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Abstract
Urgent transition from the dependence on fossil fuels towards renewable energies requires more solar photovoltaic power to 
be connected to the electricity grids, with reliable supply through accurate solar radiation forecasting systems. This study 
proposes an innovative hybrid method that integrates convolutional neural network (CNN) with multi-layer perceptron (MLP) 
to generate global solar radiation (GSR) forecasts. The CMLP model first extracts optimal topological and structural features 
embedded in predictive variables through a CNN-based feature extraction stage followed by an MLP-based predictive model 
to generate the GSR forecasts. Predictive variables from observed data and global climate models (GCM) are used to predict 
GSR at six solar farms in Queensland, Australia. A hybrid-wrapper feature selection method using a random forest-recursive 
feature elimination (RF-RFE) scheme is used to eradicate redundant predictor features to improve the proposed CMLP model 
efficiency. The CMLP model has been compared and bench-marked against seven artificial intelligence–based and seven 
temperature-based deterministic models, showing excellent performance at all solar energy study sites tested over daily, 
monthly, and seasonal scales. The proposed hybrid CMLP model should be explored as a viable modelling tool for solar 
energy monitoring and forecasting in real-time energy management systems.

Keywords Deep learning hybrid models · Convolutional neural network · Multi-layer perceptrons · Solar radiation 
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Introduction

United Nations Member States provided visionary blue-
prints for clean energy technologies in 2015, through the 
2030 Agenda for Sustainable Development. Its key agenda 
item was SDG-7, which aims to ensure developed and 
developing countries’ accessibility of affordable, reliable, 
sustainable, and modern energy through global partner-
ships. This vision was recently reinforced by the 2021 
United Nations Conference of Parties (COP 26), where 
the attempt to limit the global warming to 1.5◦ reinforces 
SDG-7 (increasing the penetration of clean energy, par-
ticularly solar and wind, into national electricity grids).

Similarly, Australia is also striving to transition from 
fossil fuel–based electricity generations to renewable 
resources, with new monitoring and forecasting technolo-
gies to support battery storage systems, which ensure con-
sistent availability of electricity from these variable renew-
able energy sources. It has been demonstrated that solar 
photovoltaic (PV) is one of the cheapest renewable sources 
with competitive levelized cost of electricity. Australia’s 
rooftop solar PV installations has expanded recently with 
the addition of 333,978 new installations, adding a gen-
eration capacity of 2.6 GW to the national electricity grid 
in 2020. This was almost 18% higher than the previous 
year (2.2 GW and 284,000 installations in 2019) [1]. How-
ever, electricity generation from solar PV is intermittent in 
nature, and may be affected by short- and long-term syn-
optic weather conditions [2], the solar variability, and the 
intermittency of transient clouds and aerosols. As a result, 
the variability in the availability of GSR on the surface 
of PV collectors leads to solar electricity supply instabil-
ity and issues with frequency response, requiring reactive 
back-up power generations [3]. With over 330,000 rooftop 
installations, feeding electricity into the grid at different 
points in time and with varied capacity, a robust predic-
tive system for GSR is a necessity for grid stability. Prior 
knowledge of GSR within its corresponding solar power 
outputs and inconsistency of supply to meet changing 
demands can therefore alleviate future risk of supply from 
renewable energies. This includes solar and wind tecnolo-
gies which are subjected to increased curtailment-driven 
weather and climatic conditions at the concerned sites. In 
this respect, the development of reliable GSR prediction 
methods, with potential further applications in areas such 
as wind and wave energy systems, is of vital importance 
to ensure sustained growth of renewable energy sector.

The traditional GSR prediction models, including 
physical and statistical methods, largely assumed a linear 
relationship among predictive and target variables [4, 5]. 
The physical methods utilize numerical weather forecasts 
(NWP) and adopt satellite data to predict the GSR, while 

the statistical methods are built upon mathematical rela-
tionships between predictors (weather data) and target 
(GSR) (such as an exponential smoothing, auto-regressive 
integrated moving average (ARIMA), or Markov Chains). 
Therefore, robust and advanced modelling approaches 
such artificial intelligence (AI) techniques and hybrid 
methods [6, 7] are necessary to capture the non-linear 
interactions between predictors and the target. AI-based 
methods using machine/deep learning (ML/DL) methods 
allow modelling non-linear relationships between predic-
tors and the target [8, 9] yielding a superior performance 
in many applications. Several AI-based models have out-
performed both physical and statistical models [10, 11] as 
an alternative methodology in different renewable energy 
modelling contexts. Following this, the neural networks 
have been extensively used for solar radiation predic-
tion [12, 13]. Literature reveals a number of algorithms 
being proposed to predict hourly GSR, such as the one 
in [14], which included adaptive neuro-fuzzy inference 
system (ANFIS), feed-forward neural network (FFNN), 
Elman recurrent network (LM), and radial basis function 
(RBF). Among these, the LM method outperformed the 
others, and it seems that the inclusion of wind direction 
as an input led to improved performance of the LM model. 
Yacef et al. [15] developed and tested an artificial neu-
ral network (ANN), Bayesian neural network (BNN), and 
the Angstrom-Prescot deterministic model for daily GSR 
prediction with dry-bulb air temperature, sunshine dura-
tion, relative humidity, and extra-terrestrial irradiation 
meteorological data over 4 years as predictors. The results 
showed that the BNN model outperformed the ANN deter-
ministic models. Zou et al. [16] used daily meteorological 
parameters (precipitation, temperature (minimum, maxi-
mum, and mean), sunshine duration hours, water vapor 
pressure, relative humidity, air pressure, and wind speed) 
along with ground-based measurements and a daily sur-
face dataset from the Data Assimilation and Modeling 
Center for Tibetan Multi-spheres (DAM) to predict daily 
GSR and validate the model. The results showed that an 
ANN method with 9-17-1 input-hidden-output architec-
ture yields a better accuracy than deterministic methods. 
Lu et al. [17] applied an ANN model to study non-linear 
relationships between observed GSR and spectral infor-
mation from the Multi-functional Transport Satellite 
(MTSAT) concluding that the ANN model was a fast, 
efficient, and accurate method. In spite of these studies 
supporting the AI methods in GSR prediction problems, 
their conventional learning algorithms could be subjected 
to a limited ability to deal with relatively complex and 
stochastic behavior of atmospheric variables, and its ina-
bility to extract maximal features in large datasets that are 
required to attain a superior performance. An improved 
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form of “learning” model, the deep learning (DL) meth-
ods, has recently been recognized as an alternative to the 
conventional ML models. DL models are simple yet non-
linear models with multiple hidden layers that convert the 
representation of features into a higher and more abstract 
level [18]. Having a powerful nonlinear network structure, 
DL provides a performance edge over traditional learning 
models that have been challenged for their optimal fea-
ture representation [18, 19]. DL improves the prediction 
by using deep nonlinear network structures, and realizing 
complex function approximation and deep features from 
massive data samples [20, 21]. While the initial applica-
tions included image processing [22], natural language 
processing [23], speech processing [24], or medicine [25], 
DL has also been attractive for time series applications, 
with utilization of convolutional neural network (CNN) 
combined with long-short term memory (LSTM) for dif-
ferent prediction problems, including renewable energy 
applications such as wind speed [26] and also GSR [27]. 
Additionally, in classification problems, the CNN-based 
model known as RipNet has been used recently for auto-
mated rip current identification. This RipNet model has 
achieved high sensitivity with very few false-positive 
classifications, thus making it a very practical real-world 
approach [28].

On the other hand, the hybrid models emerge from inte-
grating different approaches, such as combination of two or 
more AI approaches to obtain more accurate predictions. 
These hybrid models combine the advantages of both AI-
based models, in such a way that the final model has better 
generalization performance. Hybrid approaches have been 
utilized in a number of prediction problems [29]. For exam-
ple, in GSR prediction problems, the following approaches 
have been noted in literature: particle swarm optimization-
extreme learning nachines (PSO-ELM) [30], support vector 
regression optimized by PSO, bat and whale algorithms [31], 
maximum overlap discrete wavelet transform (DWT) inte-
grated with SVR (PSO-W-SVR) [32], ANN optimized by 
PSO (PSO-ANN) [33], CNN integrated with SVR (CNN-
SVR) [34], CNN integrated with stacked regression (CNN-
REGST) [35], or CNN integrated with extreme gradient 
boosting and random forest regression (CXGBRFR) [36]. 
In time series applications in energy, CNN-LSTM mod-
els were developed for prediction of residential energy 
consumption [37], wind speed prediction [38], and GSR  
prediction [39].

One major difficulty in GSR prediction with DL meth-
ods is the precise requirement for predictor variables to be 
intrinsically linked to the target. In the context of GSR, most 
significant meteorological and climatological predictors may 
not be accessible due to remoteness of solar farms, com-
pounded by the expense and maintenance issues associated 

with solar measuring and monitoring equipment. Fortu-
nately, a global climate models (GCMs) dataset, which are 
gridded representations of physical variables of a meteoro-
logical or climatological origin, is an important resource for 
solar and wind energy predictive modelling. GCM datasets 
have been used in crop evapotranspiration [40], rainfall [41], 
streamflow [42], drought [43], and wind speed [44] fore-
casting problems. To improve the accuracy of daily GSR 
prediction, a new hybrid model is developed by integrating 
CNN with multi-layer perceptron model (CMLP) algorithm. 
The advantage of the superior predictive skills of CNN in 
extracting detailed spatial features is combined with the 
superior skills of MLP in extracting time-series features 
from input-target data matrix while achieving better predic-
tive ability.

The objectives of this study, which define somehow its 
novelty, are as follows: (i) To adopt GCM datasets coupled 
with available ground-based observation datasets from the 
most reliable source in the study region as potential variables 
employed to predict daily GSR. (ii) To incorporate hybrid-
wrapper feature selection, which utilizes a random forest-
recursive feature elimination (RF-RFE) approach to filter 
redundant variables for improved efficacy of the proposed 
model. (iii) To develop a suite of seven AI-based models 
(i.e., DNN, ANN, ELM, KRR, XGBOOST, BRF, WKNN) 
and seven temperature-based deterministic models (i.e., 
TMGO, TMAL, TMAN, TMHAS, TMBC, TMCH, TMHG) 
as the competing approaches to benchmark the proposed 
hybrid CMLP model. It is expected that the use of both the 
AI-based and the temperature-based models will lead to a 
detailed investigation of the efficacy of the proposed CMLP 
model. (iv) To compare the overall skills of the CMLP 
model in daily GSR prediction by pooling in a total of 123 
initial predictive variables across six solar energy sites in 
Queensland state, Australia. The methodology produced to 
predict GSR, therefore, presents a multi-objective approach, 
integrating global climate model simulations and hybrid 
feature mapping methods that are benchmarked against AI-
based and deterministic methods used as popular standalone 
approaches for solar energy predictions.

The rest of this paper has been structured in the following 
form: the next section introduces the study area and the avail-
able dataset, including the information of all the solar farms 
considered, predictive variables, and objective variables. The 
“Methods, Study Area, and Datasets” section introduces the 
most important characteristics of the methods considered in 
this work, including a brief description of temperature-based 
approaches, random forest-recursive feature elimination algo-
rithm, convolutionary neural network, and multi-layer per-
cetron models. The “Development of the Proposed CMLP 
Predictive Model” section explains the proposed hybrid pre-
diction CMLP model, and the “Results” and “Discussion” 
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sections present the results obtained by the proposed CMLP 
approach, and a comparison with state-of-the art AI-based and 
temperature-based algorithms for GSR prediction. Finally, the 
“Conclusions, Limitations, and Future Research Work” sec-
tion ends the paper by some key conclusions and remarks on 
the research implemented.

Methods, Study Area, and Datasets

For the objective hybrid CMLP model, the predictor variables 
are selected from GCM-based historical and ground data, via 
random forest-recursive feature elimination (RF-RFE) algo-
rithm, prior to being fed into the CNN algorithm.

Figure 3 illustrates the topological structure of the pro-
posed hybrid CMLP model. The features from the selected 
predictor variables are extracted by the convolution kernels 
of the CNN, which are then fed into the multilayer per-
ceptron (MLP) network for the final GSR predictions. The 
CMLP model has been compared with AI-based methods 
that include ANN, ELM, deep neural networks (DNN), 
boosting random forest (BRF), kernel ridge regression 
(KRR), weighted K-nearest neighbor (WKNNR), extreme 
gradient boosting (XGB), and temperature-based determin-
istic models that include Hargreaves and Samani (TMHS), 
Chen (TMCH), Bristow and Campbell (TMBC), Goodin 
(TMGO), Allen (TMAL), Annandale (TMAN), and Has-
san (TMHG) methods. The theoretical background of stan-
dalone models (ANN, ELM, DNN, BRF, KRR, WKNNR, 
and XGB) is described elsewhere [45–53] and derivations 
for temperature-based deterministic models (TMHS, TMCH, 
TMBC, TMGO, TMAL, TMAN, and TMHG) are in earlier 
studies (e.g., [54–56]), so we do not reintroduce them here. 
However, the primary equations of TM-based deterministic 
models are as follows:

where:

(1)TMHS ∶ GSR = aΔTbH0

(2)TMCH ∶ GSR = H0 [a + b ⋅ ln (ΔT)]

(3)TMBC ∶ GSR = a [1 − exp(−bΔTc)]H0

(4)TMAL ∶ GSR= aΔT0.5H0

(5)TMAL ∶ GSR = a

[
1 − exp

(
−b

ΔTc

G0

)]
H0

(6)TMHG ∶ GSR = (aTbH0 + c)H0

(7)ΔT = Tmax − Tmin

Random Forest‑Recursive Feature Elimination

The random forest-recursive feature elimination (RF-RFE) is 
a hybrid-wrapper type of feature selection method [57] used 
in this study to optimize the proposed hybrid CMLP model. 
The RF-RFE initially trains a random forest (RF) model with 
all predictor variables ( xi,1, xi,2,… , xi,p ), ( i = 1, 2,… ,m ) 
and then ranks the predictor variables based on their relative 
importance. The RF model performance is then evaluated 
based on a diverse list of metrics, repeated with a progressively 
smaller subset, decreased by d features. The best performance 
model is selected and the combination of predictor variables 
is determined. In addition, the relative root mean square error 
(RRMSE) metric is used to evaluate the performance of RF-
RFE model. A pseudo-code as in Fig. 1 illustrates the RF 
algorithm used in improving the overall performance of the 
proposed CMLP model.

Convolutional Neural Network (CNN)

The proposed hybrid CMLP model is based on a convolutional 
neural network (CNN) method, which is a feedforward net-
work developed by [58] typically for 2-D image processing. 
The CNN is constructed by cascading layers comprising a con-
volutional layer, pooling layer, and fully connected layer [59]. 
Fundamentally, the CNN technique builds numerous filters to 
extract hidden features by convoluting and pooling input infor-
mation, layer by layer, and the derived features are integrated 
into a fully connected layer while the regression problem is 
handled by activation functions. In 1-D domain, a filtering 
kernel plays as a feature extractor with one-dimensional con-
volution described in [60]:

where a(l+1)
j

 refers to the feature map j in layer l + 1 , � refers 
to a nonlinear function, Fl indicates the number of feature 

(8)
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Fig. 1  Random forest-recursive feature elimination (RF-RFE) algo-
rithm
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maps in layerl, Kl
jf
 represents the kernel convolved over fea-

ture map f in layer l to build the feature map j in layer l + 1, 
and pl denotes the length of kernels in layer l with bl

j
 being 

a bias vector.

Multi‑Layer Perceptron Model

The proposed hybrid CMLP model also comprises of the 
MLP model constructed by cascading input and hidden and 
output layers. Furthermore, the learning comes from error-
based backpropagation using gradient descent approach with 
neurons as the main component of an MLP found in net-
work’s layers, linked by synaptic weights and their nonlinear 
modelling behaviors.

Figure  3 shows the schematics and the MLP can be 
described mathematically as,

where each neuron input xj is multiplied by a synaptic weight 
wkj expressing the connection strength between neurons. The 
results, uk , are added to bias bk and that sum is then multi-
plied by activation function � to compute the output yk used 
as input with bk and synaptic weight wkj fitted in the training 
step to predict the output. Further information on MLP can 
be found in [61].

Study Area and Dataset

To implement the proposed hybrid CMLP model, histor-
ical data from 1950 to 2006 from six solar farms across 

(9)uk =

m∑
j=1

wkjxj

(10)yk = �

(
uk + bk

)

Queensland state, Australia, are selected (Table 1; Fig. 2). 
These solar farms have energy generation potentials ranging 
between 19.9 and 1200 MW, yet the GSR observations are 
not publicly available. Hence, the meteorological variables 
are acquired from the Scientific Information for Land Own-
ers (SILO) database operated by the Department of Environ-
ment and Science [62]. The study also used CMIP5 GCM 
(Coupled Model Intercomparision Phase-5) outputs [63] that 
include ACCESS1-0 (CSIRO-BOM) [64], Hadley-GEM2-
CC (MOHC) [65], and MRI-CGCM3 (MRI ) [66] models. 
The longitude, latitude, time, and atmospheric pressure at 
eight levels, or near-surface observations, are used to index 
the historical variables (Table 2).

Development of the Proposed CMLP Predictive 
Model

To prevent the influence of extremely large or small pre-
dictors and target ranges, all input data are normalized 
before training, using the min-max method. The overall 
goal is to modify the absolute values of numeric columns 
in data to a common scale without distorting differences 
in the ranges of values and transforming the features to be 
on a similar (relative) scale. This was achieved by apply-
ing Eq. (11):

where XN refers to the normalized value of the actual value 
of variable X, and XMAX and XMIN mean the maximum and 
minimum value, respectively.

Then, feature selection is employed to eliminate redun-
dant features from a total pool of 123 GCM-based and 
SILO-based atmospheric variables (see Table 2). For this, 

(11)XN =
X − XMIN

XMAX − XMIN

Table 1  Statistical description 
of the target variable, i.e., daily 
global solar radiation (GSR; 
MJm−2day−1 ) in the six solar 
farms over Queensland state, 
Australia

Statistical property Kidston Brigalow Bulli Creek Baking Board Chewco Blackwater

Latitude 18.880Â°S 27 42’S 28 01’S 26 43Â°S 17.047Â°S 23.597Â°S
Longitude 144.151Â°E 151 34’E 150 52’E 150 33’E 145.384Â°E 148.753Â°E
Altitude (m) 521.00 438.00 348.00 337.00 400.00 184.00
Capacity (MW) 50 34.5 1200 19.9 75 150
Median 21.00 20.00 20.00 20.00 20.00 21.00
Mean (MJm−2) 20.72 19.60 20.07 20.06 19.97 20.45
Standard deviation 4.53 6.33 6.39 6.33 6.29 5.81
Variance 20.56 40.02 40.88 40.12 39.58 33.80
Maximum 30.00 32.00 32.00 32.00 32.00 32.00
Minimum 7.00 4.00 4.00 4.00 4.00 4.00
Mode 26.00 17.00 16.00 18.00 18.00 18.00
Interquartile range 6.75 10.00 9.00 9.00 9.00 8.00
Skewness −0.34 −0.13 −0.15 −0.23 −0.22 −0.43
Kurtosis 2.59 2.35 2.39 2.38 2.39 2.85
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the normalized data are processed by means of an RF-RFE 
feature selection method that selected 65 input variables for 
the Kidston Solar Project, 66 variables for Brigalow and 
Bulli Creek solar farm, 46 variables for Baking Board solar 
farm, and 56 variables for Chewco solar farm. A full list 
of selected input variables for daily GSR prediction is dis-
played in Table 3. Evidently, the cloud area fraction (clt), 
precipitation (pr), convective precipitation (prc), near sur-
face air temperature (tas), rainfall (rain), relative humidity, 
and wind speed are the most important parameters for daily 
GSR predictions.

The inputs based on the RF-RFE selected variables and 
the target (i.e., daily GSR) data matrix are created for pre-
dictive modelling purposes. As there is no predefined rule 
for the data division [12, 50, 67], in this work, we used 54 

years of dataset for training (a total of 20,089 data points) 
of which 20% data (4018 data points) were used for vali-
dation, and 1 year data (365 data points) for testing with 
response data being the daily GSR time-series values in an 
independent test set.

This study has therefore developed a 4-layered CMLP 
model as shown in Fig. 3, where the first three layers 
include a 1-D convolution layer to extract data features 
firstly. The fourth layer in this hybrid approach consists 
of an MLP-based predictive stage to analyze features and 
predict the GSR. A summarized CMLP algorithm involves 
the following eight steps:

• Input the data from the prepared dataset after feature 
selection, and convert the signal vector into a matrix.

Table 2  Descriptive information 
of predictor variables used 
for daily GSR prediction 
with output variables from 
global climate model and 
ground-based observations 
from scientific information for 
landowners (SILO) repository

Variable Description Units
Global climate model atmospheric predictor variables

clt Cloud area fraction %
hfls Surface upward latent heat flux Wm−2

hfss Surface upward sensible heat flux Wm−2

hur Relative humidity %
hus Near-surface specific humidity gkg−1

pr Precipitation kgm−2s−1

prc Convective precipitation kgm−2s−1

prsn Solid precipitation kgm−2s−1

psl Sea level pressure pa
rhs Near-surface relative humidity %
rhsmax Surface daily max relative humidity %
rhsmin Surface daily min relative humidity %
sfcWind Wind speed ms−1

sfcWindmax Daily maximum near-surface wind speed ms−1

ta Air temperature K
tas Near-surface air temperature K
tasmax Daily max near-surface air temperature K
tasmin Daily min near-surface air temperature K
ua Eastward wind ms−1

uas Eastern near-surface wind ms−1

va Northward wind ms−1

vas Northern near-surface wind ms−1

wap Omega (Lagrangian tendency of air pressure) pas−1

zg Geopotential height m
Ground-observed variables from SILO
Tmax Maximum temperature K
Tmin Minimum temperature K
Rain Daily rainfall mm
Evap Evaporation mm
VP Vapor pressure Pa
RHmaxT Relative humidity computed at maximum temperature %
RHminT Relative humidity computed at minimum temperature %
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• Initialize the parameters, such as the total numbers of 
layers, the maximum epoch of iteration, the learning rate, 
the optimizer, and the number of filters.

• Implement convolution and pooling.
• Fine-tune the stacked model using the optimized algorithm.
• Finish the optimization and acquire the features of the 

dataset.
• Use the extracted features for regression by MLP.
• Initialize the MLP parameters, such as the total numbers 

of neurons, the maximum epoch of iteration, the learning 
rate, the optimizer, and the activation function.

• Get the final optimized CMLP model and predict on test 
dataset.

Hyperparameters of the CMLP objective model and all AI-
based models benchmark are selected using a Bayesian opti-
mization method (HyperOpt), which comes from an open-
source Python library introduced by Komer et al. [68]. It 
involves Bayesian optimization tree-structured Parzen esti-
mators (BO-TPE) [69, 70] so unlike traditional hyperparame-
ter search algorithms (Grid and Random search) that are only 
applicable to low dimensional space and may fail to provide 
optimal solutions, the BO-TPE uses results from previous 
iteration to choose the next set [71]. The BO-TPE method 
requires fewer iterations relative to traditional approaches and 
provides optimal hyperparameter combination [72].

Tables 4 and 5 present the search space for CMLP and 
AI-based benchmark model hyperparameters, respectively, 
where the Hyperopt provides a search in all possible com-
binations of hyperparameters to select their optimal values.

Except for the output layer of CNN, to improve the learn-
ing speed and overcome vanishing gradient problems, the 
rectified linear unit (relu) was used as the activation func-
tion [73, 74]. An adaptive moment estimation (Adam) opti-
mizer [75] with a learning rate of 0.001 was used for both 
CNN and DNN models. The Adam method is an efficient sto-
chastic optimization technique that only needs first-order gra-
dients with less memory requirement [76], and has combined 
advantage of two popular methods: adaptive gradient algo-
rithm (AdaGrad) [77] that works well with sparse gradients 
and root mean square propagation algorithm (RMSProp) [78] 
that has an excellent performance in non-linear models.

All predictive models are built using Keras 2.2.4 [79, 
80] on TensorFlow 1.13.1 [81] with backends in Python 
3.6. The Hyperopt-sklearn  [82] library is used for 

Fig. 2  Six solar energy farms across Queensland, Australia, where 
the proposed hybrid CMLP model is implemented to predict global 
solar radiation (GSR, MJm−2day−1 ) using global climate model out-
puts and ground-based measured predictor variables

Fig. 3  Topological structure of feature extraction algorithm (convolutional neural network, CNN) that has been integrated with the objective pre-
dictive algorithm (multilayer perceptron, MLP) in this study used to construct the hybrid CMLP model for daily GSR prediction
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Table 3  The hybrid CMLP 
model’s input variables selected 
using the random forest-
recursive feature elimination 
(i.e., RF-RFE) feature selection 
process. For a complete 
description of input variables, 
see Table 2

Kidston Brigalow Bulli Creek Baking Board Chewco Solar Blackwater

clt clt clt clt clt clt
hfls hfls hfls hfls hfls hfls
hfss hfss hfss hfss hfss hfss
huss huss huss huss huss huss
prc pr pr pr prc prc
psl prc prc prsn prsn prsn
rhs prsn prsn psl psl psl
rhsmax psl psl rhsmax rhsmin rhsmin
rhsmin rhsmax rhsmax rhsmin tas tas
tas tas tas tasmax tasmin hur_1000
tasmax tasmax tasmax hur_10000 hur_1000 hur_5000
tasmin tasmin tasmin hur_50000 hur_5000 hur_50000
hur_1000 hur_1000 hur_1000 hur_85000 hur_50000 hus_1000
hur_5000 hur_5000 hur_5000 hus_1000 hus_1000 hus_10000
hur_25000 hur_25000 hur_25000 hus_5000 hus_5000 hus_50000
hur_50000 hur_50000 hur_50000 hus_10000 hus_10000 hus_85000
hur_85000 hur_70000 hur_70000 hus_50000 hus_50000 sfcWindmax
hus_1000 hur_85000 hur_85000 hus_70000 hus_70000 ta_1000
hus_5000 hus_1000 hus_1000 sfcWindmax hus_85000 ta_5000
hus_10000 hus_5000 hus_5000 ta_1000 sfcWindmax ta_25000
hus_25000 hus_10000 hus_10000 ta_5000 ta_1000 ta_50000
hus_50000 hus_25000 hus_25000 ta_10000 ta_5000 ta_85000
hus_70000 hus_50000 hus_50000 ta_25000 ta_10000 ua_1000
hus_85000 hus_70000 hus_70000 ta_85000 ta_25000 ua_5000
sfcWind hus_85000 hus_85000 ua_1000 ta_50000 ua_10000
sfcWindmax sfcWind sfcWind ua_10000 ta_70000 ua_70000
ta_1000 sfcWindmax sfcWindmax ua_50000 ta_85000 ua_85000
ta_5000 ta_1000 ta_1000 ua_70000 ua_1000 va_50000
ta_10000 ta_5000 ta_5000 ua_85000 ua_5000 va_70000
ta_25000 ta_10000 ta_10000 uas ua_10000 va_85000
ta_50000 ta_25000 ta_25000 va_5000 ua_50000 wap_1000
ta_70000 ta_50000 ta_50000 va_50000 ua_70000 wap_5000
ta_85000 ta_70000 ta_70000 va_70000 ua_85000 wap_25000
ua_1000 ta_85000 ta_85000 va_85000 va_10000 wap_50000
ua_5000 ua_1000 ua_1000 wap_5000 va_50000 wap_85000
ua_10000 ua_5000 ua_5000 wap_10000 va_70000 zg_1000
ua_25000 ua_10000 ua_10000 wap_25000 va_85000 zg_5000
ua_50000 ua_25000 ua_25000 wap_50000 wap_1000 zg_25000
ua_70000 ua_50000 ua_50000 zg_25000 wap_5000 zg_50000
ua_85000 ua_70000 ua_70000 Tmax wap_25000 zg_85000
uas ua_85000 ua_85000 Tmin wap_50000 Tmax
va_25000 va_1000 va_1000 Rain wap_85000 Tmin
va_50000 va_5000 va_5000 Evap zg_1000 Rain
va_70000 va_10000 va_10000 VP zg_5000 Evap
va_85000 va_25000 va_25000 RHmaxT zg_10000 VP
wap_1000 va_70000 va_70000 RHminT zg_25000 RHmaxT
wap_5000 va_85000 va_85000 - zg_50000 RHminT
wap_10000 wap_1000 wap_1000 - zg_70000 -
wap_25000 wap_5000 wap_5000 - zg_85000 -
wap_50000 wap_10000 wap_10000 - Tmax -
wap_70000 wap_25000 wap_25000 - Tmin -
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hyperparameter optimization and the training process 
is conducted on a computer system with Intel© Core i7 
central processing unit (CPU) with 32GB random access 
memory.

Evaluation of Model Performance

To evaluate the CMLP model, the predicted GSR are com-
pared with observations and quantitatively evaluated with 
correlation coefficient (r), root mean square error (RMSE), 
mean absolute error (MAE), mean bias error (MBE), relative 

root mean square error (RRMSE), mean absolute percent-
age error (MAPE), Willmott’s index (WI), Nash-Sutcliffe 
equation (NSE), RMSE ratio (RMSEss ), and skill score (SS). 
Next, we describe the characteristics of these performance 
metrics, together with their mathematical formulation [12, 
13, 32, 50, 83–89].

(12)

r =

∑n

i=1
(GSRm − ⟨GSRm⟩)(GSRp − ⟨GSRp⟩)�∑n

i=1
(GSRm − ⟨GSRm⟩)2

�∑n

i=1
(GSRp − ⟨GSRp⟩)2

Table 3  (continued) Kidston Brigalow Bulli Creek Baking Board Chewco Solar Blackwater

wap_85000 wap_50000 wap_50000 - Rain -
zg_1000 wap_70000 wap_70000 - Evap -
zg_5000 wap_85000 wap_85000 - VP -
zg_10000 zg_1000 zg_1000 - RHmaxT -
zg_25000 zg_5000 zg_5000 - RHminT -
zg_50000 zg_10000 zg_10000 - - -
zg_70000 zg_25000 zg_25000 - - -
zg_85000 zg_50000 zg_50000 - -
Tmax zg_70000 zg_70000 - - -
Tmin zg_85000 zg_85000 - - -
Rain Tmax Tmax - - -
Evap Tmin Tmin - - -
VP Rain Rain - - -
RHmaxT VP VP - - -
- RHminT RHminT - - -

Table 4  Architecture of deep learning model: convolutional neural networks integrated with multi-layer perceptron (i.e., CMLP) and the deep 
neural network (DNN) model

Model Hyperparameters Range Kidston Brigalow Bulli Creek Baking Board Chewco Blackwater

Filter1 [50, 80, 100, 200] 100 80 200 80 100 200
Filter 2 [40, 50, 60, 70, 80] 50 40 60 50 70 40
Filter 3 [5, 10, 15, 20, 25, 30] 20 25 20 30 15 20
MLP hidden layer size [40, 50, 60, 100, 150] 60 100 60 60 50 100
Epochs [300, 400, 700, 800, 1000] 400 300 700 400 300 800
MLP activation function [“purelin,” “logistic,” “tanh,” 

“relu”]
relu relu tanh relu tanh relu

Solver [“lbfgs,” “sgd,” “adam”] lbfgs lbfgs lbfgs lbfgs lbfgs lbfgs
CMLP Batch Size [5, 10, 15, 20, 25, 30, 40, 50] 10 5 15 10 5 20

Hiddenneuron 1 [100, 200, 300, 400, 50] 200 100 200 300 200 100
Hiddenneuron 2 [20, 30, 40, 50, 60, 70] 40 60 40 60 70 40
Hiddenneuron 3 [10, 20, 30, 40, 50] 20 50 50 20 50 50
Hiddenneuron 4 [5, 6, 7, 8, 12, 15, 18] 12 18 12 18 15 12
Activation function relu
Epochs [300, 400, 700, 800, 1000] 300 400 700 400 700 400

DNN Batch size [5, 10, 15, 20, 25, 30, 40, 50] 15 20 25 30 40 50
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(13)RMSE =

√√√√1

n

n∑
i=1

(GSRp − GSRm)2

(14)MAE =
1

n

n∑
i=1

|GSRp − GSRm|

(15)MBE =
1

n

n∑
i=1

(GSRp − GSRm)

(16)RRMSE =

�
1

n

∑n

i=1
(GSRp − GSRm)2

⟨GSRm⟩

Table 5  The conventional models used to benchmark the proposed 
hybrid CMLP model. Benchmark models are ANN, ELM, and 
KRR methods including ensemble models (BRF, XGBOOST, and 
WKNNR). Note that ReLU stands for rectified linear units with tan-
sig, logsig, and purelin being hyperbolic tangent transfer function, 

log-sigmoid transfer function, and linear transfer functions, respec-
tively, and LM, lbfgs, and cgf being the Levenberg-Marquardt, lim-
ited memory Broyden-Fletcher-Goldfarb-Shanno, and conjugate gra-
dient backpropagation with Fletcher-Reeves, respectively

Model Hyperparameters Selection range Kidston Brigalow Bulli Creek Baking Board Chewco Blackwater

Kernel Gaussian 10 30 20 20 30 10
Cost function [0.001, 0.01, 0.1, 1, 10, 

100]
0.1 0.1 0.01 0.1 0.1 0.001

KRR Penalty function [0.001, 0.01, 0.1, 1, 10, 
100]

100 10 10 100 10 100

Hiddenneuron [20, 30, 40, 50] 40 30 50 20 30 40
ELM Activation function [logistic, tanh] tanh tanh tanh tanh tanh tanh

Hiddenneuron [10, 20, 30, 40, 60, 80, 
100, 200, 300]

100 100 80 80 60 80

Backpropagation algo-
rithm

[“trainlm,” trainbfg, 
traincgf]

trainlm trainlm trainbfg trainlm trainbfg trainbfg

ANN Activation function [tansig, logsig, purlin] tansig tansig tansig tansig tansig tansig
Number of neighbors [5, 10, 20, 30, 50, 100] 20 10 10 20 10 20
Algorithm used to 

compute the nearest 
neighbors

[“auto,” “ball_tree,” 
“kd_tree,” “brute”]

auto auto auto auto auto auto

WKNNR Leaf size passed to Ball-
Tree or KDTree

[10, 20, 30, 50, 60, 70] 10 10 20 10 20 10

Learning rate [0.01, 0.1, 0.001, 0.005] 0.01 0.001 0.01 0.01 0.01 0.01
Maximum depth of the 

individual regression 
estimators

[5, 8, 10, 20, 25] 8 10 10 10 10 8

Number of boosting 
stages to perform

[50, 100, 150, 200] 100 100 150 100 150 100

Minimum number of sam-
ples to split an internal 
node

[20]

XGBOOST Number of features for 
best split

[“auto,” “sqrt,” “log2”] auto auto auto auto auto auto

The maximum depth of 
the tree.

[5, 8, 10, 20, 25] 8 10 10 25 10 8

The number of trees in 
the forest.

[50, 100, 150, 200] 100 150 150 100 150 100

Minimum number of sam-
ples to split an internal 
node

[2, 4, 6, 8, 10] 8 10 8 6 10 8

BRF The number of features to 
consider when looking 
for the best split.

[“auto,” “sqrt,” “log2”] auto auto auto auto auto auto
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where GSRm and GSRp are the observations and predicted 
GSR, ⟨GSRm⟩ and ⟨GSRp⟩ are the averages of GSRm and 
GSRp , n is the total number of data points, p stands for model 
prediction, and x denotes the observations.

The physical interpretation of all performance metrics 
(Eqs. 12–22) have been discussed in earlier works. For 
example, one may refer to references [12, 20, 32, 50, 84] for 
specific solar radiation prediction problems or references 
[90, 91] for explanation of their characteristics. In summary, 
the characteristics of the key metrics are as follows:

• The magnitude of r, which measures degree of covari-
ance between the observed and forecasted GSR, should 
ideally be close to unity, whereas RMSE and MAE includ-
ing the MBE, which evaluates the overall predicted error 
in absolute units (MJm−2day−1 ) in testing phase, should 
both be trivial for the best performing model.

• Reformulated from Eqs. (13–15), the magnitudes of 
RRMSE and MAPE are the relative (%) representations 
used to evaluate the proposed CMLP model for geo-
graphically diverse study sites. These metrics can enable 
a comparison of model performance at many different 
sites as they consider the influence of climatic factors.

• Additional measures, WI and NSE, are non-dimensional 
(unit-less) metrics where values close to unity are 
expected to indicate a greater efficiency of the model. 
The NSE provided a distinct advantage to record the level 
of agreement between the observed and the predicted 
GSR while being sensitive to differences in the observed 
and the forecasted means and variances. By contrast, the 
WI considered the ratio of the mean square error instead 
of the square of differences, and therefore, could be pre-
ferred over the NSE value.

(17)MAPE =
1

n

n∑
i=1

(|(GSRm − GSRp)| × 100

GSRp

)

(18)

WI = 1 −

∑n

i=n
(GSRm − GSRp)2∑n

i=n
(�GSRp − ⟨GSRm⟩� + �GSRm − ⟨GSRm⟩�)2

(19)NSE = 1 −

∑n

i=1
(GSRm − GSRp)2∑n

i=1
(GSRm − ⟨GSRm⟩)2

(20)RMSEss =
RMSE(p, x)

RMSE(r, x)

(21)SS = 1 −
RMSE(p, x)

RMSE(r, x)

For checking out the level of congruence between the 
observed and the predicted solar radiation, we use pr to refer 
to a perfect prediction for a persistence-based model, and 
r corresponding to a reference prediction. The persistence 
model, used more commonly in any GSR prediction prob-
lem, considers that the solar radiation at a next time-scale, 
t + 1 is described the behavior of solar radiation at t under the 
assumption of stationary atmosphere, or clear sky conditions. 
Furthermore, SS metric is applied to compare the predictive 
capability of the developed model against a persistence model 
and MBE is used to capture the average bias in the predictions.

In addition to standard metrics (Eqs. 12–22), we have also 
employed GPI as follows:

where �j denotes the median of scaled values of statistical 
indicator j, ( j = 1, 2, 3, 4, 5 ) equals to RMSE, MAE, MAPE, 
RRMSE, and RRMSE, −1 for r; and gj denotes the scaled 
value of the statistical indicator j for model i. In terms of its 
physical interpretation, we note that a large GPI is expected 
to reveal good performance of the proposed CMLP (and all 
counterpart) models.

The performance characteristics of the CMLP model were 
also assessed using the Kling-Gupta efficiency (KGE) [92] 
and absolute percentage bias (APB; %) [93] expressed as 
follows:

where r denotes the correlation coefficient between the 
observed and the forecasted GSR and CV stands for the coef-
ficient of variation among these values in the testing phase. 
In addition to these, the directional movement was evaluated 
using a directional symmetry (DS):

An additional evaluation of the CMLP model perfor-
mance, purely from a statistical viewpoint, was carried using 
the DM (Diebold-Mariano) and HLN (Harvey, Leybourne, 
and Newbold) criteria. These criteria aimed to examine the 
statistical significance of all of the considered AI-based 
models. To interpret this metric, consider the DM and the 

(22)GPIi =

6∑
j=1

�j(gj − yij)

(23)

KGE = 1 −

�
(r − 1)2 +

� ⟨GSRp⟩
⟨GSRm⟩ − 1

�2

+

�
CVp

CVm

�2

(24)APB =

∑n

i=1
(GSRm − GSRp) ∗ 100)∑n

i=1
GSRm

,

(25)DS =
1

n

n∑
t=2

dt × 100%
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HLN statistic to be > 0 if the CMLP model outperforms 
the comparative model, in accordance with previous works, 
e.g., [93–95]. Finally, we have utilized the gray relational 
analysis to calculate the gray relational degree (GRD) for 
all of the models in order to rank them on the basis of the 
GRD values [96].

Results

The proposed hybrid CMLP model is evaluated by testing 
its predictive capability for daily GSR simulation at the six 
solar energy farms over Queensland state, Australia.

Table 6  The skill score 
(SS) metric for the proposed 
hybrid CMLP model 
(compared with the AI-based 
and the temperature-based 
deterministic models) used for 
GSR predictions. For model 
descriptions, readers should 
consult Tables 4 and 5. The 
highest value of SS should 
be registered for the best 
performing model at any given 
site 

Predictive model Kidston Brigalow Bulli Creek Baking Board Chewco Blackwater

AI-based predictive models
CMLP — proposed model 0.53 0.75 0.71 0.75 0.76 0.71
ELM 0.47 0.68 0.58 0.66 0.60 0.63
WKNNR −0.52 0.01 −0.19 −0.18 −0.24 −0.05
ANN 0.51 0.73 0.53 0.70 0.53 0.65
KRR 0.45 0.38 0.59 0.68 0.68 0.63
XGBOOST 0.36 0.62 0.46 0.63 0.60 0.62
BRF −0.29 0.29 0.06 0.29 0.08 0.12
DNN 0.07 0.62 0.46 0.35 0.62 0.21
Temperature-based predictive models
TMAL −0.13 0.50 0.36 0.65 0.69 −0.02
TMAN −0.08 0.60 0.37 0.58 0.40 0.55
TMBC −0.42 0.01 0.02 −0.04 −0.03 0.03
TMBW −0.44 0.01 0.02 −0.04 −0.07 0.01
TMGO −0.05 0.63 0.69 0.67 0.35 0.61
TMHAS −0.24 0.18 0.06 0.54 0.61 0.20
TMHG −0.45 0.01 0.02 −0.04 −0.08 0.01

Table 7  The performance of the proposed hybrid CMLP model (compared with the AI-based and the temperature-based deterministic models) 
applied in testing phase as measured by RRMSE and MAPE values. For model descriptions, readers should consult Tables 4 and 5

Predictive models Kidston Brigalow Bulli Creek Baking Board Chewco Blackwater

RRMSE MAPE RRMSE MAPE RRMSE MAPE RRMSE MAPE RRMSE MAPE RRMSE MAPE

AI-based predictive models
CMLP — proposed model 9.00% 8.40% 8.50% 10.20% 8.60% 10.90% 8.20% 10.70% 7.90% 10.20% 8.40% 10.50%
DNN 10.10% 10.20% 8.50% 10.80% 9.20% 11.50% 8.90% 11.70% 8.90% 11.70% 15.80% 20.70%
ANN 9.20% 8.40% 8.60% 10.70% 9.70% 12.30% 8.90% 11.50% 8.80% 11.20% 9.30% 12.10%
ELM 9.60% 9.00% 9.40% 12.30% 10.30% 13.20% 9.60% 12.70% 8.80% 11.70% 9.50% 12.40%
KRR 9.70% 9.10% 9.20% 11.80% 10.20% 12.80% 9.30% 12.40% 9.00% 11.80% 9.50% 12.40%
XGBOOST 10.40% 9.80% 10.30% 13.90% 11.70% 15.10% 9.90% 13.40% 10.10% 13.40% 9.60% 12.20%
BRF 14.60% 14.20% 14.00% 16.70% 15.40% 19.80% 13.90% 17.90% 15.40% 19.40% 14.60% 18.30%
Temperature-based predictive models
WKNNR 15.90% 15.70% 16.50% 23.90% 17.40% 24.30% 17.80% 25.20% 18.00% 25.60% 16.10% 22.90%
TMGO 9.80% 9.10% 10.10% 13.10% 9.00% 11.70% 9.30% 11.90% 12.90% 16.20% 9.80% 12.80%
TMAL 10.90% 10.40% 10.50% 13.60% 9.50% 12.30% 10.50% 13.70% 12.90% 16.90% 10.60% 13.80%
TMAN 10.50% 10.10% 10.60% 14.60% 9.70% 13.10% 10.60% 14.50% 12.50% 16.90% 10.60% 14.10%
TMHAS 13.00% 12.90% 13.20% 19.80% 12.70% 18.60% 13.40% 19.70% 14.30% 21.00% 13.20% 18.70%
TMBC 15.30% 15.20% 16.50% 24.50% 15.80% 22.60% 16.60% 24.50% 16.40% 24.30% 15.40% 22.00%
TMCH 15.40% 15.00% 16.50% 24.10% 15.80% 22.30% 16.70% 23.90% 16.70% 24.00% 15.60% 22.40%
TMHG 15.50% 15.10% 16.50% 24.10% 15.80% 22.40% 16.70% 24.00% 16.70% 24.10% 15.60% 22.40%
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Table 8  The performance of the proposed hybrid CMLP model 
(compared with the AI-based and the temperature-based determin-
istic models) in the testing phase as measured by WI and NSE. For 

model descriptions, readers should consult Tables 4 and 5. For model 
descriptions, readers should consult Tables 4 and 5

Predictive model Kidston Brigalow Bulli Creek Baking Board Chewco Solar Blackwater

WI NSE WI NSE WI NSE WI NSE WI NSE WI NSE

AI-based predictive models
CMLP — proposed model 0.893 0.795 0.923 0.860 0.929 0.859 0.931 0.869 0.933 0.875 0.933 0.875
DNN 0.832 0.752 0.926 0.860 0.915 0.837 0.918 0.847 0.913 0.845 0.913 0.845
ANN 0.888 0.785 0.922 0.855 0.911 0.818 0.918 0.845 0.918 0.848 0.918 0.848
ELM 0.876 0.765 0.909 0.829 0.895 0.796 0.903 0.823 0.917 0.845 0.917 0.845
KRR 0.875 0.758 0.914 0.836 0.898 0.801 0.909 0.834 0.912 0.839 0.912 0.839
XGBOOST 0.859 0.727 0.892 0.794 0.865 0.736 0.899 0.810 0.894 0.798 0.894 0.798
BRF 0.742 0.458 0.812 0.614 0.785 0.544 0.828 0.626 0.772 0.527 0.772 0.527
Temperature-based predictive models
WKNNR 0.534 0.350 0.649 0.473 0.638 0.425 0.595 0.389 0.569 0.365 0.569 0.365
TMGO 0.887 0.753 0.892 0.800 0.923 0.845 0.912 0.830 0.815 0.667 0.815 0.667
TMAL 0.878 0.698 0.893 0.784 0.922 0.829 0.898 0.784 0.835 0.671 0.835 0.671
TMAN 0.876 0.719 0.885 0.782 0.913 0.822 0.887 0.780 0.833 0.691 0.833 0.691
TMHAS 0.829 0.574 0.841 0.661 0.866 0.698 0.844 0.655 0.814 0.596 0.814 0.596
TMBC 0.668 0.405 0.702 0.482 0.741 0.535 0.697 0.477 0.701 0.483 0.701 0.483
TMCH 0.617 0.399 0.676 0.481 0.722 0.534 0.670 0.476 0.662 0.465 0.662 0.465
TMHG 0.614 0.395 0.677 0.480 0.723 0.534 0.670 0.474 0.663 0.463 0.663 0.463

Fig. 4  Evaluation of the hybrid CMLP predictive model relative to 
its benchmark models using the RMSE, MAE, and the MBE, com-
puted within the testing phase:  a  Kidston Solar farm, b  Brigalow 

Solar Farm, c Bulli Creek Solar Farm, d Baking Board Solar Farm, 
e Chewco Solar Farm, and f Blackwater Solar Farm
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Fig. 5  Scatter plots of the observed (GSRobs ) and predicted (GSRpred ) 
daily global solar radiation for all tested region in Queensland region: 
a  Kidston Solar farm, b  Bulli Creek Solar Farm, c  Brigalow Solar 
Farm, d  Baking Board Solar Farm, e  Chewco Solar Farm, and f 

Blackwater Solar Farm (note: Line in red is the least-squares fit line 
(y = mx + c) to the respective scatter plots, where y = predicted GSR 
and x = observed GSR)
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Fig. 5  (continued)

659Cognitive Computation (2023) 15:645–671



1 3

Fig. 5  (continued)
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To fully appraise the performance of the proposed CMLP 
model, we analyze the tested data with respect to the arti-
ficial intelligence (AI)–based models (i.e., ANN, ELM, 
DNN, BRF, KRR, WKNNR, and XGB) and the temper-
ature-based deterministic (i.e., TMHS, TMCH, TMBC, 
TMGO, TMAL, TMAN, and TMHG) models. This section 

reports the statistical measures using Eqs. 13 to 24 while 
employing the other exploratory analysis approach using 
histogram, scatter plots, Taylor plot, etc., presented in the 
following.

We now refer to four statistical measures: RRMSE, MAPE, 
WI, and NSE, including SS values presented in Tables 6, 7, 

Fig. 6  The cumulative frequency of the daily prediction errors for all tested region in the Queensland pooled together. The percentage error 
accumulated in each bracket is shown in the respective bar

Fig. 7  Violin plots of the prediction error (PE) generated by prediction models during testing phase for daily GSR prediction
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and 8 to evaluate the proposed hybrid CMLP against the AI-
based and temperature-based counterpart models.

The hybrid CMLP model yields the lowest RRMSE and 
MAPE value ( ≈ [8.60%, 9.00%] , MAPE ≈ [8.40 %, 10.90 
%]) benchmarked with the best AI-based models ANN 
(RRMSE ≈ [8.60 %, 9.30 %], MAPE ≈ [8.40 %, 12.30 
%]) and temperature-based models TMGO (RRMSE ≈ 
[9.00 %, 12.90 %], MAPE ≈ [9.10 %, 16.20 %). The worst 

performing AI-based model, denoted as WKNNR, gener-
ated an RRMSE ≈ [15.90 %, 18.00 %], MAPE ≈ [15.70 %, 
25.60 %] while that in the temperature-based model group 
is TMBC (RRMSE ≈ [15.30 %, 16.60 %], MAPE ≈ [15.20 
%, 24.50 %]). The results of the objective model, attaining a 
less than 10 % relative error, clearly suggest that the hybrid 
CMLP model falls within a category of an excellent model, 
which also accords to earlier research work, e.g., [97].

Fig. 8  The predicted vs. the observed daily GSR in the testing phase using CMLP model vs. the other competing a artificial intelligence–based 
models and b temperature-based models
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Similar conclusions can be drawn from WI and NSE 
values in Table 8 where the higher values of these meas-
urements, the better is the model performance. Note that 
these indices are non-dimensional and normalized meas-
ures where a value of unity will indicate a predicted GSR 
matching exactly with the observed value. Except for Brig-
alow Solar Farm, the hybrid CMLP model generally regis-
tered the highest WI and NSE values (WI ≈ [0.893, 0.933], 
NSE ≈ [0.795, 0.875]), followed by ANN (WI ≈ [0.888, 
0.922], NSE ≈ [0.785, 0.855]) and DNN (WI ≈ [0.832, 
0.926], NSE ≈ [0.752, 0.860]) in the AI-based group and 
TMGO (WI ≈ [0.815, 0.923], NSE ≈ [0.667, 0.845]) and 
TMAL (WI ≈ [0.835, 0.922], NSE ≈ [0.671, 0.829]) in the 
temperature-based group. The worst performance among 
the AI-based model is WKNNR (WI ≈ [0.534, 0.649], NSE 
≈ [0.350, 0.473]) and TMCH (WI ≈ ≈[0.617, 0.722], NSE 
≈ [0.399, 0.534]) and TMHG (WI ≈ [0.614, 0.723], NSE 
≈ [0.395, 0.534]). It is therefore clear that the proposed 
CMLP model far exceeds the performance of all AI-based 

Fig. 9  Taylor diagram for CMLP model versus other artificial intelligence–
based models to represent the bias and standard deviation of errors. The 
azimuthal angle shows the correlation, the radial distance, the standard 
deviation, and the semicircles centered at the observation “OBS” marker 
the standard deviation of the errors. The color scale corresponds to the bias 
(mean of model minus mean of observation)

Fig. 10  a Bar chart illustrating a comparison of the CMLP model in 
terms of their absolute percentage bias (APB, %) and Kling-Gupta 
efficiency (KGE) in the testing phase. b Global performance indica-

tor (GPI) of CMLP model compared to other AI-based models and 
temperature models

Table 9  The Diebold-Mariano 
(DM) test statistic value where 
the column is compared to rows. 
The positive values indicate 
an outperformance of column-
based model relative to the 
row-based model

Predictive model CMLP DNN ELM ANN KRR BRF XGBOOST WKNNR

CMLP - 8.274 9.440 6.776 8.808 18.757 13.654 21.795
DNN - - −4.220 −5.901 −4.337 11.875 −0.752 17.264
ELM - - - −4.292 −0.796 16.315 7.564 20.352
ANN - - - - 3.633 17.437 10.010 20.415
KRR - - - - - 16.461 7.237 20.360
BRF - - - - - - −14.231 6.308
XGBOOST - - - - - - - 18.462
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and temperature-based models applied to predict GSR at 
six solar farms across Queensland, Australia.

For a broader picture of the error comparison, the values 
of RMSE, MAE, and MBE (Figs. 4 and 5) and prediction 
errors (Figs. 6 and 7) of the fifteen models for daily GSR pre-
diction across six solar study sites are illustrated intuitively 
using vertical histograms, scatter plots overlaid by best-fitting 
regression lines, frequency analysis, and violin plots (Fig. 7), 
respectively. In general, several consistent conclusions can 

be drawn from the detailed analysis of these figures. First, 
the AI-based models generally produce better performance 
than the temperature-based models. Second, among the arti-
ficial intelligence–based models, the CMLP hybrid predic-
tive model is the best followed by the ANN, ELM, and KRR 
models. Finally, the TMAL, TMGO, and TMAN models 
outperform other candidates in the temperature-based group.

Taking Fig. 6 as an example where the daily prediction 
errors at all tested sites are pooled together, the cumulative 

Table 10  The Harvey, 
Leybourne, and Newbold 
statistic value where the 
column is compared to rows. 
The positive values indicate 
an outperformance of column-
based model relative to the 
row-based model

Predictive model CMLP DNN ELM ANN KRR BRF XGBOOST WKNNR

CMLP - 4.297 7.062 5.567 6.190 16.449 9.401 11.012
DNN - - −2.157 −3.046 −2.260 8.639 −0.375 8.331
ELM - - - −3.085 −0.691 15.297 5.621 10.482
ANN - - - - 2.712 15.562 6.683 10.369
KRR - - - - - 15.787 5.599 10.552
BRF - - - - - - −13.001 4.035
XGBOOST - - - - - - - 9.639

Table 11  The performance 
of the hybrid CMLP model 
utilizing the ratio of the root 
mean square error (rRMSE). 
Note: an rRMSE greater 
than unity indicates that the 
objective model outperforms the 
comparative model

Predictive model CMLP DNN ELM ANN KRR BRF XGBOOST WKNNR

CMLP - 1.590 1.299 1.179 1.284 3.092 1.535 4.152
DNN - - 0.817 0.741 0.807 1.945 0.965 2.611
ELM - - - 0.907 0.988 2.380 1.181 3.196
ANN - - - - 1.089 2.623 1.302 3.522
KRR - - - - - 2.409 1.196 3.235
BRF - - - - - - 0.496 1.343
XGBOOST - - - - - - - 2.705

Table 12  The gray relational degree (GRD) computed for each predictive model for the purpose of ranking each predictive model based on the 
gray relational analysis (GRA) method

Predictive model Kidston Brigalow Bulli Creek Baking Board Chewco Blackwater

GRD RANK GRD RANK GRD RANK GRD RANK GRD RANK GRD RANK

CMLP 0.755 1 0.702 1 0.715 1 0.653 1 0.536 1 0.585 1
ELM 0.702 9 0.699 2 0.661 11 0.635 4 0.506 11 0.551 6
WKNNR 0.602 12 0.612 11 0.616 13 0.505 12 0.463 14 0.531 12
ANN 0.733 3 0.685 4 0.693 5 0.627 7 0.520 6 0.547 7
KRR 0.718 7 0.669 6 0.669 10 0.651 2 0.528 4 0.568 4
XGBOOST 0.728 5 0.664 7 0.672 9 0.640 3 0.520 7 0.569 3
BRF 0.725 6 0.652 9 0.698 4 0.631 5 0.528 3 0.566 5
DNN 0.729 4 0.684 5 0.714 2 0.601 10 0.515 8 0.535 10
TMAL 0.703 8 0.657 8 0.683 6 0.624 8 0.510 9 0.536 9
TMAN 0.694 10 0.648 10 0.682 7 0.595 11 0.530 2 0.574 2
TMBC 0.602 13 0.597 12 0.607 15 0.493 13 0.472 12 0.518 13
TMBW 0.553 14 0.566 14 0.616 12 0.477 14 0.463 15 0.493 15
TMGO 0.741 2 0.694 3 0.677 8 0.631 6 0.507 10 0.532 11
TMHAS 0.626 11 0.583 13 0.709 3 0.619 9 0.522 5 0.543 8
TMHG 0.552 15 0.565 15 0.616 14 0.477 15 0.465 13 0.495 14
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Fig. 11  Performance compari-
son of CMLP (convolutional 
neural network model (CNN) 
integrated with multilayer 
perceptron (MLP)) model 
compared to other models using 
directional symmetry (DS) 
criteria

Fig. 12  Evaluation of seasonal performance of the proposed CMLP 
model relative to other artificial intelligence–based model using Will-
mott’s Index (WI), Nash-Sutcliffe coefficient (NSE), Kling-Gupta effi-

ciency (KGE), relative root mean square error ( RRMSE,% ), relative 
mean absolute error ( RMAE,%orMAPE,% ), and absolute percentage 
bias ( APB,% ). a Summer, b Autumn, c Winter, and d Spring
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percentage error in [0, 4] MJm−2 of the hybrid CMLP model 
is up to 95 % while this figure of the ANN, ELM, and KRR 
models is about 91 % and the TMAL, TMGO, and TMAN 
models between 87 and 89 %. A further diagnostic of model 
capacity in predicting daily GSR in 1 year ahead is per-
formed and shown in stacked line plots in Fig. 8.

The magnitudes of correlation coefficient (r) are repre-
sented in the form of the Taylor diagram, see Fig. 9, that 

provides a more detailed evaluation of the model perfor-
mances. More specifically, the Taylor diagram portrays 
a more tangible and convincing statistical relationship 
between the forecasted and observed GSR, depending on 
correlation coefficients with respect to standard deviations. It 
can be seen that the simulations from the benchmark model 
ELM are highly deviated from the observed point. In addi-
tion, the proposed hybrid CMLP model is lying closer to 

Fig. 13  The predicted vs. the observed monthly GSR in the testing phase using CMLP model vs. the other competing a artificial intelligence–
based models and b temperature-based models
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the observed point that confirms the predictive accuracy is 
higher at all six solar sites than the benchmark models.

Discussion

Other aspects of the prediction capacity in terms of bias, 
global performance, and directional symmetry are also 
discussed in this study. Figure 10 shows a comparison of 
the CMLP model measured by absolute percentage bias 
(APB, %), the Kling-Gupta efficiency (KGE), and global 
performance indicator (GPI) while Fig. 11 shows the find-
ings using directional symmetry (DS) criteria. The hybrid 
CMLP model, as expected, has the lowest value of APB and 
the highest values of KGE and GPI indicating its outper-
formance. It is worth pointing out that the CMLP model 
yields DS ≈ 72 %, noticeably higher than that figure DS ≈ 60 
% acquired from ANN as the second top model.

Tables 9, 10, and 11 examine the proposed hybrid CMLP 
model relative to the standalone AI-based models using the 
DM, HLN, and rRMSE performance criterion. Positive 
values indicate that the proposed model outperforms the 
comparative models, where the lower the value, the closer 
the performance. The lowest and highest values of these 
measurements when comparing CMLP with other models 
across six solar farms are DM ≈ 6.776, 21.795 (with ANN 
and WKNNR), HLN ≈ 4.297, 16.449 (with DNN and BRF), 
and RRMSE ≈ 1.179, 4.152 (with ANN and WKNNR). The 
rank-based assessment using the GRD method (Table 12) 
also confirms the supremacy of the proposed hybrid CMLP 
in its capability to predict the daily GSR for all of the solar 
energy study sites.

Finally, the hybrid CMLP model’s skill for seasonal 
prediction is evaluated using WI, NSE, KGE, rRMSE, 
RMAE(MAPE), and APB (Fig. 12). In general, the CMLP 
model outperformed the other AI-based and temperature-
based models except in winter, when using the KGE measure-
ment. These criteria clearly indicate the worst performance 
of BRF and WKNNR models in all seasons. Moreover, the 
model performance in monthly prediction is also shown 
in Fig. 13. It can be seen that the proposed CMLP outper-
forms other benchmark models in all months except for Nov 
and Dec where the temperature-based models, TMAL and 
TMHAS, are slightly better.

Further insights can be gained by checking the MAPE(%) 
of the objective model (CMLP), and the MAPE(%) for six 
solar farms in this study ranges from 8.40 to 10.70 compared  
to 19.28 and 23.72 with a gated recurrent unit model [98]. 
Further recently published studies show that the MAPE(%) 
ranges from 10.37 to 13.12, 9.93 to 12.98, and 9.97 to 
16.63 for the CNN-LSTM-MLP [39], CNN-stacked regres-
sion [35], and CNN-SVR [34] models respectively for daily 
GSR prediction. It is therefore clear that the prescribed 

CMLP approaches exceeded the performance of earlier 
studies.

Conclusions, Limitations, and Future 
Research Work

The prediction of global solar radiation (GSR) with mini-
mal forecast error is essential towards integrating the freely 
available solar energy into a national electricity grid, in 
agreement with the United Nations Sustainable Develop-
ment Goal # 7. This research has developed a new hybrid, 
CMLP algorithm that integrates convolutional neural net-
works (CNN) and multi-layer perceptron models (MLP) for 
GSR forecasting. In the designed approach, data are initially 
processed by means of a CNN algorithm to extract the hid-
den topological structure features that are later used by the 
MLP model to predict GSR. The most influential predictor 
variables for GSR were successfully selected from a large 
pool of 123 meteorological variables using a random forest-
recursive feature elimination (RF-RFE) algorithm prior to 
applying the MLP method to forecast GSR.

Based on the overall results attained that were tested 
at multiple study sites, several conclusions on the predic-
tive merits of the proposed hybrid model could be drawn 
through a comparative evaluation using different perfor-
mance measures. During the testing phase, the hybrid 
CMLP model was found to outperform the benchmark 
models at six solar energy sites over daily, monthly, and 
seasonal time scales. Among the benchmark models, we 
also noted that the ANN and the DNN models generally 
yielded the best performance compared to other meth-
ods, while the best model candidates for the determinstic 
(i.e., temperature-based) models were the TMGO and 
TMAL methods. In accordance with the results obtained, 
the worst performing model was the WKNNR within 
the AI-based group and TMCH and TMHG within the 
temperature-based modelling groups. The results showed 
that the performance of benchmark models could vary 
depending upon the tested locations and the forecast time 
scales, suggesting further investigations to be conducted 
in future research.

Limitations and Proposals for Future Research Work

In terms of the developed method’s merits, the superior 
performance of the newly designed CMLP model clearly 
revealed its adaptability as a competitive modelling tech-
nique in improving solar radiation forecasting. Therefore, 
our study showed that the proposed method could be further 
adopted for supporting clean energy integration into elec-
tricity grids, and future planning and management of solar 
powered renewable energy systems.
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Furthermore, regarding the objective model, the CNN has 
proven to be a highly accurate model for image recognition 
problems and in detecting the important features without 
any human supervision. However, it needs a lot of training 
data. Similarly, the MLP works well with large data, and can 
be applied to complex non-linear problems, but the proper 
functioning of the model depends on the quality of the train-
ing data. If the model does not work properly, generalization 
problems may arise [99]. Additionally, regarding the bench-
mark models, RBF performs faster but the complexity of the 
model increases with increasing number of neurons. The 
ordinary RBF has several problems in its structure and train-
ing algorithm, so that it is not able to model a strongly non-
linear system [100]. Similarly, the WKNNR, KRR, ELM, 
and BRF are not suitable for the highly nonlinear data or 
noisy data [99]. In this study, our novelty lies in integrat-
ing multiple climate simulation variables, identifying the 
best features using random forest-recursive feature elimina-
tion and then developing the CMLP model. The added layer 
of complexity in the modelling methods introduces a more 
sophisticated method to predict GSR accurately.

In spite of the efficacy of CMLP method, there does 
exist some limitations that could form the subject of further 
investigation. This study has applied the proposed method 
on daily and longer-term GSR, which generally falls within 
a medium-scale period for key decisions made by energy 
companies. For example, daily predictions of solar radiation 
are useful in understanding the supply of solar energy over 
a daily basis but more real-time decisions, such as 5-min, 
or sub-hourly settlements of electricity prices will require 
short-term predictions and further tests of the CMLP method 
if used for grid stability and energy pricing analysis. Fur-
thermore, solar energy is highly influenced by cloud cover. 
Therefore, the datasets in this study limited to cloud area 
fraction may bound the full assessment of intermittency in 
energy supply. An independent future study could also con-
sider various cloud chromatic properties, cloud top height, 
water vapor, ozone, and cloud movements [101, 102] that 
could be factored to test the overall performance of the 
CMLP model.

The present study used daily var iables from 
ACCESS1-0, Hadley-GEM2-CC, and MRI-CGCM3 global 
climate model datasets under CMIP5 that do not have a 
time-ahead forecast period, but in reality, the knowledge of 
several day-ahead forecasts of GSR may be more attractive 
for renewable energy industries. Therefore, future stud-
ies could employ model outputs from the Global Forecast 
System (GFS) that has good horizontal resolution of 28 
km and a temporal resolution that covers both historical 
analysis and forecasts up to 16 days ahead period [103]. 
Furthermore, even at a lower horizontal resolution of 
70 km between grid points, GFS can provide forecasts 
between 1 and 2 weeks. Therefore, the CMLP model could 

be retrained to generate forecasts anywhere up to 2 weeks 
in advance to support solar energy monitoring systems.

One other limitation of the present study was that only 
six solar energy farms across Queensland, Australia, were 
used to test the proposed hybrid CMLP model, and these 
sites utilized only the global climate model outputs and 
ground-based measured predictor variables. While these 
study sites were somewhat widely distributed in Queens-
land (see Fig. 2), further testing of the model across other 
locations in Australia, and particularly, across the high 
latitude or sub-tropical sites where cloud effects are more 
prominent, could help evaluate its practical implementa-
tion. This new study could also investigate the viability 
of the proposed CMLP method as a universally deploy-
able solar energy predictive system, e.g., [104] trained 
with both the observational and the modelled predictor 
datasets.

Another possibility is to utilize the European Cen-
tre for Medium Range Weather Forecasts (ECMWF) as 
tested already in prior studies, e.g., [12]. In particular, 
the ECMWF datasets record operational ensemble-based 
analyses and predictions describing various scenarios and 
their likelihood of weather occurrence over medium-range 
(3-hourly, 6-hourly) as well as monthly and seasonal scales 
and up to a year ahead predictions. The incorporation of 
ECMWF or other related datasets (e.g., GFS) into the pro-
posed CMLP model may also help better understand how 
weather model forecasts can be integrated with AI-based 
models for real-time solar energy forecasting. While these 
suggestions and approaches are useful considerations to 
further validate the CMLP model, they await another inde-
pendent investigation.
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