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A B S T R A C T   

This study uses machine learning (ML) models for a high-resolution prediction (0.1◦×0.1◦) of air fine particular 
matter (PM2.5) concentration, the most harmful to human health, from meteorological and soil data. Iraq was 
considered the study area to implement the method. Different lags and the changing patterns of four European 
Reanalysis (ERA5) meteorological variables, rainfall, mean temperature, wind speed and relative humidity, and 
one soil parameter, the soil moisture, were used to select the suitable set of predictors using a non-greedy al-
gorithm known as simulated annealing (SA). The selected predictors were used to simulate the temporal and 
spatial variability of air PM2.5 concentration over Iraq during the early summer (May-July), the most polluted 
months, using three advanced ML models, extremely randomized trees (ERT), stochastic gradient descent 
backpropagation (SGD-BP) and long short-term memory (LSTM) integrated with Bayesian optimizer. The spatial 
distribution of the annual average PM2.5 revealed the population of the whole of Iraq is exposed to a pollution 
level above the standard limit. The changes in temperature and soil moisture and the mean wind speed and 
humidity of the month before the early summer can predict the temporal and spatial variability of PM2.5 over 
Iraq during May-July. Results revealed the higher performance of LSTM with normalized root-mean-square error 
and Kling-Gupta efficiency of 13.4% and 0.89, compared to 16.02% and 0.81 for SDG-BP and 17.9% and 0.74 for 
ERT. The LSTM could also reconstruct the observed spatial distribution of PM2.5 with MapCurve and Cramer’s V 
values of 0.95 and 0.91, compared to 0.9 and 0.86 for SGD-BP and 0.83 and 0.76 for ERT. The study provided a 
methodology for forecasting spatial variability of PM2.5 concentration at high resolution during the peak 
pollution months from freely available data, which can be replicated in other regions for generating high- 
resolution PM2.5 forecasting maps.  
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1. Introduction 

1.1. Research background 

Air pollution substantially affects public health (Jamei et al., 2022; Li 
et al., 2020; Mokoena et al., 2020), crop yield (Burney and Ramanathan, 
2014; Rollin et al., 2022), human productivity (Chen and Zhang, 2021), 
social activities (Liu et al., 2022; Yan et al., 2019) and economy (Jiang 
et al., 2020; Mujtaba and Shahzad, 2021). Globally, 9 out of 10 people 
breathe polluted air, which causes approximately 7 million premature 
death annually (Fowler et al., 2020). The global annual cost of disease 
burden due to higher fine particulate matter (PM2.5), a major constituent 
of air pollution, is nearly U$21 billion (Lelieveld et al., 2015; World 
Bank Group and IHME, 2016). It is also responsible for 1.8 billion 
working days loss. Its cumulative effects on different sectors are equiv-
alent to U$2.9 trillion economic loss, nearly 3.3% of global GDP 
(Kjellström et al., 2019). Despite significant economic losses, air pollu-
tion is gradually increasing in most parts of the globe, particularly in 
developing countries. A study showed that global mean population- 
weighted PM2.5 concentrations increased by 38%, and the related 
excess deaths increased from 89% in 1960 to 124% in 2009 (Butt et al., 
2017). A continuous increase in air pollution would cause an increase in 
related healthcare costs to USD 176 billion in 2060 and an annual 
working-day loss of 3.7 billion (Lanzi, 2016). 

Though PM2.5 concentration depends on various sources, their 
movement, transport and deposition depend on various meteorological 
and earth’s surface physical factors (Elminir, 2005; Fu et al., 2021; 
Hashim et al., 2021; Mokoena et al., 2020; Qi et al., 2020; Wang et al., 
2018). A study by He et al. (2017) showed that a 70% variation in air 
pollution in China depends on different meteorological variables. Pre-
cipitation improves air quality by forcing fine air particulate down to the 
ground (De Nevers, 2010). Air temperature and wind influence air 
movement and, thus, air pollution (Yang et al., 2020). High humidity is 
positively related to air PM2.5 levels. Another study showed that tem-
perature and wind speed are major meteorological factors defining air 
pollution in China (Li et al., 2019). 

The above studies indicate the possibility of forecasting PM2.5 from 
meteorological variables. Therefore, several attempts have been made to 
forecast PM2.5 from meteorological variables (Bai et al., 2016). The early 
initiatives were based on conventional statistical regression models, 
including linear regression (Pérez et al., 2000), generalized linear 
regression (Wu et al., 2013), and autoregressive moving averages (Wang 
and Guo, 2009). The conventional regression-based models provide 
prediction by fitting linear relationships between meteorological vari-
ables and air PM2.5 concentration. However, in practice, the relation-
ships are often not linear. For example, the rainfall amount and the 
concentration of PM2.5 in the air have an inverse but nonlinear rela-
tionship. Several nonlinear statistical regression models have been 
developed to overcome this challenge (Cobourn, 2010; Sorek-Hamer 
et al., 2013). However, the capability of nonlinear statistical models is 
very limited. The highly nonlinear and complex relationships are often 
encountered between meteorological variables and PM2.5 which is not 
possible to map using those techniques. 

1.2. Machine learning literature review 

The excellent ability of machine learning (ML) models to map 
nonlinear relationships has opened a new avenue for better prediction of 
PM2.5 with sufficient lag time. Several ML models have been employed 
in recent years for PM2.5 concentration predictions. This includes arti-
ficial neural networks (Casallas et al., 2021; Ventura et al., 2019), 
support vector regression (Zhang et al., 2021), extreme learning ma-
chines (Yin et al., 2021), gradient boosting (He et al., 2022), and deep 
learning (Xiao et al., 2020). Several studies also compared the perfor-
mance of different ML algorithms to find the best method. For example, 
Li et al. (2021) used a combination of support vector regression, random 

forest, and neural networks to predict PM2.5 concentrations. Wu et al. 
(2020) used a combination of random forest and gradient boosting de-
cision trees to predict PM2.5 concentrations. A comprehensive review 
conducted for various ML methods used for PM2.5 prediction, including 
support vector regression, random forest, artificial neural networks, and 
deep learning (Peng et al., 2022). The studies showed the excellent 
performance of ML models in forecasting PM2.5 concentration (Danesh 
Yazdi et al., 2020). In recent years, ML algorithms are advanced further 
to handle more randomness in data, store memory to predict multiple 
lead time values, and create a more comprehensive parameter range to 
map higher data nonlinearity (Bagheri, 2022; Chang et al., 2020; Cui 
et al., 2022; Karimian et al., 2019; Xiao et al., 2019). The LSTM is one 
such algorithm which uses a broader range of hyperparameter values. It 
helps LSTM to work on a wide range of parameters to explore the pattern 
of a complex multidimensional series. Its capacity to store memory also 
helps to improve its prediction capability. Stochastic gradient descent- 
backpropagation (SGD-BP) is another advanced version of the ANN al-
gorithm which uses optimized search to minimize the model error. Its 
stochastic nature to converge to higher accuracy has made it superior to 
many other ML algorithms (Katongtung et al., 2022). The decision tree- 
based models have also been improved by adding randomness in 
generating the trees. Extremely randomized tree (ERT) is one such de-
cision tree algorithm that is computationally more efficient (Afshar 
et al., 2022; Sachdeva and Kumar, 2022). These three algorithms have 
been widely used in many environmental studies, including pollution 
modelling (Bacanin et al., 2022; Ibrahim et al., 2022; Pruthi and Liu, 
2022; Q. He et al., 2022), but have not been explored yet in forecasting 
spatiotemporal distribution of PM2.5. 

Long-Short Memory Network (LSTM), a robust version of the deep 
learning model, was developed to forecast PM2.5 concentration in Bei-
jing, China (Niu et al., 2023). The authors incorporated dew point 
temperature and wind speed as additional parameters for air quality 
index, CO, NO2 and PM10. The research finding approved the potential 
of the LSTM model to forecast PM2.5 multiple days ahead. Although ML 
models have shown a noticeable improvement, researchers are moving 
toward even more robust methodologies for ML process enhancement. 
Recently, Hu et al., (2023) predicted PM2.5 and O3 concentrations using 
hybridized convolutional neural network and bidirectional (CNN)- 
LSTM-gated recurrent unit (GRU)The authors developed their hybrid 
CNN-LSTM-GRU model based on six pollution indicators, which pro-
vided better accuracy than the standalone ML models. On a similar 
mechanism of hybridized ML models, several other researchers devel-
oped models for PM2.5 concentration prediction (Eren et al., 2023; Kim 
et al., 2022; Wood, 2022). Attempts have been made to forecast air 
PM2.5 concentration on different time scales, including hourly (Kanab-
kaew, 2013), daily (Xiao et al., 2020), and monthly or seasonal (Wu 
et al., 2022) scales. The seasonal forecasting of PM2.5 provides an early 
warning of air pollution conditions with sufficient lag time and, there-
fore, can be used for awareness development and mitigate its effect 
(Jiang et al., 2017; Wu et al., 2022). However, forecasting the seasonal 
variability of PM2.5 needs a long-term prediction model. The selection of 
predictors that can indicate long-term changes in PM2.5 can be employed 
to overcome this challenge. 

2. Research gap and motivation 

The previous studies mainly concentrated on meteorological vari-
ables for PM2.5 predictions. Studies showed that soil moisture is 
important in forming suspended fine air particulates (Wang et al., 2018). 
The transportation and fate of these particulates depend on wind speed, 
rainfall, and other meteorological variables. Therefore, considering all 
these factors is important for the reliable prediction of PM2.5. The sea-
sonal prediction of PM2.5 also needs predictors that define possible long- 
term changes in air PM2.5 concentration. The trends in soil moisture or 
meteorological variables can be suitable indicators of possible long-term 
changes in PM2.5 concentration. For example, the difference in soil 
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moisture between two consecutive months indicates its increasing or 
decreasing nature. Such information can be used for the seasonal pre-
diction of PM2.5. However, the inclusion of the changing pattern of 
predictors for forecasting long-term change in PM2.5 concentration has 
not been well studied. 

The Middle Eastern region is one of the world’s most polluted regions 
(Elbayoumi et al., 2013). Air pollution caused nearly 13,000 premature 
deaths in the region in 2017 (Myllyvirta, 2020). The PM2.5 level in most 
cities in the Middle East is 5 to 10 times higher than the prescribed limit 
(Saad, 2021). The human and economic costs estimated for air pollution 
demonstrated higher than 3% of GDP in some middle east countries 
(Heger et al., 2022). Iraq is one of the most polluted countries by PM2.5 

in the region. The average PM2.5 of 39.6 µg/m3 has made Iraq among the 
ten most polluted countries globally (Al-Aseel, 2022). The crude oil- 
driven power generators, due to poor electrical infrastructure, fires 
from refineries, and war-induced pollution along with other conven-
tional sources, have made the pollution level in the country much higher 
than in many other countries in the region (Zwijnenburg, 2015). The 
country needs mitigation measures to reduce the impacts of air pollution 
to improve people’s living standards and economic development. 
Forecasting air pollution can help to cope with the forthcoming hazards. 

Fig. 1. Geography of Iraq. The location of Iraq in the middle east is also depicted. (Desert Climate Zone (1), Semi-Arid Climate Zone (2), Mediterranean Climate 
Zone (3)). 
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3. Research objectives 

This study intends to develop a seasonal PM2.5 forecasting model for 
Iraq for high-resolution mapping of possible spatial patterns in PM2.5 in 
early summer, the country’s most air-polluted period. Different lags of 
soil moisture, wind speed, rainfall, temperature, and relative humidity 
and their trends in the previous season were considered to select the 
predictors for forecasting PM2.5 concentration in early summer. This 
allowed the prediction of the spatial pattern of seasonal PM2.5 concen-
tration before the beginning of the season. The spatial map of predicted 
PM2.5 can be employed to increase awareness of possible pollution di-
sasters and take necessary mitigation measures. 

4. Investigated region and data 

4.1. Geography of Iraq 

Iraq lies between latitude: 29◦15′N − 38◦15′N, and longitude: 38◦45′

− 48◦45′E has a total area of 438,320 km2, including 924 km2 of inland 
waters (Fig. 1). Iran surrounds it to the east, Turkey to the north, Syria 
and Jordan to the west, Saudi Arabia and Kuwait to the south, and the 
Persian Gulf to the southeast. The country can be classified into three 
topographic units (Jaradat, 2003): mountainous region, which cover an 
area of 92,000 km2, in the north and northeast, with elevation ranges 
from 1,700 to nearly 3,000 m; undulating lands covering 42,000 km2 in 
the south and the west with an average altitude varies from 200 to 1000 
m, and the plain covers 69.2% of the land extended from the central 
north to the south including the Arabian deserts in the west. 

The climate of Iraq is mainly continental, subtropical semi-arid type, 
with the north and northeastern mountainous regions having a Medi-
terranean climate. Iraq has four climatic seasons, namely, (1) a hot and 
dry summer (May to September); (2) cool and wet winter (December to 
February); (3) spring (March to April); and (4) autumn (October to 
November) (Abd Alraheem et al., 2022). Iraq is one of the most 
vulnerable countries to climate-related hazards. Sand and dust storms 
are among the most devastating hazards, which have become more 
recurrent with the temperature rise in recent years (Al-Kasser, 2021). Air 
pollution due to sand and dust is every year problem, particularly during 
early summer (May-July). Therefore, the country is considered one of 
the countries globally with high PM2.5 pollution. A global study of 
population exposure to PM2.5 revealed 100% of the Iraqi population is 
exposed to a PM2.5 level exceeding the WHO limit (Cohen et al., 2017). 
Iraq has a population of nearly 45 million, growing by 2.3% annually. 
Most of the population lives in the central-east and south alluvial lands, 
where pollution is high due to being surrounded by deserts. Exposure of 
a large population to high PM2.5 would gradually increase the country’s 
economic burden for public health care and negatively affect economic 
growth if measures are not. 

4.2. Data description and sources 

This study used fine particulate matter (PM2.5) data developed by 
Washington University in St. Louis (V5.GL.02) (Castillo et al., 2021). It 
was developed by integrating Aerosol Optical Depth (AOD), estimated 
using different satellite sensors, with the GEOS-Chem chemical transport 
model. The model was trained and validated with in-situ PM2.5 data 
using the Geographically Weighted Regression method to generate the 
final product. The data are available on a monthly time scale with a 
spatial resolution of 0.01◦ × 0.01◦ at https://wustl.app.box.com/v/ 
ACAG-V5GL03-GWRPM25/folder/183614225548. 

The present study used ERA5 meteorological and soil data (Hersbach 
et al., 2020) to predict PM2.5. ERA5 is the fifth generation European 
Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis of a 
large number of global atmospheric, land and ocean variables. ERA5 
data is generated at a horizontal resolution of 0.1◦ × 0.1◦ by combining 
the ECMWF model output produced through the physical principle of 

atmospheric circulation and the in-situ data gathered from across the 
globe. 

The list of ERA variables used to predict PM2.5 concentration is 
provided in Appendix A. These datasets were downloaded from: 

https://cds.climate.copernicus. 
eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview. The 
resolution of PM2.5 data is 0.01◦ × 0.01◦. It was aggregated to the ERA5 
resolution of 0.1◦ × 0.1◦. The monthly pollution data are available for 
the period 1998–2021. Therefore, ERA5 and PM2.5 data for the period 
1998–2021 with a spatial resolution of 0.1◦ × 0.1◦ was used for model 
training and validation. 

5. Methodology overview 

The steps followed for the spatiotemporal prediction of PM2.5 are 
shown using a flowchart in Fig. 2. The present study considered four 
meteorological and one soil variable to predict PM2.5 concentration. A 
partial correlation analysis was conducted between each predictor and 
PM2.5, and the predictors found significantly correlate with PM2.5 was 
used for further analysis. Different lags and differences in lag values 
were used in a non-greedy feature selection method known as Simulated 
Annealing (SA) to select the final set of predictors. The selected pre-
dictors were used in three ML algorithms, LSTM, SGD-BP, and ERT, for 
predicting PM2.5. The hyperparameters of the ML models were opti-
mized using Bayesian optimization to improve the model’s prediction 
capability. Details of the methods are discussed in the following 
subsections. 

5.1. Partial correlation 

Partial correlation was initially used to assess the influence of 
different variables on PM2.5 concentrations. It was used to assess the 
association of each variable with PM2.5 by removing the influence of 
other variables. Partial correlation between two variables, X1 and X2, by 
removing the influence of X3 is measured (Bhagat et al., 2020) as, 

rx1x2 .x3 =
rx1x2 − rx1x3 rx2x3̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − r2
x1x3

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − r2

x2x3

√ (1)  

where rxaxb is the correlation between Xa and Xb, where a and b can be 1, 
2 or 3 in the present case. 

5.2. Feature selection using non-greedy wrapper 

The factors that showed higher partial correlation were selected. 
Their different lags and differences in lag values were used to select the 
final set of predictors using a non-greedy wrapper method. The non- 
greedy wrapper was selected considering its ability to escape the 
localize traps. Several non-greedy wrappers, including Naïve Bayes, 
genetic algorithm, and SA, are available for ML model feature selection. 
In this study, SA was selected due to its better capability in feature se-
lection (Kirkpatrick et al., 1983). The SA method introduces randomness 
in the selection procedure, which allows SA to initiate new search spaces 
to obtain better optima (Jamei et al., 2021). 

5.3. Machine learning models 

5.3.1. Long-short term memory (LSTM) 
LSTM (Hochreiter and Schmidhuber, 1997) is an advanced version of 

the recurrent neural network (RNN). The RNN is a version of the neural 
network which uses a feedback network to recognize the previous data 
for prediction. This ability to memorize the data sequence has made such 
a network better predict environmental events that follow a seasonal 
pattern. The major problem of RNN is short memory; therefore, it can’t 
provide good predictions for longer data sequences (Jamei et al., 
2023a). This is due to the drastic declination of the effect of input on the 
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hidden layer with time. LSTM can solve this problem. LSTM improves 
the capability of RNN using a memory unit (Hunt et al., 2022; Van Houdt 
et al., 2020). 

The schematic diagram of an LSTM is presented in Appendix A. A 
traditional LSTM consists of three layers: (i) forget, (ii) input, and (iii) 
output. The Forget layer deletes the memory of the precedent state (Ct-1) 
based on the present input and antecedent hidden output. It uses a 
sigmoid function (ft) which yields an output of either 0 or 1 (Jamei et al., 
2023b). It filters out the memory when the output is zero. Otherwise, it 
passes to the next layer. This can be presented below (Hochreiter and 
Schmidhuber, 1997), 

Cf
t = Ct− 1 × ft (2) 

The input layer generates a state (Ct) from the output of the forget 
layer (Cf

t ) and the present input (Ci
t). It also uses a forget logic. It filters 

out the present input if it is unexpected. It uses a tanh function to scale 
the values in the range of − 1 to 1. 

Ct = Cf
t +Ci

t (3) 

The output layer considers the present input and present state of the 
cell to generate a hidden state (Ht) and cell output (Ot). This layer also 
uses a tanh function to scale the cell state. Besides, different biases are 
incorporated at different layers (Hochreiter and Schmidhuber, 1997), 

Ht = Ot × tanh(Ct) (4)  

5.3.2. Stochastic gradient descent with back propagation neural network 
(SGD-BP) 

Conventional ANN uses a backpropagation algorithm for model 
tuning. SGD-BP (Amari, 1993) combines SGD and BP error minimization 
techniques for model training. The schematic diagram of an SGD-BP is 

shown in Appendix B. Gradient descent is an optimization method 
employed to search the variables’ values that minimize a function. It 
does this by estimating the target function gradient. Generally, a 1st 
order derivative of the function for input variables is estimated to locate 
the optimum values. A negative gradient indicates new values that 
provide the evaluation function’s lower estimate. A learning rate is used 
to guide the changes in the input variables. The process is iterated until 
the threshold minimum of the function output is reached. It often fails to 
find the evaluation function minimum in case of noisy input data. SGD 
can overcome this. The SGD minimizes a loss function of the prediction 
model for the calibration data (Ernst, 2014; Ye, 2022). The SGD-BPANN 
estimate the net input function (net) from the inputs and their weights 
(Amari, 1993), 

net =
∑n

i=0
wixi (5) 

The output is estimated from the net input function using the 
following equation: 

o =
1

1 + e− net (6) 

SGD-BP uses a function gradient (-∇C) at a tangent vector location 
that changes rapidly. This concept is employed to estimate the new 
weight (W+) from the present weight (W) using a learning rate of η 
(Amari, 1993): 

W+ = W − η∇C (7) 

In SGD-BP, the evaluation function slope of model parameters is a 
probabilistic approximation or noisy. It helps avoid the statistical noise 
from noisy data affecting the gradient signal. 

Fig. 2. The flowchart showing the steps followed for predicting PM2.5 in Iraq.  
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5.3.3. Extremely randomized trees (ERT) 
ERT (Geurts et al., 2006) is an ensemble decision algorithm like a 

random forest (RF). However, it generates a large number of unpruned 
trees using the calibration data and an aggregated average of the output 
of all trees as the final output in case of regression. The major difference 
between ERT with RF is that it randomly samples the features at each 
split location of the trees using a greedy algorithm. This allows it to 
select the optimum split point. 

ERT calibrates each tree in the ensemble tree t ∈ {1, ⋅⋅⋅, T} with the 
complete set of calibration data. Each sample is a d-dimensional feature 
vector fj. The samples are employed to generate the tree root, and then 
the split function is used until leaf nodes are generated from the sample. 
Two children subsets are generated uniformly without replacement of 
complete feature set f. ERT selects split points randomly from all sam-
ples in calibration rather than bootstrap. It makes the decision trees less 
related and reduces the variance, which is eventually realized by 
increasing the ensemble tree number. This also allows ERT to add 
randomness in growing trees and improve the prediction capability 
compared to simple RF and other tree-based algorithms (Geurts et al., 
2006). Three hyperparameters are required to optimize for better per-
formance of ERT, the number of trees, the number of inputs to select 
randomly, and the minimum sample size to create a new split point. Like 
RF, ERT is efficient in computation and modelling high-dimension fea-
tures. However, extra efficiency in ERT comes from the increased 
randomness (Padmaja et al., 2020). 

5.3.4. Bayesian optimization 
The ML models used in this study have several hyperparameters. The 

hyperparameters of LSTM are the number of LSTM cells, number of 
hidden layers, learning rate and batch size. The ERT hyperparameters 
are the number of estimators, max features, min sample split, min 
sample leaf and max depth, while the SGD-BP hyperparameters include 
learning rate, momentum, batch size, and regularization parameters. 
These hyperparameter values must be selected properly to improve the 
learning processes. However, its optimization is a challenge in ML 
modelling (Weiqi et al., 2022). The use of optimization algorithms with 
ML models can help in the selection of hyperparameters and enhance 
model prediction. Generally, random or grid search algorithms are used 
for parameter tuning. This study used Bayesian optimization for faster 
and better optimization of model parameters (Dewancker et al., 2016). 
The Bayesian method is a global optimization technique which builds a 
probability function to tune the parameters based on a fitness function 
using calibration data. Like the grid or random search method, it iter-
atively fits the evaluation function with different parameter sets to 
choose the best set. However, the Bayesian method uses a probabilistic 
approach to define hyperparameters as the probability of fitness value, 
which is known as a surrogate of the fitness function (Snoek et al., 2012), 

P(fitness|hyperparameters) (8) 

This surrogate drives the method to find the next hyperparameter set 
that performs best based on the surrogate. The selected set is then 
evaluated based on the actual fitness function, and the surrogate model 
is modified based on the evaluation result. The process is repeated until 
a threshold is reached. 

The continuous modification of the Bayesian model helps to select 
the next set of hyperparameters in an informed manner. It helps the 
method to be more accurate in finding global optima. Unlike random 
search, the Bayesian algorithm is driven by its past status; therefore, it is 
much faster to find the optimum. Several studies reported better per-
formance of the Bayesian method for ML hyperparameter tuning (Gao 
et al., 2021; Yin and Li, 2022). 

5.3.5. Performance metrics 
The prediction performance of the models in replicating PM2.5 time 

series at each location was validated using normalized root mean square 
error (NRMSE) in %, root mean square error (RMSE), mean absolute 

error (MAE), coefficient of determination (R2), Willmott’s modified 
coefficient of agreement (MD), and Kling-Gupta efficiency (KGE) (Fas-
kari et al., 2022; Yaseen, 2021). The equation of the performance met-
rics and their range and optimum values are provided as follow: 

NRMSE = 100*

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N*
∑N

i=1(Si − Oi)
2

√

sd(Oi)
0 − ∞ Optimal Value = 0 (9)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N

*
∑N

i=1
(Si − Oi)

2

√

0 − ∞ Optimal Value = 0 (10)  

MAE =
1
N

*
∑N

i=1
|Si − Oi| 0 − ∞ Optimal Value = 0 (11)  

R2 = 1 −
∑n

i=1(Oi − Si)
2

∑n
i=1(Oi − μo)

2 0 − 1 Optimal Value = 1 (12)  

md = 1 −
∑n

i=1(Oi − Si)
∑n

i=1(|Si − μo| + |Oi − μo| )
0 − 1 Optimal Value = 1 (13)   

KGE = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − 1)2
+

(
μs

μo
− 1

)2

+

(
σs/μs

σo/μo
− 1

)2
√

− 1 − ∞ Optimal Value

= − 1
(14) 

The performance of the models in reconstructing the spatial vari-
ability of the forecasted PM2.5 map was evaluated using two spatial 
indices, Mapcurves and Cramer’s V. Mapcurves (Hargrove et al., 2006) 
measures the similarity between two maps using the following equation: 

Mapcurves =
∑

[(
C

B + C

)(
C

A + C

)]

(9)  

where C is the degree of intersection between the two maps, A and B are 
the total area of observed and modelled PM2.5 distribution maps. 

Cramer’s V assesses the spatial agreement between two maps as 
(Cramér, 1946), 

Cramer′ sV =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2

N(min(m, n) − 1

√

(10)  

where x2 is Chi-Square, N is the number of grid points, m and n are the 
rows and columns in the map. Mapcurves and Cramer’s V values range 
between 0 and 1, where 1 represents the best match. 

6. Application results and analysis 

6.1. Spatiotemporal distribution of PM2.5 in Iraq 

Fig. 3 shows the spatial distribution of annual mean PM2.5 over Iraq. 
The annual mean PM2.5 in the country varies between 10.8 and 98.4 µg/ 
m3. The PM2.5 concentration is higher in the south, more than 75 µg/m3 

at most locations. It is also high in some places in the central-west and 
northeast regions. The lower average PM2.5 is mostly in the elevated 
northern region and the western desert plains. However, the average 
PM2.5 is higher than the limit of World Health Organization (WHO) 
defined in 2022 (5 µg/m3) and the WHO limit of 10 µg/m3 defined in 
2005 (Pai et al., 2022) at all locations in Iraq. It means the population of 
the whole of Iraq is exposed to polluted air and, thus, the severity of air 
pollution in Iraq. 

The monthly distribution of air pollution levels is shown in Fig. 4. 
The PM2.5 values at all grid points over Iraq for a month were used to 
prepare the boxplot of the month. The boxplot of each month of the year 
revealed the seasonal variation of PM2.5 levels in Iraq. Fig. 4 shows the 
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higher pollution in the early summer months (May to July), while the 
lowest is from November to January. The low PM2.5 was also noticed in 
August. The country experiences a medium pollution level in spring and 
autumn. The lower limit of the whiskers indicates the lowest pollution 
level in Iraq. The figure shows that the lowest level of the whisker of the 
boxes was always more than 10 µg/m3. This indicates the pollution level 
is higher than the WHO (2022) prescribed threshold at all locations. 
Outliers in the PM2.5 level were noticed in most months, particularly in 
June and July. The high values of PM2.5 in these two months indicate the 
extreme pollution level at some locations. 

The mean PM2.5 values in the early summer months were higher than 
55 µg/m3. The lower limit of the whiskers was more than 21.3 µg/m3 in 
all these months. This indicates high pollution levels in these months all 
over Iraq. Therefore, this study focused on PM2.5 concentration predic-
tion from May to July to facilitate early measures and planning before 
the beginning of the high pollution period. The spatial distribution of 
mean PM2.5 concentration from May to July (MJJ) is shown in Fig. 5. It 
shows a similar to the annual spatial pattern of PM2.5 in MJJ. However, 
the pollution level was higher than the annual mean. The PM2.5 over the 
whole south was more than 80 µg/m3 during these three months. The 
PM2.5 in the less polluted northern and western regions were also more 
than 40 µg/m3. The high pollution level over the country during MJJ 
indicates their severe implications for public health and the economy 

and expresses the need for its prediction. 

6.2. Selection of predictors of PM2.5 

The spatial distribution of the predictors used for forecasting air 
PM2.5 concentration over Iraq is shown in Fig. 6. The rainfall in the 
country varies from above 900 mm in the north to less than 100 mm in 
the south and west. Most parts of Iraq receive rainfall of less than 200 
mm. The mean temperature is low in the mountainous region in the 
north and high in the rest of the country, particularly in the south and 
central west. The annual mean temperature is more than 25 ◦C in most of 
the country. The soil moisture follows a similar pattern to rainfall. It is 
high in the northern high rainfall region and less in the rest of the 
country. It is less than 0.1 m3/m3 over most of the country, indicating 
dry soil dominates the study area. The annual mean relative humidity in 
the country varies from 18 to 59%, indicating a desert climate. It is high 
in the country’s northern half, including the far north and central west, 
while low in the south. The wind speed follows a different pattern than 
the other factors considered in this study. It is high along a throng 
extended from the southeast to the northwest, passing through the 
country’s central region. The analysis revealed low rainfall, high tem-
perature, and low soil moisture dominating the country. None of the 
factors follows the PM2.5 concentration pattern over Iraq, as shown in 

Fig. 3. Spatial distribution of annual mean PM2.5 over Iraq for the 
period 1998–2021. 

Fig. 4. The boxplot of monthly mean PM2.5 over Iraq for the period 1998–2021.  

Fig. 5. Spatial distribution of mean PM2.5 during May-June over Iraq for the 
period 1998–2021. 
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Fig. 5. The PM2.5 distribution also does not follow the population dis-
tribution, which is mostly concentrated in the west, particularly the 
central west. It indicates the complexity of PM2.5 distribution over the 
country and the difficulty in prediction. 

The partial correlation of the predictors with PM2.5 is presented in 
Fig. 7. The data at all the grid points were merged and then used for 
estimating partial correlation. The partial correlation estimated the as-
sociation of each factor with PM2.5 by removing the influence of other 
factors. The figure shows the higher partial correlation of wind speed 
and temperature with PM2.5 (0.42), followed by relative humidity 
(-0.38), soil moisture (-0.31) and rainfall (-0.22). The positive correla-
tion of wind speed and temperature with PM2.5 indicates higher wind 
speed and temperature accelerate PM2.5 concentration. The relationship 
of relative humidity, soil moisture and rainfall with PM2.5 was negative, 
indicating their increase reduces PM2.5 concentration. The relationships 
are physically justifiable. The analysis showed a significant correlation 
of PM2.5 with wind speed, temperature, relative humidity and soil 
moisture at a 99% confidence interval. In contrast, the relationship of 
PM2.5 with rainfall was significant at a 95% confidence interval. 
Therefore, only wind speed, temperature, relative humidity, and soil 
moisture were used to derive the predictors for better prediction accu-
racy. It has been mentioned earlier that rainfall in Iraq is less than 200 
mm in most parts of the country. The low rainfall is incapable of wet 
deposition of suspended PM2.5 in the air. Therefore, the present study 

found less influence of rainfall on the PM2.5 concentration in Iraq. 
The present study used the preliminarily selected four variables’ lags 

and time difference values to select the final set of predictors using SA. 
The predictors used for selecting the final set are shown in the first 
column of Table 1. The three time-lags of each factor (t-1, t-2 and t-3) 
and their difference between two periods, Δt-1 - t-2 and Δt-1 - t-3 were 
used. The difference in a variable between two periods indicates the 
change of the variable with time, which helps to indicate how it may 
change in the near future. Therefore, those values and the time lags were 
used in the present study. The finally selected predictors using SA from 
the set of preliminarily selected predictors are given in the second col-
umn of Table 1. The SA selected four variables most suitable for pre-
dicting PM2.5 concentration, tmt-1, tm(t-1 - t-2), wst-1, sm(t-1 - t-3), rht-1. It 
means the first lag of temperature, wind speed and relative humidity or 
the values of those parameters in April, and the changes in temperature 
and soil moisture in recent two consecutive months or the differences 
between April and March as the most important estimating PM2.5 con-
centration in early summer (MJJ) in Iraq. 

6.3. Prediction of PM2.5 concentration 

The selected predictors were used in three ML models to forecast 
PM2.5 concentration in MJJ. Data at all grid points over Iraq for 
1998–2021 were merged, and then a 70:30 ratio was used for model 

Fig. 6. Spatial distribution of the predictors used in the present study: (a) rainfall, (b) mean temperature, (c) soil moisture, (d) wind speed, and (e) relative humidity.  
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training and validation. The PM2.5 was predicted at 8384 grids covering 
entire Iraq. Five selected predictors for each of the grids were used to 
generate the input matrix of 5 × 8384 to predict the PM2.5 at 8384 
grids. The Bayesian algorithm optimized the ML hyperparameters to get 
the best performance. The models’ relative performance during the 
validation period was evaluated using statistical indices and comparison 
plots, as discussed in subsequent paragraphs. 

The performance of the models with validation data based on six 
statistical metrics is shown in Fig. 8. The metrics were used to estimate 
the performance of the models at each grid point, and their values at all 
grid points were used to prepare the boxplots. The results showed better 
performance of LSTM in terms of all six metrics used. The mean RMSE, 
MAE, NRMSE (%), R2, MD and KGE of LSTM were 8.2 µgm/m3, 5.8 
µgm/m3, 13.4%, 0.92, 0.9 and 0.89, compared to 10.3 µgm/m3, 6.5 
µgm/m3, 16.02%, 0.86, 0.85 and 0.81 for SGD-BP and 12.1 µgm/m3, 7.8 
µgm/m3, 17.9%, 0.85, 0.79 and 0.74 for ERT. The interquartile range 
(IQR) and complete range of the metrics for LSTM were much narrower 
compared to the other two models, indicating the better performance of 

LSTM at all locations. For example, the highest NRMSE of LSTM was 
17.3% which was lower than the mean NRMSE of ERT. A similar result 
was noticed for KGE. It indicates a much better performance of LSTM 
than the other two models. The SGD-BP showed a better performance 
than ERT but less than LSTM. Therefore, the performance of the models 
can be ranked in order: LSTM, SGD-BP and ERT. 

The observed and predicted PM2.5 in different early summer months 
using three ML models are shown in Fig. 9. The predicted data at all 
locations were used to prepare the boxplots. The figure shows good 
accuracy in predicted PM2.5 by all models in all months. However, ERT 
and SGD-BP over-predicted the PM2.5 at some locations where they are 
less and under-predicted at some locations where they are high. In 
contrast, LSTM was more reliable in replicating the PM2.5 values at all 
locations. The other two models also showed relatively less accuracy in 
different months. For example, ERT performed relatively poorly in July 
and SGD-BP in May. However, LSTM could reliably predict the mean, 
IQR, and complete data range PM2.5 concentration for all months. The 
model also replicated the extreme values observed in June and July. 

The performance evaluation of the model using density scatter plots 
is shown in Fig. 10. The density of the points is presented using color in 
the figure. The red color represents the higher density, while the blue the 
less density. The alignment of the points along the diagonal of the plot 
indicates a better prediction of the observed values. Fig. 10 shows a 
better prediction of observed PM2.5 using LSTM. The LSMT predicted 
PM2.5 data are densely concentrated along the diagonal of the plot, while 
those were little spread vertically for both ERT and SGD-BPANN. The 
vertically spreading pattern was more for ERT than SGD-BP. The results 
indicate the best performance using LSTM, followed by SGD-BP and 
ERT. The performance the models were also evaluated using Taylor 

Fig. 7. Partial correlation of PM2.5 with different predictors and their significance [pmd = PM2.5 concentration in µgm/m3; rain = precipitation (mm); temp = mean 
temperature in ◦C; smois = ratio of water volume to total volume; winds = wind speed in m/s; relh = relative humidity in %]. 

Table 1 
The set of preliminarily selected predictors and the final set of chosen predictors 
using SA.  

Preliminary predictors Final predictors 

tmt-1, tmt-2, tmt-3, tm(t-1 - t-2), tm(t-1 - t-3) 

wst-1, wst-2, wst-3, ws(t-1 - t-2), ws(t-1 - t-3) 

smt-1, smt-2, smt-3, sm(t-1 - t-2), sm(t-1 - t-3) 

rht-1, rht-2, rht-3, rh(t-1 - t-2), rh(t-1 - t-3) 

tmt-1, tm(t-1 - t-2), wst-1, sm(t-1 - t-3), rht-1 

*tm: mean temperature; ws: windspeed; sm: soil moisture; rh: relative humidity. 
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diagram, violin plot and radar chart. Obtained results are presented in 
supplementary Figures S3 to S5. Those figures also showed the best 
performance using LSTM, followed by SGD-BP and ERT. 

The predicted PM2.5 at different locations was used to prepare the 
spatial distribution of the PM2.5 over Iraq for the validation period. The 
predicted maps using different ML models are shown in Fig. 11. The 
predicted maps were compared with the observed map presented in 
Fig. 3 to show the capability of the model to reconstruct the spatial 
pattern of PM2.5. The figure shows that all models could reconstruct the 
observed spatial distribution of PM2.5. All models could estimate the 
high PM2.5 in the south and low values in the north and west. The 
patches of extremely high PM2.5 values in the south and moderately high 
PM2.5 patches in low-concentration regions in the central west were 

reliably estimated by all the models. However, the spatial extents of the 
patches estimated by different models differed. The LSTM replicated all 
low and high patterns accurately. The ERT and SGD-BP could not 
properly reconstruct the high PM2.5 region in the south. The ERT also 
failed to replicate the moderate PM2.5 region in the central west 
reliably. 

The capability of the models to estimate the spatial distribution of 
PM2.5 was statistically evaluated using MapCurve, Cramer’s V, spatial 
correlation, and mean spatial bias. Obtained results are presented in 
Table 2. The results showed the better capability of LSTM in recon-
structing the spatial distribution of PM2.5 during MJJ. The MapCurve, 
Cramer’s V, and spatial correlation between the observed and the LSTM 
predicted PM2.5 maps were 0.95, 0.91, and 0.97, indicating the nearly 

Fig. 8. Performance of the ML models in predicting PM2.5 at different grid locations over Iraq during the validation period.  
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ideal performance of the model. The mean bias (%) in the LSTM PM2.5 
map was only 1.3% compared to 6.5% for SGD-BP and 8.2% for ERT. 

The spatial distribution of the bias in estimated PM2.5 by different 
models is shown in Fig. 12. The bias maps were generated to show the 
spatial distribution of the performance of the models. The red color in 
the map indicates positive bias or overestimation, the blue represents 
underestimation, and the white represents nearly zero bias. All the maps 
show the randomness in the spatial distribution of the bais. The bais (%) 
range over Iraq was only − 3.2–6.7% for LSTM, compared to − 12.5–14.1 
for SGD-BP and − 19.8–20.0% for ERT. The bias in LSTM predicted PM2.5 
was nearly zero at most locations in southern high PM2.5 regions. 
However, it slightly overpredicted the PM2.5 values in the low PM2.5 
regions in the far north and the west. However, over- and under- 
prediction was much less than SGD-BP and ERT. 

7. Discussion 

Air pollution, specifically the concentration of PM2.5, is a major 
public health concern worldwide. Accurate prediction of PM2.5 levels is 

essential for effectively managing and mitigating its adverse health ef-
fects. In recent years, ML techniques have gained popularity in air 
quality prediction due to their ability to handle large datasets with high- 
dimensional features and capture complex nonlinear relationships be-
tween predictors and responses. Several studies have compared the 
performance of ML models with simple statistical models, like the linear 
regression model (Kim et al., 2022) and the generalized additive model 
(Li et al., 2017), in predicting PM2.5 levels. However, it is worth noting 
that the performance of ML models may depend on the specific dataset 
and modeling techniques used and that proper validation and inter-
pretation of the results for the practical application of these models. 
Therefore, the present study compared the performance of three 
advanced ML algorithms to find the most efficient one for predicting the 
spatiotemporal variability of summer PM2.5 in Iraq. Several studies 
showed an increasing trend in PM2.5 in Iraq (Boys et al., 2012; Coskuner 
et al., 2018; Shihab, 2021). All the studies also found that the PM2.5 
concentrations and increasing rates were higher during the summer 
months. Therefore, this study only attempted to predict the spatiotem-
poral distribution of PM2.5 concentration over Iraq during the summer 

Fig. 9. The boxplots show the capability of (a) ERT, (b) SGD-BP, and (c) LSTM in reproducing observed PM2.5 concentrations during May-July.  
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months. 
The present study showed a higher capacity of LSTM in predicting 

PM2.5 compared to the other two ML models considered in this study. 
This may be attributed to the ability of LSTM to capture temporal de-
pendencies, handle highly nonlinear relationships, and scalability (Gers 
et al., 2000; Hochreiter and Schmidhuber, 1997). LSTM models are 
designed to capture long-term dependencies and patterns in sequential 
data, making them well-suited for analyzing time series data, such as 
PM2.5 pollution levels. Unlike other ML models, LSTM models have a 
memory component that enables them to capture information from 
previous time steps and incorporate it into the current prediction, 
improving their accuracy (Yu et al., 2019). Various factors influence 
PM2.5 pollution levels, and the relationships between these factors and 
PM2.5 pollution levels can be complex and nonlinear. LSTM models can 
learn these complex relationships and capture nonlinear dependencies 
between the input features and the target variable. LSTM models can be 
trained on large datasets with many input features and handle data with 
varying sampling frequencies (Li et al., 2021). This makes them well- 
suited for analyzing PM2.5 pollution data, which can have several 
input features. Several studies have shown that LSTM models 

outperform other ML models (Niu et al., 2016). Several studies have 
applied LSTM to predict PM2.5 concentrations in different regions. The 
studies showed varying performances of the model in different regions 
(Karimian et al., 2019; Yu et al., 2022). The variation in the performance 
of these models is due to various factors such as data quality, feature 
selection, and modeling parameter optimization. This study showed a 
better performance of the LSTM compared to its application in other 
studies. The present study showed that LSTM could forecast the monthly 
mean PM2.5 concentration during summer months with an RMSE of 8.2 
µgm/m3, MAE of 5.8 µgm/m3 and R2 of 0.92. The results showed better 
performance of the model in predicting PM2.5 in this study. This may be 
mainly due to the selection of input features and optimization of model 
parameters. 

The present study’s novelty is using the changing pattern of different 
meteorological and soil parameters and their time lags for the predic-
tion. The selected predictors using SA revealed the changes in temper-
ature and soil moisture, along with wind speed and relative humidity 
before the beginning of summer, can predict the monthly variability and 
spatial distribution of PM2.5 during the early summer months. The rising 
temperature in the spring causes a gradual decrease in soil moisture. The 

Fig. 10. The scatter plots of the observed and simulated PM2.5 using (a) ERT, (b) SGD-BP, and (c) LSTM during the prediction period (May-July).  
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pollution level during the summer is high when a high temperature rises 
during spring, causing rapid soil drying. The higher wind and less hu-
midity help in transmitting the fine particulates. Less soil moisture in-
dicates dry soil and, thus, more potential as a source of dust pollution. 
Therefore, selected predictors by SA are physically justifiable. The dif-
ference in predictor values between two-time lags defines the direction 
and magnitude of the change in the predictor, indicating a possible di-
rection and intensity of change in pollution in the future. For example, if 
the difference in soil moisture between two consecutive months is 
negative, it indicates a possible drying of soil with time. A higher 
magnitude of the difference indicates a rapid soil drying, possibly 
implying more air pollution from dust. Including this new feature as 

input considerably improves the performance of the models. 
This study used meteorological parameters of ERA5 of the preceding 

months to predict the spatial distribution of PM2.5 pollution in the 
summer months. The ERA5 data is updated daily with a latency of about 
5 days. Therefore, it is possible to use those data to predict seasonal 
PM2.5 levels five days after the beginning of the season. Climate rean-
alysis datasets of ERA5 can provide valuable information on weather 
patterns and atmospheric conditions, which can be useful for predicting 
air quality levels in a region. To generate a comprehensive picture of the 
climate system, these datasets use advanced modeling techniques to 
assimilate data from various sources, including satellite observations, 
ground-based measurements, and weather models. Recent studies (Al- 
Hasani and Shahid, 2022; Karami et al., 2022), showed the reliability of 
ERA5 data in estimating the meteorological variables of Iraq. Therefore, 
it can be expected that the model developed in this study using ERA5 
data can be used for reliable forecasting of the spatial distribution of 
seasonal PM2.5 concentration over Iraq. 

Several studies in China predicted daily or hourly PM2.5 concentra-
tions at a resolution of 0.01◦ using meteorological variables as predictors 
(Dong et al., 2022; Li et al., 2021). However, such a high-resolution 
(0.01◦ resolution) prediction of PM2.5 is not possible in many other re-
gions due to the unavailability of high-resolution meteorological 

Fig. 11. The spatial distribution of the simulated PM2.5 (May-July)using (a) ERT, (b) SGD-BP, and (c) LSTM during the validation period.  

Table 2 
Performance of the models in reconstructing the spatial pattern of observed 
PM2.5 during early summer.  

Metrics ERT SGD-BP LSTM 

MapCurve  0.83  0.90  0.95 
Cramer’s V  0.76  0.86  0.91 
Spatial Correlation  0.88  0.93  0.97 
Bias (%)  8.2  6.5  1.3  
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variables. Only MODIS high-resolution (0.01◦) air pollution and tem-
perature data are available daily at higher resolution. However, the only 
air temperature was insufficient for predicting PM2.5 in Iraq as other 
variables like wind, relative humidity and soil moisture significantly 
affect PM2.5 concentration in Iraq. Therefore, the prediction of PM2.5 
concentration in the study area was limited to 0.1 resolution considering 
the availability of quality meteorological and soil data at this resolution. 
For this purpose, 0.01◦ resolution PM2.5 data were aggregated to 
generate 0.1◦ resolution PM2.5 concentration. Here, it should be noted 
that uncertainty in estimation is added during downscaling but not 
upscaling. Therefore, for comparison or model development, lower- 
resolution data are always upscaled to coarser resolution (Salman 
et al., 2022). Similarly, it was not possible to develop a model for 
forecasting PM2.5 at daily or hourly scale due to the unavailability of 
high-resolution daily and hourly PM2.5 concentration data for Iraq. Such 
studies can be conducted in the future when high spatial and temporal 
resolution pollution data are available. 

8. Conclusions 

ML models have been used to predict PM2.5 concentration in early 
summer over Iraq to provide an early warning of the possible spatial and 
temporal pattern of air PM2.5 during this high pollution period in the 
country. The performance of ML algorithms significantly depends on the 
inputs used. The present study’s novelty is using the changing pattern of 
different meteorological and soil parameters and their time lags for the 
prediction. The selected predictors using SA revealed the changes in 
temperature and soil moisture, along with wind speed and relative hu-
midity before the beginning of summer, can predict the monthly vari-
ability and spatial distribution of PM2.5 during the early summer 
months. 

The LSTM model developed in the study efficiently simulates the 
PM2.5 distribution in Iraq with high accuracy. The LSTM reconstructed 
the high-resolution PM2.5 distribution map of Iraq during the validation 
period with high accuracy. It could replicate the high PM2.5 zones in the 
south and low PM2.5 zones in the north with negligible bias. It also 
predicted the observed high pollution in July compared to other models. 
The results indicate the suitability of the LSTM model for air PM2.5 

Fig. 12. The spatial distribution of the bias (%) in simulated PM2.5 using (a) ERT, (b) SGD-BP, and (c) LSTM during the prediction period (May-July).  
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concentration forecasting in Iraq. The capability of LSMT to store the 
prediction in the preceding step helped it to provide reliable predictions 
for the long term. Therefore, it was more capable of predicting PM2.5 in 
the early summer months with the previous season’s meteorological and 
soil moisture data. 

The study used freely available ERA5 meteorological and soil pa-
rameters to predict high-resolution PM2.5 distribution data, which are 
also available in the public domain. The data can be used for any other 
region for developing a model following the procedure discussed in this 
paper for pollution prediction and early warning. In the future, other 
advanced optimization algorithms can be integrated with ML models to 
improve the predictability of the ML models. Other earth’s surface fea-
tures, such as vegetation index and normalized water index, can be 
considered for selecting a wide range of predictors for better prediction 
of PM2.5. 
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