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Abstract

This paper considers estimation of the slope parameter of the linear regression
model with Student-t errors in the presence of uncertain prior information on the
value of the unknown slope. Incorporating uncertain non-sample prior information
with the sample data the unrestricted, restricted, preliminary test, and shrinkage
estimators are defined. The performances of the estimators are compared based on
the criteria of unbiasedness and mean squared errors. Both analytical and graphical
methods are explored. Although none of the estimators is uniformly superior to the
others, if the non-sample information is close to its true value, the shrinkage estimator
over performs the rest of the estimators.
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1 Introduction

Customarily the classical estimators of unknown parameters are based exclusively on

the sample data. Such estimators disregard any other kind of non-sample prior informa-

tion in its definition. The notion of inclusion of non-sample information to the estimation

of parameters has been introduced to ‘improve’ the quality of the estimators. The nat-

ural expectation is that the inclusion of additional information would result in a better

estimator. In some cases this may be true, but in many other cases the risk of worse
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consequences can not be ruled out. A number of estimators have been introduced in the

literature that, under particular situation, over performs the traditional exclusive sample

data based unbiased estimators when judged by criteria such as the mean squared error

and squared error loss function.

In the wake of increasing criticism on the inappropriate use of the normal distribution

to model the errors there is a growing trend to use, often more appropriate, Student-

t model. Fisher (1956, p.133) warned against the consequences of inappropriate use of

the traditional normal model. Fisher (1960, p.46) analyzed Darwin’s data (cf. Box and

Taio, 1992, p. 133) by using a non-normal model. Fraser and Fick (1975) analyzed the

same data by the Student-t model. Zellner (1976) provided both Bayesian and frequentist

analyses of the multiple regression model with Student-t errors. Fraser (1979) illustrated

the robustness of the Student-t model. Prucha and Kelegian (1984) proposed an estimating

equation for the simultaneous equation model with the Student-t errors. Ullah and Walsh

(1984) investigated the optimality of different types of tests used in econometric studies

for the multivariate Student-t model. The interested readers may refer to the more recent

work of Singh (1988), Lange et al. (1989), Giles (1991), Khan (1992), Anderson (1993),

Spanos (1994), and Khan (1998) for different applications of the Student-t models. For a

wide range of applications of the Student-t models refer to Lange et al. (1989).

There has been many studies in the area of the ‘improved’ estimation following the

seminal work of Bancroft (1944) and later Han and Bancroft (1968). They developed

the preliminary test estimator that uses uncertain non-sample prior information (not in

the form of prior distributions), in addition to the sample information. Stein (1956)

introduced the Stein-rule (shrinkage) estimator for multivariate normal population that

dominates the usual maximum likelihood estimators under the squared error loss function.

In a series of papers Saleh and Sen (1978, 1985) explored the preliminary test approach

to Stein-rule estimation. Many authors have contributed to this area, notably Sclove et

al. (1972), Judge and Bock (1978), Stein (1981), Maatta and Casella (1990), and Khan

(1998), to mention a few. Khan and Saleh (1995, 1997) investigated the problem for a

family of Student-t populations. However, the relative performance of the preliminary test

and shrinkage estimators of the slope parameter of linear regression model with Student-t

error has not been investigated.

It is well known that the mle of the slope parameter is unbiased. We wish to search

for an alternative estimator of the slope parameter that is biased but may well have some

superior statistical property in terms of another more popular statistical criterion, namely

the mean square error. In this process, we define three biased estimators: the restricted

estimator (RE) with a coefficient of distrust, the preliminary test estimator (PTE) as a
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linear combination of the mle and the RE, and the shrinkage estimator (SE) by using the

preliminary test approach. We investigate the bias and the mean square error functions,

both analytically and graphically to compare the performance of the estimators. The

relative efficiency of the estimators are also studied to search for a better choice. Extensive

computations have been used to produce graphs to critically check various affects on

the properties of the estimators.The analysis reveals the fact that although there is no

uniformly superior estimator that dominates the others, the SE dominates the other two

biased estimators if the non-sample information regarding the value of β1 is not too far

from its true value. In practice, the non-sample information is usually available from past

experience or expert knowledge, and hence it is expected that such an information will

not be too far from the true value.

The next section deals with the specification of the model and definition of the un-

restricted estimators of the slope and spread parameters as well as the derivation of the

likelihood ratio test statistic. The three alternative ‘improved’ estimators are defined in

section 3. The expressions of bias and mse functions of the estimators are obtained in

section 4. Comparative study of the relative efficiency of the estimators are included in

section 5. Some concluding remarks are given in section 6.

2 The Student-t Regression Model

Fisher (1956) discarded the normal distribution as a sole model for the distribution of

errors. Fraser (1979) showed that the results based on the Student-t models for linear

models are applicable to those of normal models, but not the vice-versa. Prucha and

Kelejian (1984) critically analyzed the problems of normal distribution and recommended

the Student-t distribution as a better alternative for many problems. The failure of the

normal distribution to model the fat-tailed distributions has led to the use of the Student-

t model in such a situation. In addition to being robust, the Student-t distribution is

a ‘more typical’ member of the elliptical class of distributions. Moreover, the normal

distribution is a special (limiting) case of the Student-t distribution. It also covers the

Cauchy distribution on the other extreme. Extensive work on this area of non-normal

models has been done in recent years. A brief summary of such literature has been given

by Chmielewiski (1981), and other notable references include Fang and Zhang (1990),

Khan and Haq (1990), Fang and Anderson (1990) and Celler et al (1995). Zellner (1976)

first introduced the regression model with Student-t errors.

Let us express the n sample responses from from a linear regression model in the

following convenient form

y = β01n + β1x + e (2.1)
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where y = (y1, . . . , yn)′ is an n × 1 vector of responses, 1n = (1, . . . , 1)′ – a vector of

n-tuple of one’s, x is the n× 1 vector of explanatory variable, β0 and β1 are the unknown

intercept and slope parameters respectively and e = (e1, . . . , en)′ is a vector of errors

with independent components which is distributed as Nn(0, τ2In) for a given value of τ .

Assuming that τ follows an inverted gamma distribution with parameters ν and σ2, the

density function is given by

f(τ) =
2

Γ
(

ν
2

)
(

σ2ν

2

)ν/2

(τ)−(ν+1)e−
σ2ν
2τ2 , τ > 0, (2.2)

where ν is the shape parameter and σ2 is the scale parameter. It is well known that the

mixture distribution of the errors and τ is an n-dimensional Student-t distribution with

shape ν, location 0 and scale σ2. We write [e|τ ] ∼ Nn(ν,0, τ2) and [e] ∼ tn(ν,0, σ2).

Thus the (unconditional) density of y becomes

p(y|β0, β1, σ
2) =

Γ
(

n+ν
2

)

[πνσ2]
n
2 Γ

(
ν
2

)


1 +

1
νσ2

n∑

j=1

(yj − β0 − β1xj)
2



− ν+n

2

. (2.3)

Note that E[y] = β01n + β1x and Var[y] = ν
ν−2σ2In.

3 Some Preliminaries

Following Zellner (1976), from the exclusive sample information, the unrestricted estimator

(UE) of the slope β1 is the usual maximum likelihood estimator (mle) given by

β̃1 = (x′x)−1x′y. (3.1)

For the normal model, conditional on τ , the sampling distribution of the mle of β1 is normal

with mean, E(β̃1) = β1 and variance, E(β̃1−β1)2 = τ2

Sxx
in which Sxx =

∑n
j=1(xj − x̄)2.

For the Student-t model β̃1 is unbiased for β1, and the mse is the same as its variance.

Thus the bias and mse of β̃1 are given by

B1(β̃1) = 0 and M1(β̃1) =
ν

ν − 2
σ2

Sxx
respectively. (3.2)

Note, unlike for the normal model, the mse of β̃1 for the Student t model depends on

the shape parameter ν. We compare the above bias and mse functions with those of the

three biased estimators, and search for a ‘best’ estimator that may perform better than

the other estimators under some specific condition. It is well known that the mle of σ2 is

S∗2n =
1
n

(y − ŷ)′(y − ŷ), (3.3)

where ŷ = β̃01n + β̃1x in which β̃0 is the mle of β0.
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This estimator of σ2 is biased. However, an unbiased estimator of σ2 is given by

S2
n =

1
n− 2

(y − ŷ)′(y − ŷ). (3.4)

The unbiased estimator of σ2 has a scaled χ2 distribution with shape parameter m =

(n− 2).

To be able to use the uncertain non-sample prior information in the estimation of the

slope, it is essential to remove the element of uncertainty concerning it’s value. Fisher

suggested to express the uncertain non-sample prior information in the form of a null

hypothesis, H0 : β1 = β10 and treat it as a nuisance parameter. He proposed to conduct

an appropriate statistical test on the null-hypothesis against the alternative HA : β1 6= β10

to remove the uncertainty in the non-sample prior information. For the problem under

study, an appropriate test is the likelihood ratio test (LRT). The LRT for testing the

null-hypothesis is given by the test statistic

L2 =
Sxx(β̃1 − β10)2

S2
n

. (3.5)

Since
√

Sxx(β̃1−β10)
Sn

follows a Student-t distribution under H0 and non-central Student-t dis-

tribution under HA, the above statistic L2, under HA, follows a non-central F -distribution

with (1,m) degrees of freedom (d.f.) in which m = n − 2, and non-centrality parameter
1
2∆2, where

∆2 =
Sxx(β1 − β10)2

σ2
=

δ2

σ2
(3.6)

where δ =
√

Sxx|(β1 − β10)|. This test statistic would be used to define the PTE, and the

shrinkage estimator by following the preliminary test approach to the shrinkage estimation.

4 Alternative Estimators of the Slope

In this section we use the uncertain non-sample prior information and the coefficient

of distrust on the null hypothesis to estimate the slope parameter. First we combine the

exclusive sample based estimator, β̃1 with the non-sample prior information presented in

the form of a null hypothesis, H0 : β1 = β10 in some reasonable way. Now, consider a

simple linear combination of β10 and β̃1 as

β̂1(d) = dβ̃1 + (1− d)β10, 0 ≤ d ≤ 1. (4.1)

This estimator of β1 is called the restricted estimator (RE), where d is the degree of distrust

in the null hypothesis, H0 : β1 = β10. Here, d = 0, means there is no distrust in the H0

and we get β̂1(d = 0) = β10, while d = 1 means there is complete distrust in the H0 and
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we get β̂1(d = 1) = β̃1. If 0 < d < 1, the degree of distrust is an intermediate value which

results in an interpolated value between β10 and β̃1 given by (3.1).

Following Bancroft (1944) we define the shrinkage preliminary test estimator (SPTE)

of the slope parameter as

β̂PTE
1 (d) = β̂1I(F < Fα) + β̃1I(F ≥ Fα)

= β̃1 − (1− d)(β̃1 − β10)I(F < Fα), (4.2)

where I(A) is an indicator function of the set A and Fα is the critical value chosen for the

α-level test based on the F -distribution with (1,m) degrees of freedom. A simplified form

of the above SPTE is the preliminary test estimator (PTE)

β̂PTE
1 = β10I(F < Fα) + β̃1I(F ≥ Fα), (4.3)

which is a special case of (4.2) when d = 0. Note that, the β̂PTE
1 (d) is a convex combination

of β̂1(d) and β̃1, and β̂PTE
1 (d = 0) is a convex combination of β10 and β̃1. We may rewrite

(4.3) as

β̂PTE
1 (d) = β̃1 − (1− d)(β̃1 − β10)I(F < Fα), (4.4)

where Fα is the (1 − α)th quantile of a central F -distribution with (1, m) degrees of

freedom. For d = 0, we get (4.3) as

β̂PTE
1 (d = 0) = β̃1 − (β̃1 − β10)I(F < Fα). (4.5)

The PTE is an extreme choice between β̂1(d) and β̃1. Hence it does not allow any smooth

transition between it’s two extreme values. Also, it depends on the pre-selected level

of significance, α of the test. To overcome these problems, we consider the shrinkage

estimator (SE) of β1 defined as follows:

β̂S
1 = β10 +

{
1− cS2

n

Sxx(β̃1 − β10)2

}
(β̃1 − β10). (4.6)

Note that in this estimator c is a constant function of n. Now, if F =
{

Sxx(β̃1−β10)2

S2
n

}
is

large, β̂S
1 tends towards β̃1, while for small F equaling c, β̂S

1 tends towards β10 similar to

the preliminary test estimator. The shrinkage estimator does not depend on the level of

significance, unlike the preliminary test estimator.

5 Some Statistical Properties

The bias and the mean square error (mse) functions of the SE and SPTE are derived

here. Also, we discuss some of the important features of these functions.

6



5.1 The Bias and MSE of RE

First the bias and the mse of the RE, β̂1(d) are found to be

B2[β̂1(d)] = − σ√
Sxx

(1− d)∆, with ∆ =
√

Sxx(β1 − β10)
σ

(5.1)

M2[β̂1(d)] =
σ2∗
Sxx

[d2 + (1− d)2∆∗] with σ2
∗ =

ν

ν − 2
σ2, (5.2)

where ∆∗ = ν−2
ν ∆2 is the departure constant from the null-hypothesis. The value of

this constant is 0 when the null hypothesis is true; otherwise it is always positive. The

statistical properties of the three biased estimators depend on the value of the above

departure constant. The performance of the estimators change with the change in the

value of ∆. We investigate this feature in a greater detail in the forthcoming sections.

5.2 The Bias and MSE of the SPTE

The bias function of the SPTE is given by the following theorem.

Theorem 5.1: For the simple regression model with Student-t errors the bias function of

the SPTE of the slope parameter is given by

B3[β̂PTE
1 (d)] = −(1− d)

σ∆√
Sxx

G∗
3,m

(1
3
Fα; ∆∗

)
, (5.3)

where

G∗
a,m(lα;∆∗) =

∞∑

r=0

I1
hα

(
m

2
;
a + 2r

2

)
ξr(ν)ξr(ν, ∆∗) (5.4)

in which lα =
a

a + 2
Fa,m(α) with Fa,m(α) being the (1 − α)-th quantile of a central F -

distribution with a and m d.f.; hα =
am

am + (a + 2r)Fa,m(α)
for a = 1; and I1

hα

(
m
2 ; a+2r

2

)
=

1− Ihα
0

(
m
2 ; a+2r

2

)
is the incomplete beta function evaluated at hα;

ξr(ν) =
Γ

(
ν
2 + r

)

r!Γ
(

ν
2

) ; ξr(ν,∆∗) =
(∆∗/ν − 2)r

[1 + ∆∗ / (ν − 2)]ν/2+r
with ∆∗ =

ν − 2
ν

∆2. (5.5)

Proof: From the definition, for given τ , the expression of bias of the SPTE is

E[(β̂PTE
1 (d)− β1)|τ ] = E(β̃1 − β1)− (1− d)E{(β̃1 − β10)I(F < Fα)} (5.6)

= −(1− d)
τ√
Sxx

E

{√
Sxx(β̃1 − β10)

τ
I

(
Sxx(β̃1 − β10)2

S2
n

< Fα

)}
.

Now, conditional on τ , Z =
√

Sxx(β̃1 − β10)/τ is distributed as N(∆τ , 1), where ∆τ =
√

Sxx
τ (β1−β10), and Sxx(n−2)S2

n/τ2 is distributed (independently) as a central chi-square

variable with m degrees of freedom. To evaluate the above expression we need the following
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lemma.

Lemma 5.1. If Z ∼ N (Λ, 1) and φ(Z2) is a Borel measurable function, then

E{Zφ(Z2)} = ΛEφ[χ2
3(Λ

2)]. (5.7)

The proof of the lemma can be found in Saleh (2006) or Appendix B2 of Judge and Bock

(1978).

Evaluating the expression in (5.6), conditional on τ , the bias function of β̂PTE
1 (d) is

found to be

B3[(β̂PTE
1 (d))|τ ] = −(1− d)

τ√
Sxx

∆τG3,m

(1
3
Fα;∆2

τ

)
, (5.8)

where conditional on τ , G3,m(·;∆2
τ ) is the c.d.f. of a non-central F-distribution with (3,m)

degrees of freedom and non-centrality parameter 1
2∆2

τ = δ2

2τ2 . The above c.d.f. involves

incomplete beta function with appropriate arguments. For the Student-t model the above

expression for the cdf is not valid. The appropriate expression for the Student-t model

has been given in (5.4). The proof of the theorem is completed by taking expectation

of B3[(β̂PTE
1 (d))|τ ] with respect to τ . The bias function of the SPTE depends on the

coefficient of distrust and the departure constant, among other things.

Theorem 5.2: For the Student-t regression model the mse of the SPTE is given by

M3[β̂PTE
1 (d)] =

σ2∗
Sxx

[
1− (1− d2)G∗

3,m

(1
3
Fα;∆∗

)
(5.9)

+(1− d)∆∗
{

2G∗
3,m

(1
3
Fα;∆∗

)
− (1 + d)G∗

5,m

(1
5
Fα;∆∗

)}]
,

where σ2∗ = ν−2
ν σ2 and G∗

a,m

(
1
aFα;∆∗

)
has been defined in (5.4).

Proof: From the definition, conditional on τ , the mse expression of the SPTE is given by

M3

[
(β̂PTE

1 (d))|τ
]

= E
[
β̂PTE

1 (d)− β1

]2
(5.10)

= E(β̃1 − β1)2 + (1− d)2E(β̃1 − β10)2I(F < Fα)

−2(1− d)E[(β̃1 − β1)(β1 − β10)]I(F < Fα)

=
τ2

Sxx
+ (1− d)2E[(β̃1 − β10)2I(F < Fα)]

−2(1− d)E
[
{(β̃1 − β10)− (β1 − β10)}(β̃1 − β10)I(F < Fα)

]
.

To evaluate the above expression of the mean square error of β̂PTE
1 (d) we need the following

lemma.

Lemma 5.2. If Z ∼ N (Λ, 1) and φ(Z2) is a Borel measurable function, then

E[Z2φ(Z2)] = E
[
φ{χ2

3(Λ
2)}

]
+ Λ2E

[
φ{χ2

5(Λ
2)}

]
. (5.11)

The proof of the lemma is given in Saleh (2006) or Appendix B2 of Judge and Bock

(1978).
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After completing the evaluation of all the terms on the R.H.S. of the expression of the

mse function of the SPTE, we get

M3[(β̂PTE
1 (d))|τ ] =

τ2

Sxx

[
1− (1− d2)G3,m

(1
3
Fα;∆2

τ

)
(5.12)

+(1− d)∆2
τ

{
2G3,m

(1
3
Fα;∆2

τ

)
− (1 + d)G5,m

(1
5
Fα;∆2

τ

)}]
.

The proof of the theorem is completed by taking expectation on M3[(β̂PTE
1 (d))|τ ] with

respect to τ .

Figure 1, displays the behavior of the mse based relative efficiency functions of the SE

and SPTE for a fixed α with the change in the value of ∆2. The four graphs illustrate the

different features of the relative efficiency functions for selected values of the coefficient of

distrust, d = 0.00, 0.25, 0.50, 1.00 when ν is fixed at 5.

Figure 2, displays the behavior of the mse based relative efficiency functions of the SE

and SPTE for a fixed α with the change in the value of ∆2. The four graphs illustrate

the different features of the relative efficiency functions for selected values of the degrees

of freedom, ν = 5, 10, 20, 40 when d is fixed at 0.50.

Some Properties of the MSE of SPTE

(a) Under the null hypothesis ∆2 = 0, and hence the mse of β̂PTE
1 (d) equals

σ2∗
Sxx

[
1− (1− d2)G∗

3,m

(
1
3
Fα; 0

)]
<

σ2∗
Sxx

. (5.13)

Thus, at ∆2 = 0 SPTE of β1 performs better than β̃1, the UE. As α → 0, G∗
3,m

(
1
3Fα; 0

)
→

1, then
σ2∗
Sxx

[
1− (1− d2)G∗

3,m

(
1
3
Fα; 0

)]
→ d2σ2∗

Sxx
, (5.14)

which is the mse of β̂1(d). On the other hand, if Fα → 0, G∗
3,m

(
1
3Fα; 0

)
→ 0, then

σ2∗
Sxx

[
1− (1− d2)G∗

3,m

(
1
3
Fα; 0

)]
→ σ2∗

Sxx
, which is the mse of β̃1. (5.15)

(b) As ∆2 → ∞, G∗
a,m

(
1
aFα;∆∗

)
→ 0, (for a = 3, 5) this means the expression at

(5.9) tends towards σ2∗
Sxx

, the mse of the UE.

(c) Since G∗
3,m

(
1
3Fα;∆∗

)
is always greater than G∗

5,m

(
1
5Fα;∆∗

)
for any value of α,

replacing G∗
5,m

(
1
5Fα;∆∗

)
by G∗

3,m

(
1
3Fα;∆2

)
, (5.4) becomes

≥ σ2∗
Sxx

[
1 + (1− d2)G∗

3,m

(1
3
Fα;∆∗

)
{(1− d)∆2 − (1 + d)}

]
(5.16)

≥ σ2∗
Sxx

whenever ∆2 >
1 + d

1− d
.
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On the other hand, (5.9) may be rewritten as

σ2∗
Sxx

[
1 + (1− d)G∗

3,m

(1
3
Fα;∆∗

)
{2∆2 − (1 + d)} − (1− d2)G∗

5,m

(1
5
Fα;∆∗

)]
(5.17)

≤ σ2∗
Sxx

whenever ∆2 <
1 + d

2
. (5.18)

This means that the mse of β̂PTE
1 (d) as a function of ∆2 crosses the constant line M1(β̃1) =

σ2∗
Sxx

in the interval
(

1+d
2 , 1+d

1−d

)
.

(d) A general picture of the mse graph may be described as follows: The mse-function

begins with the smallest value σ2∗
Sxx

[
1 − (1 − d2)G∗

3,m

(
1
3Fα; 0

)]
at ∆2 = 0. As ∆2 grows

large, the function increases monotonically crossing the constant line σ2∗
Sxx

in the interval(
1+d
2 , 1+d

1−d

)
and reaches a maximum in the interval

(
1+d
1−d ,∞

)
then monotonically decreases

towards σ2∗
Sxx

as ∆2 →∞.

5.3 The Bias and MSE of SE

Following Balforine and Zacks (1992) we compute the bias and the mse of the SE, β̂S
1 .

Theorem 5.3: For the Student-t regression model the bias of the SE of the slope is given

by

B4(β̂S
1 ) =

−σ√
Sxx

cKn{2Φ(∆)− 1}, (5.19)

where Kn =
√

2
n−2

Γ(n−1
2

)

Γ(n−2
2

)
.

Proof: Conditional on τ , the bias of the SE is defined by

E[β̂S
1 − β1] = −cE

[
Sn(β̃1 − β10)

|√Sxx(β̃1 − β10)|

]
(5.20)

= − c√
Sxx

E[Sn]E
{

Z

|Z|
}

,

where Z =
√

Sxx(β̃1−β10)
τ ∼ N (∆τ , 1). We use the following lemma to evaluate E

{
Z
|Z|

}
.

Lemma 5.3. If Z ∼ N (Λ, 1) and φ(Z2) is a Borel measurable function, then

E

{
Z

|Z|
}

= 1− 2Φ(−Λ) (5.21)

where Φ(·) is the c.d.f. of the standard normal distribution. The proof of the lemma is

straightforward. Note that conditional on τ , mS2
n

τ2 ∼ χ2
m and hence E[Sn] =

√
2

n−2
Γ(n−1)

Γ(n−2
2

)
τ.

So, for a given τ , the bias of the SE becomes

B4(β̂S
1 |τ) = − c√

Sxx
Knτ{2Φ(∆τ )− 1}. (5.22)
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Expectation of B4(β̂S
1 |τ) with respect to τ completes the proof. From the expression of

the bias function, the quadratic bias of the SE, QB4(β̂S
1 ) is obtained as

QB4(β̂S
1 ) =

σ2

Sxx
c2K2

n{2Φ(∆)− 1}2. (5.23)

As ∆2 → 0, QB4(β̂S
1 ) → 0 and as ∆2 → ∞, QB4(β̂1

S) → σ2∗
Sxx

K2
nc2. Therefore,

QB4(β̂S
1 ) is a non-decreasing monotonic function of ∆2. Thus, unless ∆2 is near the

origin, the quadratic bias of the SE is significantly large.

Theorem 5.4: For the Student-t regression model the mse of the SE of the slope is given

by

M4(β̂S
1 ) =

σ2∗
Sxx

{
1− 2

π
K2

n

[
2η(∆∗)− 1

]}
, (5.24)

where η(∆∗) = Γ( ν−1
2

)

Γ( ν
2
)

(
1 + ∆∗

ν−2

)− ν
2

Proof: From the definition, conditional on τ , the mse of β̂S
1 is

E[(β̂S
1 − β1)2|τ ] = E(β̃1 − β1)2 + c2E(S2

n)E

{
(β̃1 − β10)2

[
√

Sxx(β̃1 − β10)]2

}
(5.25)

−2cE

{
(β̃1 − β1)(β̃1 − β10)
|√Sxx(β̃1 − β10)|

}
E(Sn)

=
τ2

Sxx
+

c2τ2

Sxx
− 2c

τ2Kn

Sxx

{
E(|Z|)−∆τE

( Z

|Z|
)}

,

where Z ∼ N (∆τ , 1). To find E(|Z|), we have the following lemma.

Lemma 5.4. If Z ∼ N (Λ, 1), then

E(|Z|) =
√

2
π

e−Λ2/2 + Λ{2Φ(Λ)− 1} (5.26)

where Φ(·) is the c.d.f. of the standard normal variable. See Khan and Saleh (2001) for

the proof of the above theorem.

Therefore, the mse of β̂S
1 is given by

M4(β̂1
S) =

τ2

Sxx

{
1 + c2 − 2cKn

√
2
π

e−∆2
τ /2

}
. (5.27)

The value of c which minimizes (5.27) depends on ∆2
τ and is given by

c∗ =
√

2
π

Kne−∆2
τ /2. (5.28)

To make c∗ independent of ∆2
τ , we choose c0 =

√
2
πKn. Thus, optimum M4(β̂S

1 ) reduces

to

M4(β̂S
1 ) =

τ2

Sxx

{
1− 2

π
K2

n

[
2e−∆2

τ /2 − 1
]}

. (5.29)

Expectation of the above expression with respect to τ completes the proof. Note that

η(∆∗) = Eτ

[
e−

∆2
τ
2

]
= Γ( ν−1

2
)

Γ(ν)

(
1 + ∆∗

ν−2

)− ν
2 .
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6 Comparative Study

In this Section we compare the bias of the three estimators. Also, we define the relative

efficiency functions of the estimators, and analyze these functions to compare the relative

performances of the estimators.

6.1 Comparing Quadratic Bias Functions

First, we note that the quadratic bias of the RE, SPTE and SE are given by

QB2[β̂1(d)] =
σ2∗
Sxx

(1− d)2∆2 (6.1)

QB3[β̂PTE
1 (d)] =

σ2∗
Sxx

(1− d)2∆2
{

G∗
3,m

(1
3
Fα; ∆∗

)}2

QB4[β̂S
1 ] =

σ2∗
Sxx

c2K2
n{2Φ(∆)− 1}2.

Clearly, under the null-hypothesis QB2[β̂1(d)] = QB3[β̂PTE
1 (d)] = QB4[β̂S

1 (d)] = 0 for

all d and α.

When ∆ → ∞, QB2[β̂1(d)] → ∞ except at d = 1; QB3[β̂PTE
1 (d)] → 0 for all α and

d; and QB4[β̂1
S] → σ2∗

Sxx
c2K2

n, a constant that does not depend on d. Therefore, in terms

of quadratic bias, RE is uniformly dominated by both the SPTE and SE. For very large

values of ∆, the SE is dominated by the SPTE regardless of the value of α. From small

to moderate values of ∆, there is no uniform domination of one estimator over the other.

In this case, domination depends on the level of significance, α. For small values of α,

the SPTE is dominated by the SE and for larger values of α, the SE is dominated by

the SPTE. However, Chiou and Saleh (2002) suggest the value of α to be between 20%

and 25%. In this interval of α, the quadratic bias of the SPTE approaches to zero for

not too small values of ∆. However, in practice, the non-centrality parameter is unlikely

to be very large (otherwise the credibility of prior information is in serious question) and

α is usually preferred to be small. The quadratic bias of the SE is relatively stable and

approaches to a constant value starting from some moderate value of ∆ and is unaffected

by the choice of d and α. Therefore, the SE may be a better choice among the biased

estimators considered in this paper.

6.2 The Relative Efficiency

First we define the relative efficiency functions of the biased estimators as the ratio of

the reciprocal of the mse functions. Then we compare the relative performance of the

estimators by using the relative efficiency criterion.

12



Comparing RE against UE

The relative efficiency of β̂1(d) compared to β̃1 is denoted by RE[β̂1(d) : β̃1] and is

obtained as

RE[β̂1(d) : β̃1] = [d2 + (1− d)2∆2]−1. (6.2)

We observe the following based on (6.2).

(i) If the non-sampling information is correct, i.e., ∆2 = 0, the RE[β̂1(d) : β̃1] =

d−2 > 1 and β̂1(d) is more efficient than β̃1. Thus, under the null hypothesis the biased

estimator, RE performs better than the unbiased estimator, UE.

(ii) If the non-sampling information is incorrect, i.e., ∆2 > 0 we study the expression

in (6.2) as a function of ∆2 for a fixed d-value. As a function of ∆2, (6.2) is a decreasing

function with its maximum value d−2(> 1) at ∆2 = 0 and minimum value 0 at ∆2 = +∞.

It equals 1 at ∆2 = 1+d
1−d . Thus, if ∆2 ∈ [0, 1+d

1−d), β̂1(d) is more efficient than β̃1, and

outside this interval β̃1 is more efficient than β̂1(d). For example, if d = 1
2 , the interval

in which β̂1(d) is more efficient than β̃1 is [0, 3), while β̃1 is more efficient in [3,∞) than

β̂1(d). For d= 0.5 the maximum efficiency of β̂1(d) over β̃1 is 4.

Comparing SPTE against UE

Now, we consider the relative efficiency of the SPTE compared to the UE. It is given

by

RE[β̂PTE
1 (d) : β̃1] =

[
1− (1− d2)G∗

3,m

(1
3
Fα;∆∗

)
+ (1− d)∆2 (6.3)

×
{
2G∗

3,m

(1
3
Fα;∆∗

)
− (1 + d)G∗

5,m

(1
5
Fα;∆∗

)}]−1

for any fixed d (0 ≤ d ≤ 1) and at a fixed level of significance α. As Fα →∞, RE[β̂PTE
1 (d) :

β̃1] → [1− (1− d2) + (1− d)2∆2]−1 = [d2 + (1− d)2∆2]−1 which is the relative efficiency

of β̂1(d) compared to β̃1. On the other hand, as Fα → 0, RE[β̂PTE
1 (d) : β̃1] → 1. This

means the relative efficiency of the SPTE is the same as the unrestricted estimator, β̃1.

Note that under the null hypothesis, ∆2 = 0, the relative efficiency expression (6.3) equals

[
1− (1− d2)G∗

3,m

(1
3
Fα; 0

)]−1 ≥ 1, (6.4)

which is the maximum value of the relative efficiency. Thus the relative efficiency func-

tion monotonically decreases crossing the 1-line for ∆2-value between 1+d
2 and 1+d

1−d , to a

minimum for some ∆2 = ∆2
min and then monotonically increases, to approach the unit

value from below. The relative efficiency of the preliminary test estimator equals unity

whenever the value of ∆2 is

∆2
∗ =

(1 + d){
2− (1 + d)

G∗5,m( 1
5
Fα;∆∗)

G∗3,m( 1
3
Fα;∆∗)

} , (6.5)

13



where ∆2∗ lies in the interval
(

1+d
2 , 1+d

1−d

)
. This means that

RE
[
β̂PTE

1 (d) : β̃1

]
<=
>

1 according as ∆2
∗

<=
>

∆2. (6.6)

Finally, as ∆2 → ∞, RE[β̂PTE
1 (d) : β̃1] → 1. Thus, the preliminary test estimator is

more efficient than the unrestricted estimator whenever ∆2 < ∆2∗, otherwise β̃1 is more

efficient than SPTE up to a moderate value of ∆2. As for the relative efficiency of β̂PTE
1 (d)

compared to β̂1(d) we have

RE
[
β̂PTE

1 (d) : β̂1

]
= [d2 + (1− d)2∆2][1 + g(∆2)]−1, (6.7)

where

g(∆2) = (1− d)∆2

{
2G∗

3,m

(
1
3Fα;∆∗

)
− (1 + d)G∗

5,m

(
1
5Fα;∆∗

)}

−(1 + d2)G∗
3,m

(
1
3Fα;∆∗

)
. (6.8)

Under the null-hypothesis,

RE[β̂PTE
1 (d) : β̂1(d)] = d2

[
1− (1− d2)G∗

3,m

(1
3
Fα; 0

)]−1 ≥ d2. (6.9)

At the same time we consider the result at (6.3). In combination, we obtain

d2 ≤ RE[β̂PTE
1 (d) : β̂1(d)] ≤ 1 ≤ RE[β̂PTE

1 (d) : β̃1]. (6.10)

For general ∆2 > 0, we have

RE[β̂PTE
1 (d) : β̂1(d)] <=

>
1 according as (6.11)

∆2 <=
>

1 + d

1− d

{
1−G∗

3,m

(
1
3Fα;∆∗

)}
{
1− 2G∗

3,m

(
1
3Fα;∆∗

)
− (1 + d)G∗

5,m

(
1
5Fα;∆∗

)} . (6.12)

Finally, as ∆2 →∞, RE[β̂PTE
1 (d); β̂1(d)] → 0. Thus, except for a small interval around 0,

β̂PTE
1 (d) is more efficient than β̂1(d).

Comparing SE against UE

The relative efficiency of β̂S
1 compared to β̃1 is given by

RE(β̂S
1 : β̃1) =

[
1− 2

π
K2

n

{
2e−∆2/2 − 1

}]−1
. (6.13)

Under the null-hypothesis ∆2 = 0, and hence

RE(β̂S
1 : β̃1) =

[
1− 2

π
K2

n

]−1 ≥ 1. (6.14)
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Figure 1: Graph of relative efficiency of RE, SPTE and SE relative to UE for ν = 5 and
different d

In general, RE(β̂S
1 : β̃1) decreases from [1 − 2

πK2
n]−1 at ∆2 = 0 and crosses the 1-line

at ∆2 = ln 4 and then goes to the minimum value

[
1 +

2
π

K2
n

]−1
as ∆2 →∞. (6.15)

Thus, the loss of efficiency of β̂S
1 relative to β̃1 is

1−
[
1 +

2
π

K2
n

]−1
(6.16)

while the gain in efficiency is [
1− 2

π
K2

n

]−1
(6.17)

respectively which is achieved at ∆2 = 0. Thus, for ∆2 < ln 4, β̂S
1 performs better than

β̃1, otherwise β̃1 performs better. The property of β̂S
1 is similar to the preliminary test

estimator but does not depend on the level of significance. As ∆2 → ∞ the relative
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Figure 2: Graph of relative efficiency of RE, SPTE and SE relative to UE for d = 0.5 and
different ν

efficiency of SPTE with respect to UE approaches to 1 and that of the SE with respect to

UE approaches to
[
1 + 2

πK2
n

]−1
.

Comparing efficiency of SE relative to SPTE

The maximum relative efficiency of the SE relative to SPTE attained for ∆ = 0 and

d = 1, regardless of the value of α. At ∆ = 0, as the coefficient of distrust, d decreases, the

relative efficiency of SE also decreases, and it decreases below 1 for d = 0. Starting from

some moderate value of ∆, relative efficiency of SE becomes less than 1 and converges to

a stable value, below one, as ∆ →∞. Except for ∆ = 0 and near 0 the relative efficiency

of SE is always higher for smaller values of d than larger values of d, before converging to

a stable value. The difference between the relative efficiencies of SE for different values

of d is higher for lower value of α then it’s higher values. As α increases this difference

decreases. Moreover, as α increases, the relative efficiency of SE also increases for ∆ = 0

16



or near 0.

7 Concluding Remarks

The UE is based on the sample data alone and it is the only unbiased estimator among the

four estimators considered in this paper. The introduction of the non-sample information

in the estimation process causes the estimators to be biased. However, the biased estima-

tors perform better than the unbiased estimator when they are judged based on the mse

criterion. The performance of the biased estimators depend on the value of the departure

parameter ∆. In case of the SPTE, the performance also depends on the value of the

level of significance. Under the null hypothesis, the departure parameter is zero, and the

SE dominates all other estimators if α is not too high. As α increases, the performance

of the SPTE improves when ∆ is not too close to zero. At a lower level of significance,

the SE performs better than the SPTE more often and over a wider range of values of ∆.

When the value of ∆ is not far from 0, the SE always over performs the SPTE and RE.

Therefore, in practice if the researcher could gather a value of β1 from the prior knowledge

or experience that is not too far from its true value, the SE would be the best choice as

an ‘improved’ estimator of the slope.
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