
the values rA (rather than r; see Table 1) were used in all com-
putations.
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The mean deviance can be used as an estimate of φ; here
it is φ̂ = 93.9/60 ≈ 1.57, which is close to the nominal value
of 1 for the binomial distribution. For this reason, a χ2 test has
been used rather than an F -test; the conclusion are similar in
any case.

The fact that Group is significant may be attributed to the
set of dice used, or imply the rolling techniques were different.

To evaluate the model, a Q-Q plot of the quantile residuals
(see Dunn and Smyth (1996)) can be used to determine if the
model appears suitable and, in particular, if the binomial distri-
bution appears adequate for modelling the responses. This plot
is shown in Figure 5 and indicates the model is adequate, though
one point is of concern at the left of the plot. The large nega-
tive residual corresponds to Observation 38 (Group A; r = 0.45).
The complementary log-log link produces a smaller residual de-
viance than the logit link and a large negative residual; the Q-Q
plot using the logit link function (not shown) indicates some
larger positive residuals, and this link also produces a larger
residual deviance.

Although the Group is an important factor, a simple rela-
tionship between the aspect ratio r and the probability of rolling
a 6 is of interest; such a model can be found in R based on the
complementary log-log link function as

Φ(p̂i) = 2.04188 − 2.92478r,
(0.05164) (0.05800)

where the standard errors are in parentheses below the param-
eter estimates; both parameters are highly significant. This in-
formation could be used to explicitly determine a relationship
between r and p ; it is a little messy and is not given here. The
prediction curves using the complementary log-log link function
and, for comparison, the logit link function are plotted in Fig-
ure 6.

The Q-Q plot of the quantile residuals for this model is shown
in Figure 7. Observation 28 (Group 3, r = 0.85) corresponds
to the large negative residual; this is shown in Figure 6 with
a triangle over the plotted point. Cook’s distance can be used
to identify influential observations (see McCullagh and Nelder
(1983), Section 12.7.3); Cook’s distance for each observation
is shown in Figure 8. Observation 38 (Group A; r = 0.45)
corresponds to the large value; this is shown as a superimposed
cross on the data point in Figure 6. This point is also noted
above in the discussion of the full model.
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5 CONCLUSIONS AND REFLECTIONS

This paper, as mentioned in the Introduction, has two main foci,
into which this section is divided.

First, the statistical results. While not claiming to be defini-
tive, some results have been presented for estimating the prob-
ability of rolling a 6 for 1 × 1 × r dice (when each 1 × 1 face
is marked with a six). The data is well modelled by a bino-
mial generalized linear model using a complementary log-log
link function. There is a suggestion that the dice or the tech-
nique of the rollers may be important.

Secondly, the teaching exercise. I found the exercise to be
surprisingly well received by both the school and University stu-
dents. The experiment was a scaffold for discussing various
statistical concepts—such as sampling error, designing exper-
iments, randomization, data recording as well as analysis and
graphing. For the University students, concepts such as estimat-
ing sample size, modelling and diagnostic tests were also used.
For both groups, there was a great deal of interest in finding
estimates of the probabilities. Importantluy, the question was
simple to pose, easily understood and of interest to the students;
the experiment was also simple to perform (once the dice were
been constructed).

The exercise appeared to be a worthwhile contribution to
Maths Day and I believe the students left with a sense of un-
derstanding some of the basic statistical concepts. Likewise,
the University students found the idea appealing and invested a
large amount of time into the assignment, while gaining an un-
derstanding of modelling with a binomial glm and performing
some simple diagnostic tests.
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Table 1: The results of throwing 1× 1× r dice; both 1× 1 faces
were marked with a 6. The first three groups were collected by
Year 11 and 12 school children; the final three were collected by
three University students. Note that the last student actually
measured the aspect ratio, r.

Ratio Group 1 Group 2 Group 3 Group D Group S Group A

r s1 n1 s2 n2 s3 n3 sD nD sS nS rA sA nA

0.25 30 30 27 30 30 30 294 300 97 100 0.22 266 270
0.50 28 30 26 30 29 30 234 300 84 100 0.45 208 270
0.75 18 30 20 30 24 30 167 300 68 100 0.73 170 270
0.85 16 30 16 30 23 30 151 300 48 100 0.86 139 270
0.90 19 30 13 30 15 30 144 300 48 100 0.90 116 270
1.00 12 30 8 30 12 30 99 300 29 100 1.00 93 270
1.10 9 30 8 30 11 30 62 300 20 100 1.12 80 270
1.15 4 30 5 30 7 30 79 300 24 100 1.16 61 270
1.25 6 30 5 30 4 30 58 300 16 100 1.24 48 270
1.50 1 30 1 30 2 30 14 300 5 100 1.50 24 270
1.75 0 30 2 30 1 30 5 300 4 100 1.76 14 270
2.00 0 30 0 30 0 30 4 300 0 100 2.00 10 270

Table 2: The probabilities of rolling a 6 for various values of r
for the die in Figure 1. The data in Table 1 have been combined
(r was used rather than rA with Group A for this purpose).

Aspect Prob. of Aspect Prob. of

ratio r rolling 6 ratio r rolling 6

0.25 0.98 1.10 0.25
0.50 0.80 1.15 0.24
0.75 0.61 1.25 0.18
0.85 0.52 1.50 0.06
0.90 0.47 1.75 0.03
1.00 0.33 2.00 0.02

Table 3: The deviance for various binomial generalized linear
models fitted without the interaction (top line) and with the
interaction (bottom line).

Link function used

Logit link Probit Comp. log-log

r + Group 141.6766 168.1534 121.1826
r + Group + r:Group 111.2969 131.6479 93.8946
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Table 4: The analysis of deviance table from R after fitting the
full model including the aspect ratio r (r), the group (Group)
and the interaction (r:Group). The first column are the vari-
ables, followed by degrees of freedom (df), deviance, residual
degrees of freedom, residual deviance, and the p-value based on
a χ2 test of the change in deviance.

Df Deviance Resid. Df Resid. Dev P(>|Chi|)

NULL 71 4036.2

r 1 3894.6 70 141.6 0.0

Group 5 20.4 65 121.2 1.060e-03

r:Group 5 27.3 60 93.9 5.013e-05
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Figure 4: The probabilities of rolling a six for various values of r
for the die in Figure 1. The data in Table 1 have been combined.
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Figure 5: A Q-Q plot of the quantile residuals for the binomial
glm fitted with a complementary log-log link function and in-
cluding the interaction terms. A good model would have the
point lying (approximately) on the straight line.
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Figure 6: The prediction curves for the dice data, using both
the complementary log-log and logit link functions. The filled
points are from the University students data and are based on
more information than the data of the school students (unfilled
points) and are weighted proportionally heavier in fitting the
model. The triangle identifies the point corresponding to the
large negative residual in Figure 7; the cross identifies the point
with very high influence as shown in Figure 8.
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Figure 7: A Q-Q plot of the quantile residuals for the bino-
mial glm fitted with a complementary log-log link function with
only r as a covariate. A good model would have the point lying
(approximately) on the straight line.
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Figure 8: Cook’s distance for the binomial glm fitted with a
complementary log-log link function with only r as a covariate.
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