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Abstract

Fronts of reaction in certain systems (such as so-called solid flames and deto-
nation fronts) can be simulated by a single-equation phenomenological model of
Strunin (1999, 2009). This is a high- order nonlinear partial differential equa-
tion describing the shape of the front as a function of spatial coordinates and
time. The equation is of active-dissipative type, with 6th-order spatial deriva-
tive. For one-dimensional case, the equation was previously solved using the
Galerkin method, but only one numerical experiment with limited information
on the dynamics was obtained. For two-dimensional case only two numerical ex-
periments were reported so far, in which a low-accuracy finite difference scheme
was used. In this thesis, we use a more recent and sophisticated method, namely
the one-dimensional integrated radial basis function networks (1D-IRBFN). The
method had been developed by Tran-Cong and May-Duy (2001, 2003) and suc-
cessfully applied to several problems such as structural analysis, viscoelastic flows
and fluid-structure interaction. In contrast to commonly used approaches, where
a function of interest is differentiated to give approximate derivatives, leading
to a reduction in convergence rate for derivatives (and this reduction increases
with derivative order, which magnifies errors), the 1D-IRBFN method uses the
integral formulation. It utilizes spectral approximants to represent highest-order
derivatives under consideration. They are then integrated analytically to yield
approximate expressions for lower-order derivatives and the function itself.

In this thesis the following main results are obtained. A numerical program
implementing the 1D-IRBFN method is developed in Matlab to solve the equa-
tion of interest. The program is tested by (a) constructing a forced version of the
equation, which allows analytical solution, and verifying the numerical solution
against the analytical solution; (b) reproducing one-dimensional spinning waves
obtained from the model previously. A modified version of the program is suc-
cessfully applied to similar high-order equations modelling auto-pulses in fluid
flows with elastic walls.

We obtained numerically and analyzed a far richer variety of one-dimensional
dynamics of the reaction fronts. Two kinds of boundary conditions were used:
homogeneous conditions on the edges of the domain, and periodic conditions
corresponding to periodicity of the front on a cylinder. The dependence of the
dynamics on the size of the domain is explored showing how larger space ac-
commodates multiple spinning waves. We determined the critical domain size
(bifurcation point) at which non-trivial settled regimes become possible. We
found a regime where the front is shaped as a pair of kinks separated by a rel-



ii

atively short distance. Interestingly, the pair moves in a stable joint formation
far from the boundaries. A similar regime for three connected kinks is obtained.
We demonstrated that the initial condition determines the direction of motion
of the kinks, but not their size and velocity. This is typical for active-dissipative
systems. The settled character of these regimes is demonstrated. We also ap-
plied the 1D-IRBFN method to two-dimensional topology corresponding to a
solid cylinder. Stable spinning wave solutions are obtained for this case.
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Chapter 1

Introduction

1.1 Overview and motivation

Active or, excitable media often exhibit oscillatory behaviour. In this chapter we
mainly follow Strunin (1999, 2009) to present the background of this project. In
many situations, this behaviour can be described by a single partial differential
equation for the phase of oscillations. Of crucial importance is the question of
whether a regular motion, or chaotic motion of the phase is eventually settled,
in other words what pattern is eventually formed. The pattern formation de-
pends on how it is born from the equilibrium state. Does it occur via linear or
nonlinear mechanism? While the linear mechanism has been studied extensively
(Sivashinsky, 1977; Kuramoto and Tsuzuki, 1976; Kuramoto, 1984a; Tribelsky
and Velarde, 1996; Tanaka, 2004), for example, in the Kuramoto-Sivashinsky
equation, the nonlinear mechanism remains virtually unexplored. We emphasize
that the subject of our work is the phase of the oscillations rather than the oscil-
lations themselves. As for the latter, their excitation mechanisms — both linear
and nonlinear — have been widely studied.

Recently, it was found that nonlinearly excited phase dynamics are quite
typical for a range of systems of chemical, biological and physical origin. Bio-
chemical systems comprise a particularly large group of such systems. Among
those are cellular slime molds and oscillating yeast cells under glycolysis (Tanaka
and Kuramoto, 2003). The focus of our present research is combustion sys-
tems. An example of such systems is the Self-propagating High-temperature
Synthesis in solid flames, used to manufacture advanced materials (Merzhanov
et al., 1992; Merzhanov, 1996; Merzhanov, 1997; Merzhanov and Rumanov, 1999;
Merzhanov, 2004). For example, porous multiphase/heterogeneous calcium phos-
phate HCaP, NiTi-TiC and TiB-Ti are used for bone tissue engineering and drug
delivery systems (Ayers et al., 2005). Another example involving combustion is
the fronts of detonation. They have apparent significance for military and mining
applications.

Indeed, the nonlinear mechanism, which is the focus of this study, is very im-
portant and needs consideration. Thus, this study aims to describe pattern for-
mation in combustion fronts in detail, especially the spinning waves. To simulate
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such waves, Strunin (1999) designed the following phenomenological equation,
which is in the focus of the present research, is

∂tu = −A(∂xu)2∂2xu+B(∂xu)4 + C∂6xu, (1.1)

where A > 0, B and C > 0 are constants.
The nonlinear term in the equation above represents the excitation that can

be treated as an anti-diffusion expressed by (-∂2xu) with the positive coefficient,
(∂xu)2. The dissipation is represented by the last term ∂6xu. Equation (1.1) gen-
erates wide variety of regular and irregular dynamics (Strunin, 1999; Strunin
and Suslov, 2005). We will refer to (1.1) as the NEP (Nonlinearly excited phase)
equation or model. Some models of arterial blood flows are structurally similar to
this equation (Strunin, 2009a). Our plan in this thesis is to study this equation in
1-D and 2-D cases for combustion systems. We aim to accurately describe char-
acteristics of regular and irregular dynamics and specify the conditions leading
to different patterns.

1.2 The phenomenon and observations

Apart from the solid flames, detonation is another example of a system where the
spinning reaction fronts occur. A description of basic features of this phenomenon
can be found in the book of Landau and Lifshits (1987). A more detailed review
is given in the monograph of Zel’dovich and Kompaneets (1960). A qualitative
study of the spinning detonation was conducted by Zel’dovich and other authors
in 1940s. In the spinning regime, the reaction front propagates being substantially
distorted. The front assumes the form of one or more localized kinks moving along
spirals through the tube. Since the reaction products adjacent to the kinks are
at very high temperature the kinks is sometimes referred to as hot spot.

As stressed in (Landau and Lifshits, 1987) the regime occurs when the com-
bustion is close to its limit. This means that the combustion process is suppressed
by heat loss through the walls of the tube. This factor cannot be eliminated even
if the tube is placed in vacuum as the loss still exists due to radiation. Along
quasi-plane sections of the spinning wave Fig. 1.1-1.2 the combustion is damped
so that the kink (or kinks when there are several of them) is the only area where
the reaction occurs. The heat loss has that dramatic affect on the reaction for the
following reasons. Chemical characteristics of the reacting mixture are such that
the propagation of the plane front with constant velocity is unstable. The front
can only move by hops, but at the moment when a hop happens the temperature
sharply increases. Accordingly, the heat loss also increases, tending to suppress
the combustion.

The hot spot ‘survives’ because of self-sustained favourable combustion condi-
tions near the kink, where unburned gas is embraced by the hot and compressed
burned gas from two sides. This is the limiting situation realized at large degree
of instability. If the instability degree is increased further even the hot spots will
be extinguished by the heat loss. The height and width of the fissures are much
smaller than the perimeter of the tube (Zel’dovich and Kompaneets, 1960).
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Figure 1.1: A running spinning wave solution of Eq.(1.1) evolved from a random
initial condition (Strunin, 1999).

Figure 1.2: A post-combustion trace left by the spinning solid flame on a hollow
cylinder.
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Similar spinning waves are observed in the solid flames near the combustion
limit. In (Merzhanov et al., 1973) experimentally discovered that the unstable
front converts into one or more hot spots travelling along spiral trajectories over
the surface of a cylindrical sample. The mechanism of the spinning solid flame
is analogous to the spinning detonation. As the temperature in the hot spots is
much higher than elsewhere in the system, the hot spots often look like bright
points.

For this reason Dvoyankin (1982) called the regime multiple-point. We stress
the component ‘point’ in this term which highlights the localized character of
the kinks. Later, the term was used by different authors in a number of papers.
The work of Dvoryankin et al. also reported disordered motion of the hot spots.
Strunin et al. (1994) experimentally showed that this motion is chaotic and
calculated fractal dimensionality of the associated strange attractor. To explain
the difference between existing theories and the model proposed below we review
the literature on the non-stationary solid flames in the next section.

1.2.1 Modelling of the spinning reaction fronts

Makhviladze and Novozhilov (1971) , Shkadinsky et al. (1971) and Matkowsky
and Sivashinsky (1978) showed that at a certain critical value of a control pa-
rameter (called Zel’dovich number) the plane uniformly propagating front loses
stability. This is a type of a reaction-diffusion instability induced by fast diffusion
of the activator (heat).

In order to describe the nonlinear dynamics of the distorted front Volpert et
al. (1982), Margolis (1991), Matkowsky and Volpert (1992) and others applied
bifurcation theory. Within this approach, the plane uniformly moving front is
supposed weakly unstable so that the degree of instability (deviation ∆Z of the
Zel’dovich number from the instability threshold) serves as a small parameter. In
these works, non-stationary solutions to the reaction-diffusion activator-inhibitor
equations (the reaction products play the role of inhibitor) are obtained as small
corrections of order of ∆Z to the uniformly moving plane front solution. Aldushin
et al. (1981) constructed a phenomenological equation which also assumed the
instability degree to be small. Those approaches generally lead to the Ginzburg-
Landau type equations for the front deviation h about the moving (unstable)
plane front position.

The solutions to the equations turn out to be small-amplitude quasi-harmonical
waves travelling in the direction transversal to the average motion. The spinning
motion here is a corollary of the specific way of losing stability by the plane front.
It transpires that any unstable mode appears as travelling wave. Most vividly,
this is expressed in the phenomenological model by Aldushin et al. (1981):

∂2h

∂t2
+ w2h = 2λ

[
∂h

∂t
− µ

(
∂h

∂t

)3

+ ν
∂3h

∂t∂x2

]
, (1.2)

w2 = λ2 + η2;λ, µ, ν > 0.
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The linear part of the above equation expresses self-excited oscillations with
the frequency η and increment λ of the front elements and their coupling through
the heat conductivity. Combination of these two factors already results in the
travelling wave. The only function of the nonlinear term is to stop the growth
of the wave in amplitude. Meanwhile, in the reported experiments the spinning
waves had distinct unharmonical, kink-like shape. The same is true for the spin-
ning detonation. The divergence between the experiments and the models can
be explained by strong instability that is the large value of ∆Z. This assertion
is in line with the numerical experiments of Ivleva et al. (1980) who studied the
combustion (that is reaction-diffusion) equations. They made no weak instability
assumption and obtained the kink-shaped fronts.

The reason why experimentalists usually deal with strong rather than weak
instability is seemingly that on the dark background the localized luminous hot
spots are easy to observe, whereas it is not so for the harmonical small-amplitude
distortions of the evenly bright front. There is no doubt that the bifurcation
method works well in the weak instability limit and gives convincing evidence
of the existence of spinning waves. Given this and the presented considerations,
Strunin (1999) distinguished two sorts of spinning waves: weak and strong. The
Strunin model (1999) relates to the latter case. The mechanism of the strong
spinning waves resembles the way of propagation of a normal steady combustion
front: the hot spot heats the fresh mixture ahead of itself and thereby excites the
reaction there.

In other words the wave runs exceptionally due to the transmission of signal
from one element of the front to another. The self-motions of the elements are
prohibited because of the damping role of the heat loss. Qualitative considerations
of the spinning wave which rested on the analogy between the wave and the
steady front were made by Iveleva et al. (1980). Later, the idea about the strong
spinning waves was explicitly formulated by Novozhilov (1992) who used the
above analogy together with the localized character of the hot spots. However,
this model does not describe the head-on collision of the hot spots and other
complicated regimes. Strunin (1995) attempted to design a phenomenological
equation that could serve as a tool for studying such regimes.The semiempirical
equation of a nonstationary front was suggested. It reproduces the spinning
combustion regimes as a particular solution.

Strunin (1995) suggested the evolution equation for H in the form

∂tH = α

∫ ∞
−∞
|k|dk

∫
L

exp(ik(x− z))H(z, t)dz + ∂2xH(β − γ(∂xH)2) + (∂xH)2,

(1.3)
where H(x, t) be the position of the temprature front (a narrow zone with large
temprature gradient) and α, β, γ > 0. Equation (1.3) invoves only dimensionless
values, integration with respect to z is performed over the domain of existence
of the front.The nonlinear quadratic term expresses predominant displacement
of the front along x, towards a fresh mixture warmed up by the products of the
reaction.The cubic term decreases dissipation or, in effect, increases the pumping
in the region facing the warmed up fresh mixture.Thus it expresses more intense
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combustion in hot spots. An analysis shows that Eq. (1.3) has a spin combution
solution only when this term has a special form. Because dissipation is determined
by the second order derivative the term must include the first order derivative.
The equation was solved numerically and few results were presented, although
the presented solution were mathematically correct, but they were unstable.

On the contrary, the later model of Strunin (1999) is stable. It is also im-
portant that, unlike the previous one, it contains a purely dissipative linear part
which addresses the condition that the system is near the combustion limit. After
the hot-spot passage the reaction front returns into its previous physical state of
immobility. The state of the front should not be confused with the state of the
mixture described by concentrations of the activator and inhibitor. The mixture
undergoes an irreversible transition from the initial state, cold fresh compound,
to the final state, hot reaction products. It is important that the state of the
front that is described by the model.

1.2.2 Strunin model of strong spinning fronts

In this section we follow the paper (Strunin, 1999). Consider the one-dimensional
case when the front propagates through a thin strip rolled up into a cylinder. Let
H = H(x, t) denote the dimensionless distance from the end of the cylinder the
front has passed by the moment t. Here x is the dimensionless coordinate along
the cylinder perimeter. Thus H is a periodic function in x with some period L.
The author intended to design a simplest partial differential equation for H to
capture the qualitative features of the spinning wave discussed in the previous
section. The model must comply with the fact that the front moves forward so
that the value H increases with time (on average).

To avoid infinitely large terms in the equation and to express the interac-
tions between the neighbouring front elements, it is required that H does not
appear alone, but only under differentiation operators. The basic consideration
underlying the model is that the uniform state H = contant is linearly stable. It
expresses the fact that the combustion is near the limit. The spatially uniform
front section is the place where the reaction is damped and thus unable to resume
spontaneously. Therefore the linear part of the model must be purely dissipative.
This requirement can be met by the equation

∂H

∂t
= (−1)m+1∂

2mH

∂x2m
,m = 1, 2... . (1.4)

Eq. (1.4) leads to the spatially uniform motionless front as a final state of
the system. This state is equivalent to the absence of the reaction because H
does not increase as time passes. Instead of (1.4) one can take a sum of such
terms with some coefficients before them and, after the model is built, look into
question of suitable magnitudes of the coefficients. Taking into account that the
main purpose is to build the simplest model we confine ourself for now to only one
dissipative term. The order m will be determined later from the energy balance.
The rest of the equation must be nonlinear. The deeper the cavity formed by the
hot products the better the conditions for the reaction, that is, for the ”survival”
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of the cavity. Such a tendency can be described by the diffusion-type term with
non-positive nonlinear coefficient

−

(
∂H

∂x

)2
∂2H

∂x2
. (1.5)

This term controls the distortion of the front due to the reaction. However,
the dissipation and nonlinearity are not sufficient for the model because they do
not balance each other. In addition, it is not less important that they do not
make the front move through the mixture on average. This is seen after placing
both of above terms to the right-hand side of Eq. (1.4) and integrating over the
period L: we get zero. Consequently, H does not increase on average, that is,
the model still contains no mechanism adequately allowing for consumption of
the fresh mixture due to the reaction. In order to express the consumption and
provide the balance between pumping and dissipation another nonlinear term
needs to be introduced, and it should be positive. The simplest form of such a
term with H appearing under the differentiation operator is(

∂H

∂x

)2n

, n = 1, 2... . (1.6)

From all of above we obtain

∂H

∂t
= (−1)m+1∂

2mH

∂x2m
−

(
∂H

∂x

)2
∂2H

∂x2
+

(
∂H

∂x

)2n

. (1.7)

The balance between the terms is achieved if the pumping has smaller order
of nonlinearity than the so called ”transition” term, which is the last

2n > 3. (1.8)

The transition term carries no pumping function but transfers the energy to small
scales. Small-scale disturbances must dissipate, so we require

2m > 2n. (1.9)

Subtract (1.9) from (1.8), the simplest variant satisfying is n = 2,m = 3 leading
to the equation,

∂H

∂t
=
∂6H

∂x6
−

(
∂H

∂x

)2
∂2H

∂x2
+

(
∂H

∂x

)4

, (1.10)

which Strunin referred to in (2009) as the NEP (nonlinearly excited phase) equa-
tion.
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1.3 Our research

In our research we analyse the model. (1.10), which we re-write using u in place
of H through out our work. As we mentioned, the model describes two kinds
of the fronts of reaction: (a) detonation front, which is a shock wave in a gas
accompanied by combustion reaction and (b) solid flame, which is a combustion
front propagating through a solid-phase compound,

∂tu = −A(∂xu)2∂2xu+B(∂xu)4 + C∂6xu . (1.11)

Under the term front we imply a conditional border assumed to be a line,
between cold fresh mixture and hot reaction products. Rigorously speaking,
the border is not a line but some strip with finite thickness, within which the
temperature undergoes a considerable variation. This thickness is known to an
accuracy of order of magnitude so that the frontal line can only be a rough
representation of the actual front. The model was shown (Strunin, 1999) to give,
as a particular solution, autosolitary waves similar to the experimentally found
spinning regimes.

The autosoliton is a well-known type of wave which has been found in many
physical, chemical and biological systems and described in detail in review ar-
ticles (Kerner and Osipov, 1989) and (Cross and Hohenberg, 1993). The term
autosoliton is used by some authors to distinguish this concept from solitons in
conservative systems. In contrast to the solitons, the autosolitons occur in active
systems with dissipation. Note here that combustion front is a typical example of
such a system due to the key role of reaction and thermoconductivity. Appearing
as a result of the balance between pumping and dissipation, the autosolitons have
a unique amplitude and width governed by the dynamical system.

Such waves are stable with respect to small disturbances but may decay if
violated too strongly. These properties correlate well with the observations of
the spinning waves and are used as a basis of the model. Consequently, it was
worth making an attempt to give them a unified description within a single model.
Furthermore, the solid flame is a complicated phenomenon which includes many
physical and chemical factors such as mechanical deformations, melting, complex
chemical reactions, etc. However, the spinning waves are experimentally ob-
served in many of them. Given this, using a phenomenological approach looked
reasonable. Strunin used the phenomenological approach because the situation
in question is characterized by a large degree of instability of the plane front so
that regular small parameter method would not work. Like all phenomenological
models, the one proposed does not claim a precise description of the phenomenon
and is focused on its qualitative side.

1.4 Aims of this project

The key aims and research questions of the project are:
(a) Develop Matlab numerical codes for solving the Strunin model in one and

two dimensions using the Integrated Radial Basis Function Network (IRBFN) col-
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location method; verify accuracy and stability of the code using standard methods
and also by exploring modified versions of the equation which allow analytical
solutions.

(b) Investigate comprehensively different dynamic regimes in 1D (one spatial
dimension): the shapes of settled solutions, their evoltion in time and space
and the dependence on the size of available domain under different boundary and
initial conditions. Special attention will be given to steady and unsteady spinning
regimes with more then one spinning heads. We will explore the co-directed and
counter-directed moving heads and their interactions.

(c) Simulate the two dimensional regimes with x and y spatial dimensions.

1.5 Focus and scope of the thesis

This study aims to accurately describe pattern formation in reaction fronts mod-
elled by Eq. (1.1). This research may help predict the pattern type – regular or
chaotic – of material properties caused by the dynamics. Although this equation
contains only three terms in its right hand side, preliminary results indicate that it
can generate complicated regimes, both regular and irregular. At present there are
only few examples of numerical solutions of this equation in 1D (Strunin, 1999)
and a series of numerical experiments in 2D (Strunin and Suslov, 2005; Strunin
and Mohammed, 2015), but they were based on finite difference method com-
pared to which the 1D-IRBFN method of the current thesis presents an advanced
numerical approach. We will be especially interested to simulate multiple head
spinning regimes. We will also explore forced Strunin equation to investigate its
numerical and exact solutions.

1.6 Outline of the thesis

The thesis is organized as follows:

Chapter 2: As a background we describe basic concepts of spinning reaction
waves and discuss the work which has been done previously for linear and
nonlinear excited phase equations.

Chapter 3: We elaborate the numerical method 1D-IRBFN used in our research
work. Its convergence and efficiency is supported by examples.

Chapter 4: We derive a forced Strunin equation and present selected exact so-
lutions. These solutions are used to verify the numerical code. This is done
by comparing the exact and numerical solutions.

Chapter 5: We solved the Strunin model in 1D with homogeneous boundary
conditions; the solutions are presented and discussed.

Chapter 6: We solved the model in 1D with periodic boundary conditions ; the
solutions are presented and discussed.
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Chapter 7: We solved the model in 2D with homogeneous boundary conditions;
the solutions are presented and discussed.

Chapter 8: We conclude the thesis and discuss future directions.



Chapter 2

Literature Review

2.1 Introduction

This chapter will start with a brief review of dynamics of reaction waves. Then,
we will give review of literature on the dynamical equations with different types
of excitation.

2.2 Simulation and application of reaction waves

The following model presents a single-equation simulation tool for the reaction
waves (Strunin, 1999),

∂tu = −A(∂xu)2∂2xu+B(∂xu)4 + C∂6xu , (2.1)

where A, B, C > 0. In practical terms, this model is relevant to the so called su-
peradiabatic waves, detonation waves and instabilities in certain type of reaction-
diffusion systems (Strunin, 2009). We will discuss dynamical mechanism behind
Eq. (2.1) in the next chapters in detail.

Despite a short form, the equation generates rich variety of dynamical regimes,
the most spectacular of which is the spinning wave shown in Figures 1.1 and
1.2. The superadiabatic waves of combustion is clean technology used for waste
processing (Institute of Problems of Chemical Physics, Russian Academy of Sci-
ences, www.icp.ac.ru/ eng/developments/; (Slimane et al., 2002), (Rozenberg
et al., 2005). The usage of superadiabatic combustion waves for waste treatment
is underpinned by fundamental research initially conducted by chemical physicists
looking for ways to use super- hot (hot-spot) combustion regimes for processing
low-calorie stock into electrical energy. The low-calorie composition is the key
factor in this process because it the conditions when the combustion is confined
within a relatively small fragment of space, which allows to achieve high levels of
temperature. They considerably exceed the temperature that would take place
should the composition burn in a normal regime under thermally insulating (adi-
abatic) conditions. This technology proves suitable for processing low-quality
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combustible fossil, biofuel as well as industrial and municipal waste. The supera-
diabatic combustion also takes place in Self-propagating High-temperature Syn-
thesis of materials, for example porous multiphase/heterogeneous calcium phos-
phate (HCaP), NiTi, NiTi-TiC and TiB-Ti.

Figure 2.1: The propagating infiltration combustion on a plane substrate (Kostin
et al., 2015).

Fig. 2.1 displays a similar 2D cellular structure of infiltration combustion.
The solutions of 2D version of Eq. (2.1), obtained by Strunin and Mohammed
(2015), give similar patterns.

2.3 Background

Recently an increased attention has been drawn to the research of the structure of
the combustion fronts in heterogeneous reactive compositions. Regardless of the
effect of initial perturbations, the combustion process can be accompanied by the
spontaneous formation of regular structures, the symmetry of which differ from
the symmetry of initial conditions. For systems in which the reactive gas is blown
through the reaction products in the direction of the propagating front, it was
shown (Aldhushin and Ivleva, 2013) that, if the permeability of the combustion
products exceeds that of the initial charge, the combustion process may become
unstable, accompanied by the formation of a finger-shaped front. These processes
were experimentally studied in (Aldhushin and Braverman, 2010) for the prop-
agation of a smoldering wave in a slit-like channel filled with sawdust. In this
work, the focus was on examining the effect of scale factors on the loss of stabil-
ity of the combustion of highly porous media.The structuring of the combustion
front in metal powders subject to natural gas infiltration was theoretically and
experimentally investigated in (Kostin et al., 2015; Kostin et al., 2014; Kostin
et al., 2012). The authors analysed the infiltration combustion of porous media
and the dynamics of initiation and propagation of cellular wave structures. They
studied the dependence of the number and shape of cells on the governing thermo-
physical, macrokinetic, and infiltration parameters of the heterogeneous medium,
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on the geometric characteristics and dimensions of the porous composition, on
the parameters of gas exchange with the environment, heat loss, etc. The studies
showed that the planar front may break into individual cells of self-sustaining
exothermic chemical reaction. It was shown that the cells move through the con-
densed material layer in the pulsation mode, leaving behind a band of condensed
combustion products with periodic structure. (Kostin et al., 2015) determined
the boundaries of existence of the steady and unsteady modes of the infiltration
front. The focus was on establishing the macrokinetic laws of combustion prop-
agation in the parametric domain, where a planar combustion front is unstable
and cellular pulsating combustion waves arise and propagate. From a practical
point of view, analysis of the combustion of the system enabled the determination
of optimal conditions of the infiltration combustion of porous media for obtaining
synthesis products.

These regimes are successfully simulated by Eq. (2.1). The equation is based
on phenomenological principles – it is designed to simulate the main dynamical
features of the process (Strunin, 1999) while ignoring details. As is clear, waste
or SHS systems can be extremely complex in composition, which renders their
detailed description prohibitively difficult. The phenomenological methods have
been used in many areas of mathematical modelling. For example, (Das and
Puri, 2003) proposed a phenomenological description of the long-term cluster
evolution in granular gases (Aranson and Tsimring, 2006). For the spinning com-
bustion waves, the first attempt to construct a model based on phenomenological
principles was undertaken by Aldushin et al. (1981). However, as we explain
below, our model (2.1) far better addresses the actual experimental observation.
The spinning waves occur in the so-called solid flames, where the products of
combustion are solids. Merzhanov et al. (1973) reported the experiments where
a solid flame breaks down into a set of hot spots travelling along spiral trajectories
on the surface of a cylindrical specimen. Because a hot spot is much hotter than
the surrounding area and even hotter than the adiabatic temperature (from here
the term super-adiabatic), the hot spot appears to the eye as a luminous patch.

If there are more than one hot spot, the regime is referred to as multiple-point.
The very word “point” highlights the localised character of combustion. Many
papers that followed used the same terminology. Dvoryankin et al. (1982) also
reported a different regime, when a number of hot spots performed a seemingly
disordered motion. In an experimental work of Strunin et al. (1994) this motion
was shown to be chaotic, and fractal dimensionality of the respective strange
attractor was determined. Makhviladze and Novozhilov (1971), Shkadinsky et al.
(1971) and Matkowsky and Sivashinsky (1978) showed that at a certain critical
value of the control parameter called Zel’dovich number, Z, the plane uniformly
propagating combustion front loses stability. In order to describe the nonlinear
dynamics of the unstable front Volpert et al. (1982), Margolis (1991), Matkowsky
and Volpert (1992) and others used bifurcation theory. Within this approach, the
plane uniformly moving front is supposed weakly unstable so that the distance
from the instability threshold (the deviation ∆Z from the critical value Zc) can
be used as a small parameter. In these works, non-stationary solutions to the
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reaction-diffusion activator-inhibitor equations are obtained as small corrections
of order ∆Z to the uniformly moving plane front solution. The phenomenological
model of Aldushin et al. (1981) too implied that the instability is weak. Both
approaches led to the Ginzburg-Landau type equations for the front deviation
about the (moving) average front position. The solutions turned out to be small-
amplitude quasi-harmonic waves travelling in the direction transversal to the
average motion.

The superposition of the average motion and this transversal propagation re-
sulted in the spinning wave on the cylinder. Meanwhile, in the experiments the
spinning waves had a distinct non-sinusoidal, kink-like shape. The discrepancy
between the experiments and the models can be explained by strong instability
that is large value of ∆Z . This proposition agrees with the numerical exper-
iments of Ivleva et al. (1980) who studied the combustion (reaction-diffusion
activator-inhibitor) equations. The reason why the experimentalists usually deal
with strong rather than weak instability is the easiness of observation: the lu-
minous hot spots are clearly visible, whereas small (sinusoidal) distortions of a
weakly unstable front are a much less prominent with respect to the neighbouring
sections. Undoubtedly, the bifurcation method works well in the weak instabil-
ity limit. Given this, we distinguish two types of the spinning waves: weak and
strong. Our model (2.1) describes the strong waves – the ones reported by the
experimentalists. The mechanism of the strong spinning waves resembles the way
of propagation of the usual plane combustion front: the hot spot heats the fresh
mixture in front of itself and thereby excites the reaction. It is important that
the linear part of the model (2.1) is purely dissipative. Consequently, after the
hot spot (steep slope section) passes a location x, the state of the front at this
location returns to rest, and this state is stable. The state of the front should
not be confused with the state of the reacting mixture, that is the activator and
inhibitor. They undergo the irreversible transition from the initial state – cold
and unreacted – to the final state – hot and reacted.

The kink-like wave shown in Fig. 1.1 transforms into a single-kink shape when
the period of the solution tends to infinity. In terms of the derivative, F = ∂xH,
the kink becomes a kind of soliton called auto-soliton. The auto-soliton is a type
of wave encountered in many physical, chemical and biological systems (Kerner
and Osipov, 1989; Cross and Hohenberg, 1993). The prefix auto- distinguishes
the concept from usual solitons in conservative systems. While the solitons result
from the balance between nonlinearity and dispersion, the auto-solitons result
from the balance between energy release and dissipation. The combustion front
is a typical example of the active-dissipative system, where the energy is released
by reactions and the dissipation is facilitated by thermoconductivity. The auto-
soliton in a given system possesses a unique size and unique velocity as dictated
by the balance. The auto-soliton is resistant to small perturbations but decays
if impacted by a sufficiently strong external factor. These properties agree with
the experiments and have been used as the basis of the model (2.1). Another
motivation for constructing the model of this form is suitability for dynamically
similar phenomena in different systems while disregarding details. The combus-
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tion may involve many reactions and reacting components, be complicated by
mechanical deformations, melting etc. However, the front localisation is typical
to all super-adiabatic waves.

Considering this, the phenomenological model is our simulation instrument of
choice. We remark that the auto-solitons or, by another terminology, localised
states are known from many different systems, for example chiral bubbles in liquid
crystals, current filaments in gas discharge, localised states in fluid surface waves,
oscillons in granular media, isolated states in thermal convection.

2.3.1 Mathematical novelty

As we mentioned earlier, Eq. (2.1) governs the evolution of the distance, u, passed
by the reaction front through the combustible medium. In a sense, the distance u
plays the role of phase as it always increases with time. Hence the equation can
be called phase equation. It is noteworthy that in the context of reaction-diffusion
systems the generalised phase equations (Kuramoto, 1984) literally describe the
phase of oscillations. The lowest-order forms of the phase equation are based on
the 2nd-order dissipation; their classical examples are the diffusion equation

∂tu = ∇2u (2.2)

and the nonlinear diffusion equation transformable into the Burgers equation.
Both equations are dissipative, with no excitation. Their solutions tend to smear
over space, and thus reduce the phase differences. However, under certain circum-
stances, the phase differences amplify. This occurs when the parameter values
of the system are such that the coeffcient in front of ∇2u becomes negative so
that the diffusion turns into anti-diffusion. In order to prevent blow-up and main-
tain balance, a higher-order dissipative effect must be included into consideration.
This was done by Kuramoto and Suzuki (1976) in the context of reaction-diffusion
systems and Sivashinsky (1977) in the context of unstable combustion waves in
gases,

∂tu = −∇2u−∇4u+ (∇u)2. (2.3)

In Eq. (2.3) the excitation is represented by the linear anti-diffusion,−∇2u, and
the dissipation by (−∇4u). Later on, a sixth order model was derived by Niko-
laevskiy (1989) for seismic waves,

∂tu = a∇2u+∇4u+∇6u+ (∇u)2, (2.4)

a > 0.
Similarly to the Kuramoto-Sivashinsky Eq. (2.3), the Nikolaevskiy Eq. (2.4)

involves linear excitation, represented by ∇4u. Recently (Strunin, 2009) rigor-
ously derived the nonlinear excited phase equation in the context of reaction-
diffusion systems with nonlocal coupling (Tanaka and Kuramoto, 2003); Tanaka,
2004). The nonlinear character of excitation manifests the qualitative difference
between Eq. (2.2), Eq. (2.3) and Eq. (2.4).
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2.4 Complex Ginzburg-Landau equation (CGLE)

and the phase equation

Strunin (2009b) showed that Eq. (2.1) is a particular case of a more general
equation called the generalized nonlinear phase diffusion (GNPD) equation. In
turn, the GNPD equation is derived from the Complex Ginzburg-Landau (CGL)
equation. The GNPD equation directly applies to the reaction-diffusion systems,
but is also phenomenologically connected to the propagation of reaction fronts,
which interests us in our present research.

The general form of the phase equation is

∂tu = a1∇2u+ a2(∇u)2+

b1∇4u+ b2∇3u∇u+ b3(∇2u)2 + b4∇2u(∇u)2 + b5(∇u)4+

g1∇6u+ g2∇5u∇u+ g3∇4u∇2u+ g4(∇3u)2 + g5∇4u(∇u)2+

g6(∇2u)3 + g7∇3u∇2u∇u+ g8∇3u(∇u)3 + g9(∇2u)2(∇u)2+

g10∇2u(∇u)4 + g11(∇u)6+

e1∇8u+ · · · .

(2.5)

where an, bn, gn, en, . . . are constant coefficients. The operator ∇2 ∼ (1/L)2

plays the role of a small parameter: where L is the large characteristic spatial
scale of variations of u. Thus, the phase u varies slowly in space.

As frequently noted e.g., (Mohammed, 2015) the cubic complex Ginzburg-
Landau equation (CGLE) is one of the widely-studied nonlinear equations rep-
resenting dissipative systems. It describes on a qualitative and a quantitative
level a large variety of phenomena. In fact, many properties of nonequibirium
systems are encountered in this equation and many difficult problems, such as the
existence and interaction of defects and coherent structures, or the appearance
of chaos, may profitably be addressed in the simple framework provided by this
equation (Cross and Hohenberg, 1993). Also, the equation describes the dynamics
of excitations in nerve membranes, pattern formation in two-dimensional chemi-
cal reactors where an autocatalytic reaction takes place (Kuramoto, 1984a), some
structures in fluid flows (Newell and Whitehead, 1969) and many other physical
processes (Rabinovich et al., 2000). In the context of chemical systems the CGLE
was introduced by Kuramoto and Tsuzuki (1976). A number of reviews and orig-
inal works have appeared during the last two decades, showing the generality
of the CGLE in many physical situations at all scales, see for example (Newell
et al., 1993; Dangelmayr and Kramer, 1998; Pismen, 1999).

The equation has the form

∂tA = A+ (1 + ib)∆A− (1 + ic)|A|2A, (2.6)

where A is a complex function of (scaled) time t and space x (often in reduced
dimension D = 1 or 2) and the real parameters b and c characterise linear and
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nonlinear dispersion. Detailed introductions into the concepts underlying the
equation can be found in (Manneville, 1990; Aranson and Kramer, 2002).

The equation was first derived by Newell and Whitehead (1969) when mod-
elling the onset of instability in fluid convection problems. In these situations,
at some critical value µc of a control parameter µ that can be tuned experimen-
tally, a spatially homogeneous steady state loses stability to oscillations whose
frequency ω0 and wavelength can be understood in terms of a linearised equation.
Newell and Whitehead found that when nonlinear effects are included, these os-
cillations are modulated over long time and space scales by a quantity A that
plays a role of a complex order parameter (Garćıa-Morales and Krischer, 2012).
In fluid dynamics, CGLE emerges generically, as shown by Stewartson and Stuart
in 1971 in the context of plane Poiseuille flow (Stewartson and Stuart, 1971).

Specific importance of this equation in the present research is related to the
fact that the general behaviour of the nonlinear oscillators in the vicinity of the
Hopf bifurcation point is governed by the CGLE.

2.5 Nonlinearly excited phase equation in reaction-

diffusion systems

2.5.1 Linear excitation in the phase equation

The simplest truncation of the GNPD equation is the classical second-order linear
diffusion.

∂tu = a1∇2u . (2.7)

If a1 > 0 then Eq. (4.6) becomes a linear diffusion equation. With the next term
taken into account, one gets the Burgers equation. The Burgers equation can be
also called the nonlinear diffusion equation. These forms of the phase equation
are dissipative and excitation-free.

A more complex form involving linear excitation was introduced by Kuramoto
and co-authors (Kuramoto and Tsuzuki, 1976; Kuramoto, 1984b) in the context
of reaction-diffusion systems. This equation has the following form,

∂tu = −ε∇2u−∇4u+ (∇u)2 . (2.8)

where ε > 0 . Their theory is based on a generalised time-dependent Ginzburg-
Landau equation for a complex field A and is linked to the persistent propagation
of concentration waves. A mathematically equivalent equation was independently
derived by Sivashinsky (1977) in the context of weak thermal diffusive instabilities
in a laminar flame front. The Kuramoto-Sivashinsky (KS) equation has the form

∂tu = −∇2u−∇4u+ a1(∇u)2. (2.9)

In (2.9), as we have already mentioned, the excitation is represented by the
linear anti-diffusion term, (−∇2u), and the dissipation by the term (−∇4u). The
role of the nonlinear term a1(∇u)2 is to provide the bridge between those two.



18 Literature Review

Topologically, the nonlinear term creates segments of relatively sharp variation of
u. As a result, the KS equation provides a dynamical balance between “energy”
gain and loss. Figure (2.2) shows an example of solution of the KS equation.

Figure 2.2: Solution of the KS equation in the (x, t) plane. L = 64, n = 128, with
a time interval ∆t = 1 between two successive snapshots (Manneville, 2010).

Nikolaevskii (1989) derived a particular case of the GNPD equation in con-
nection to seismic waves in fluid-saturated solids,

∂tu = a∇2u+ b1∇4u+∇6u+ a2(∇u)2.

Like the KS equation the Nikolaevskii equation has linear excitation (represented
by the 4th-order term (b1∇4u), b1 > 0). The nonlinear term a2(∇u)2 limits the
growth by transferring the energy to higher modes, where a damping force, ∇6u,
prevails.

Spatiotemporal chaos generated by this equation was explored by Tribel-
sky and Velarde (1996). The KS and Nikolaevskii equations have been exten-
sively studied, see for example (Kudryashov, 1990; Hyman and Nicolaenko, 1986;
Tanaka, 2005).

As we have already mentioned that Eq (1.1) was derived from the CGLE rel-
evant to reaction-diffusion systems. These are the systems of the type considered
by Kuramoto (1995) where non-local coupling plays important role,

∂tX = f(X) + kg(S),

τ∂tS = −S +D∇2S + h(X) ,
(2.10)
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where the n-dimensional real vector field f represents a local limit cycle oscillator
with dynamical variable X. When k = 0 the first equation represents a field of
continuously distributed oscillators without collective coupling. The production
term h(X) depends on the local value of X. The dynamics are also affected by
the local concentration of S via the term kg(S). In the second equation, the
parameter τ is introduced to explicitly express the characteristic time scale for
S, anticipating a limiting case in which τ is vanishingly small. The system above
has no direct coupling among the oscillators, however, the diffusive chemical
represented by S provides an indirect coupling.

Tanaka and Kuramoto (2003) derived the GL equation with nonlocal coupling
as a reduced form of a universal class of reaction-diffusion systems near the Hopf
bifurcation point and in the presence of another small parameter µ which, when
changing from µ < 0 to µ > 0, brings about oscillatory instability (µ is included
in the system (2.11)-(2.12) implicitly, not directly). They reduced the reaction
diffusion system

∂tX = f(X) + δ∇2X + kg(S) (2.11)

τ∂tS = −S +D∇2S + h(X), (2.12)

to a non-local universal equation of the Ginzburg Landau type for the amplitude
of oscillations,

∂tA = A− (1 + ic2)|A|2A+ (δ1 + iδ2)∇2A

+K(1 + ic1)

∫
dr′G(r− r′)[A(r′, t)− A(r, t)],

(2.13)

where c1, c2, δ1, δ2 and K are real constants and G is a coupling function. They
commented that the GL equation involves six independent parameters c1, c2, K,
θ, δ1, and δ2. Here the parameter θ = ω0τ is proportional to the basic frequency
of oscillations, ω0, and characteristic time τ .

Tanaka (2004) found evidence that the nonlocal CGLE describing certain class
of reaction-diffusion systems exhibits turbulence that is equivalent to turbulence
under the Nikolaevskii equation. He confirmed numerically that these chaotic
states are structurally stable. In addition, he demonstrated that the Nikolaevskii
equation can be obtained from the CGLE via a phase reduction procedure. He
also described situation when the CGLE does not reduce exactly to the Niko-
laevskii equation.Tanaka (2006) also presented numerical results which demon-
strated that at points where the reaction-diffusion systems do not reduce to the
Nikolaevskii equation the spatiotemporal chaos is structurally stable.

All the works mentioned above explore systems where the phase dynamics
are excited by linear mechanism. Our research focuses on an essentially different
mechanism of excitation – nonlinear.

2.5.2 Nonlinear excitation in the phase equation

Although the nonlinearly excited phase dynamics are essential in many applica-
tions, very limited studies have been done in this area.
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Strunin (1999) phenomenologically constructed the nonlinearly excited phase
(nep) equation (1.1), modelling two types of reaction front – the solid flame front
and detonation wave – under the conditions close to the combustion limit (where
the combustion is on the brink of decay). He considered the simplest geometry
when the front propagates through a hollow cylinder as illustrated by Figure 2.3.
The equation is formulated in terms of the position H of the combustion front on
the cylinder as the line separating cold fresh mixture from hot reaction products
(the original variable H in his paper has been changed to u in order to ensure
consistency). The distance u (H in his paper) traveled by the front is in a sense
similar to the phase in the context of systems of oscillators. Indeed, the distance
u always increases like the phase. However, this occurs not uniformly but with
oscillations around some uniformly moving average position. It was demonstrated
that the equation can generate single-kink and multiple-kink (multiple solitons
in terms of ∂xu) spinning regimes. The model contains the nonlinear excitation

Figure 2.3: Schematic presentation of the reaction front (Strunin, 1999).

term −b∂2xu(∂xu)2 with b > 0, linear dissipation term a∂6xu with a > 0 and non-
linear term c(∂xu)4 transferring energy from the excitation to dissipation. The
equation was solved in 1D numerically, using Galerkin method, under periodic
conditions in space. A settled regime was obtained, in which a kink-shaped wave
was moving along a spiral trajectory on the surface of a cylinder, see Figure (2.4).
An important feature of the wave is that it is not just the correct shape – a kink
– that is reproduced but also the dynamic mechanism behind it. In laboratory
experiments, the spinning combustion occurs when the reacting chemical com-
position is diluted with some neutral substance. As a consequence, it becomes
difficult for the combustion process to maintain itself — it actually occurs on the
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brink of collapse. For the 1D topology Strunin (1999) did not investigate whether,
apart from the periodic waves, there may also realise irregular regimes. Perhaps,
those are possible at large diameters of the cylinder, when there is enough space
for a number of kinks to co-exist and interact with each other in a complicated
way. For the 2D topology, that is with an extra dimension available, there is a
strong anticipation that chaotic dynamics may form and self-sustain provided the
size of the space domain is sufficiently large.

Figure 2.4: The settled solution at k = 0.12. Two periods are shown (Strunin,
1999).

2.6 Scaling and hierarchy for the phase equa-

tions

Table (2.1) shows the magnitude order of the coefficients of the phase equation
(4.6) leading to different truncations and scalings. It also shows the signs of the
coefficients, were important.

Denoting the characteristic scale of the phase variations by U > 0 and the
length scale by L > 0, we can evaluate the balancing equation terms in absolute
value: For the KS equation (2.9), the balance εU/L2 ∼ U2/L2 ∼ U/L4 gives

U ∼ ε, L ∼
1√
ε
. (2.14)
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Table 2.1: Hierarchy of truncations of the GNPD equations (4.6)
(Strunin, 2009b)

a1 a2 b1 b2 b3 b4 b5 g1 truncation

+1 1 1 1 1 1 1 1 diffusion Eq

excitation: −ε 1 -1 1 1 1 1 1 KS Eq

+ε2 1 excitation: ε 1 1 1 1 +1 Nikolaevskii Eq

o(ε6) o(ε5) o(ε3) o(ε2) o(ε2) excitation: -ε 1 +1 Eq (1.1)

The time scale is determined from U/T ∼ εU/L2,

T ∼ L2/ε ∼ 1/ε2. (2.15)

Hence, from (2.14) and (2.15) we have the scaling relations

u = εu1(r1, t1), r1 =
√
εr, t1 = ε2t. (2.16)

For the Nikolaevskii equation, the scaling is different: The balance

ε2U/L2 ∼ εU/L4 ∼ U/L6 ∼ U2/L2 (2.17)

gives
U ∼ ε2, L ∼ 1/

√
ε (2.18)

and, using U/T ∼ ε2U/L2 ∼ ε5,

T ∼ U/ε5 ∼ 1/ε3. (2.19)

Thus, the scaling relations are

u = ε2u1(r1, t1), r1 =
√
εr, t1 = ε3t. (2.20)

For the NEP equation (1.1),

∇2u(∇u)2 ∼ U3/L4, (∇u)4 ∼ U4/L4,∇6u ∼ U/L6. (2.21)

therefore, the balance is

εU3/L4 ∼ U4/L4 ∼ U/L6 , (2.22)

from where the scales of the dissipative structures,

U ∼ ε, L ∼ (1/ε)3/2. (2.23)

So, from u/T ∼ u4/L4 ∼ ε10,
T ∼ 1/ε9.

Therefore, the scaling is

u = εu1(r1, t1), r1 = ε3/2r, t1 = ε9t. (2.24)
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2.7 Chapter summary

We discussed the main concepts of dynamical systems such as the different struc-
tures of the combustion fronts, especially spinning waves. This is followed by the
literature review for the phase equation with both linear and nonlinear excitation.



Chapter 3

Research methodology

A research methodology is a description on how the research will be conducted.The
research methodology provides a detailed description of the approaches taken in
carrying out the research and the performance evaluation.

3.1 The methodology

There are many problems arises from physical and other sciences, which can be
converted to ODEs and PDEs through the process of mathematical modelling.
As a result numerous numerical methods have been developed for finding the
solutions of ODEs and PDEs, such as finite difference method (FDM), finite
element method (FEM), finite volume method (FEM) and others. The method
termed as radial basis function method has emerged as an effective tool for solving
differential equations. Radial-basis-function networks (RBFNs) have become one
of the main fields of research in numerical analysis (Haykin, 1999). (Mai-Duy
and Tran-Cong, 2001) proved the effectiveness of IRBF proposed by them. In
this approach highest order derivative in differential equation are approximated
by radial basis functions and further the lower order derivatives and function
itself are then obtained by integration. In this method they choses multiquadric
(MQ) function as the basis function. It has been proved that RBFNs have the
property of universal approximation, i.e. an arbitrary continuous function can
be approximated to a prescribed degree of accuracy by increasing the number of
hidden neurons (Park and Sandberg, 1991). Madych and Nelson (1988, 1990)
showed that the RBF interpolation scheme using multiquadrics (MQ) can offer
exponential convergence rates/spectral accuracy.

The application of MQ-RBFNs for the numerical solution of differential equa-
tions has received a great deal of attention over the past 20 years (see, for example,
(Kansa, 1990; Fasshauer, 2007), Mai-Duy and Tran-Cong, (2001). These global
methods had considerable success in solving a variety of scientific and engineer-
ing problems governed by differential equations. It should also be noted that the
performance of the RBF scheme is strongly affected by the RBF width.To date,
there is a lack of mathematical theory for finding appropriate values of the RBF
width. In practice, the RBF width is chosen either by empirical approaches or by
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optimization techniques. The latter are expensive, especially for non-linear prob-
lems. Generally, the RBF scheme is more accurate, but less stable with increasing
RBF-width.

Recently, an alternative approach based on integration to construct the RBF
expressions for the interpolation of functions and the solution of differential
equations was proposed (Mai-Duy and Tran-Cong, 2001, 2003). It was found
that the indirect/integration-based RBFN approach (IRBFN) outperforms the
direct/differentiation-based RBFN approach (DRBFN) regarding accuracy and
convergence rate over a wide range of the RBF width. The improvement is
attributable to the fact that integration is a smoothing operation and is more
numerically stable.

It has been found that among RBFNs the multiquadric functions yield more
accurate result (Haykin,1999) then others. The IRBFN ability to capture sharp
gradients and the resultant sparse system matrix will enable us to effectively in-
vestigate Eq. (2.1). To solve Eq. (2.1) numerically in one dimension and two
dimensions, we will develop computational program based on the 1D-IRBFN
method developed by Mai-Duy and Tran-Cong (2001) and will also use a mod-
ified IRBFN method proposed by Mai-Duy and Tran-Cong in future work. We
ran the numerical experiments on desktop computers provided by the School of
Agricultural, Computational and Environmental Sciences Toowoomba campus.
Necessary software, such as Matlab, was also provided by the School.

3.1.1 One-Dimensional IRBFNs collocation method

In this section, we extend the 1D-IRBFN method (Mai-Duy and Tanner, 2007)
to compute function derivatives up to 6th-order. The domain of interest is dis-
cretised using a uniform Cartesian grid, i.e. an array of straight lines that run
parallel to the x and y-axes. The dependent variable u and its derivatives on
each grid line are approximated using an IRBFN interpolation scheme. Consider
an x-grid line with n grid points. The variation of u along this line is sought in
the IRBF form. The highest-order derivative (order p) of the ODE’s or PDE’s is
decomposed into RBFs. Then the RBF networks are successively integrated to
obtain the lower-order derivatives and the function itself. Consider a univariate
function u(x).

The basic idea of the integral RBF form (Mai-Duy and Tran-Cong, 2001) is
to decompose a pth-order derivative of the function u into RBFs

dpu

dxp
=

n∑
i=1

wiI
p
i (x), (3.1)

where [wi]
n
i=1 is the set of network weights, and [Ipi (x)]ni=1 is the set of RBFs.

Lower-order derivatives and the function itself are then obtained through further
integration,

dp−1u

dxp−1
=

n∑
i=1

wiI
p−1
i (x) + c1, (3.2)
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dp−2u

dxp−2
=

n∑
i=1

wiI
p−2
i (x) + c1x+ c2, (3.3)

and so on...

du

dx
=

n∑
i=1

wiI
1
i (x) + c1

xp−2

(p− 2)!
+ c2

xp−3

(p− 3)!
+ · · ·+ cp−2x+ cp−1, (3.4)

u =
n∑
i=1

wiI
0
i (x) + c1

xp−1

(p− 1)!
+ c2

xp−2

(p− 2)!
+ · · ·+ cp−1x+ cp. (3.5)

Where Ip−1i (x) =
∫
Ipi (x)dx,Ip−2i (x) =

∫
(Ip−1i (x))dx,.....Ioi (x) =

∫
I1i (x)dx

and c1, c2, ..., cp are the constants of integration, number of constants generated
by continuous integration is always equal to highest order present in the differen-
tial equation. Unlike conventional differential schemes, the starting point of the
integral scheme can vary in use, depending on the particular application under
consideration.The scheme is said to be of order p, denoted by IRBFN-p, if the
pth-order derivative is taken as the starting point. The evaluation of (3.1)-(3.5)
at a set of collocation points [x]nj=1 leads to

d̂pu

dxp
= Îppα̂, (3.6)

d̂p−1u

dxp−1
= Îp−1p α̂, (3.7)

. . . . . . . . .

d̂u

dx
= Î1pα̂, (3.8)

û = Î0pα̂. (3.9)

where the subscript [.] and superscript (.) are used to denote the order of the
IRBFN scheme and the order of a derivative function, respectively; by putting
back the value of α̂ in (3.6)-(3.9) we have

d̂pu

dxp
= ÎppÎ0p

−1
û = Dpxu, (3.10)

d̂p−1u

dxp−1
= Îp−1p Î0p

−1
û = D(p−1)xu, (3.11)

. . . . . . . . .

d̂u

dx
= Î1pÎ

0
p

−1
û = D1xu, (3.12)

and
u = D0u, (3.13)
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Îpp =


Ip1 (x1) Ip2 (x1) . . . Ipn(x1) 0 0 . . . 0 0
Ip1 (x2) Ip2 (x2) . . . Ipn(x2) 0 0 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ip1 (xn) Ip2 (xn) . . . Ipn(xn) 0 0 . . . 0 0

 ,

Îp−1p =


Ip−11 (x1) Ip−12 (x1) . . . Ip−1n (x1) 1 0 . . . 0 0

Ip−11 (x2) Ip−12 (x2) . . . Ip−1n (x2) 1 0 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ip−11 (xn) Ip−12 (xn) . . . Ip−1n (xn) 1 0 . . . 0 0

 ,
. . . . . . . . .

Î0p =


I01 (x1) I02 (x1) . . . I0n(x1)

xp−1
1

(p−1)!
xp−2
1

(p−2)! . . . x1 1

I01 (x2) I02 (x2) . . . I0n(x2)
xp−1
2

(p−1)!
xp−2
2

(p−2)! . . . x2 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I01 (xn) I02 (xn) . . . I0n(xn) xp−1
n

(p−1)!
xp−2
n

(p−2)! . . . xn 1

 ,

α̂ = (w1, w2, w3.........wn, c1, c2, .....cp)
T or α̂ =

(
ŵ
ĉ

)
and let us denote H0 =

Î
(0)
[6] ,H1 = Î

(1)
[6] ,H2 = Î

(2)
[6] and Hp = Î

(p)
[p] . The use of integrated basis functions is

expected to avoid the problem of reduction of convergence rate caused by differ-
entiation. Numerical studies have shown that the integral collocation approach is
more accurate than the differential approach (Mai-Duy, Tran-Cong, 2001). There
are integration constants generated during integration process and they have been
found to be extremely useful for handling the multiple boundary conditions.

3.1.2 Solving ODEs with one spatial dimension using 1D-
IRBFN method

By considering a 1D boundary value problem having pth order ODE

F (u,
du

dx
,
d2u

dx2
, . . . ...,

dpu

dxp
) = b(x), r ≤ x ≤ s, (3.14)

where F and b are prescribed functions, together with boundary conditions for
u, du/dx, ..., and dp/2−1u/dxp/2−1 at x = r and x = s. The continuous domain
of interest is replaced by a set of n discrete points with x1 = r and xn = s. The
integral scheme of order p (IRBFN-p) is employed here to approximate the field
variable and its derivatives in the ODE and the boundary conditions.Owing to
the presence of p integration constants in the integral formulation, one can add
p extra equations to the discrete system.These extra equations can be utilized to
represent the ODE and the values of the derivative boundary conditions at both
ends of the domain.The governing equation (3.14) and the boundary conditions
can be transformed into the following matrix form

Aα = f, (3.15)
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where A is the system matrix of size (n+ p) by (n+ p) defined as

A =



F (Î0p(1,:), Î
1
p(1,:), Î

2
p(1,:), ...Î

p
p(1,:))

F (Î0p(2,:), Î
1
p(2,:), Î

2
p(2,:), ...Î

p
p(2,:))

......

F (Î0p(n,:), Î
1
p(n,:), Î

2
p(n,:), ...Î

p
p(n,:))

̂I0p([1,n],:)
̂I1p([1,n],:)
........
̂
I
(p/2−1)
p([1,n],:)


,

α = (w1, w2, w3.........wn, c1, c2, .....cp)
T , and

f = (b1, b2, b3.........bn, ur, us,
dur
dx
, dus
dx
, ....d

p/2−1ur
dx

, d
p/2−1us
dx

)T .
By solving (3.15) we get α = A−1f , using α one is able to obtain values of u and
its derivative at the grid points.

3.1.3 Solving PDEs with two spatial dimensions using 1D-
IRBFN method

The domain of interest is discretized using a Cartesian grid, i.e. an array of
straight lines that run parallel to the x and y axis. Let Nx and Ny be the numbers
of grid lines in the x and y directions, respectively. The dependent variable u
and its derivatives are approximated using a 1D-IRBF interpolation scheme. It
should be indicated that the 1D interpolation scheme uses only Nx or Ny nodes
(instead of Nx by Ny nodes) to construct the approximations for a given point,
resulting in considerable economy.

Eq.(3.9) can be expressed as

û = Î0p

(
ŵ
ĉ

)
= H0

(
ŵ
ĉ

)
, (3.16)

where H0 is an n by (n+p) matrix, û = (u(1), u(2), u(3), ........u(n)), ŵ = (w(1), w(2),
w(3), ......w(n)) and ĉ = (c(1), c(2), c(3), ........c(p)).

Neumann boundary conditions at both ends of a grid line can be imposed by
adding two following equations to (3.16),

f̂ =

(
∂u
∂x

(x(1))
∂u
∂x

(x(n))

)
= K̂

(
ŵ
ĉ

)
(3.17)

where

K̂ =

[
I
(1)
1 (x1) I

(1)
2 (x1) . . . I

(1)
n (x1)

xp−2
1

(p−2)!
xp−3
1

(p−3)! . . . 1 0

I
(1)
1 (xn) I

(1)
2 (xn) . . . I

(1)
n (xn) xp−2

n

(p−2)!
xp−3
n

(p−3)! . . . 1 0

]
.
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The RBF coefficients including p integration constants can be transformed into
the meaningful nodal variable values through the following relation(

û

f̂

)
=

[
H0

K̂

](
ŵ
ĉ

)
= Ĉ

(
ŵ
ĉ

)
, (3.18)

or (
ŵ
ĉ

)
= Ĉ−1

(
û

f̂

)
, (3.19)

where Ĉ is a non-square conversion matrix of dimension (n+ 2) by (n+ p) whose
inverse can be found using the singular value decomposition (SVD) technique.
By substituting Eq. (3.16) into Eqs. (3.6)-(3.9), the values of derivatives of u
with respect to (w.r.t.) x at the boundary and interior points on the x-grid line
are obtained as

∂̂pu

∂xp
= H0

(
ŵ
ĉ

)
, (3.20)

∂̂pu

∂xp
= H0Ĉ

−1
(
û

f̂

)
, (3.21)

∂̂pu

∂xp
= D̂pxû+ k̂px, (3.22)

∂̂p−1u

∂xp−1
= D̂(p−1)xû+ k̂(p−1)x, (3.23)

. . . . . . . . .

∂̂2u

∂x2
= D̂2xû+ k̂2x, (3.24)

∂̂u

∂x
= D̂1xû+ k̂1x, (3.25)

where D̂1x, D̂2x, D̂(p−1)x and D̂px , are known matrices of dimension n by n: and

k̂1x, k̂2x, k̂(p−1)x and k̂px are known vectors of length n. Similarly, the values of
derivatives of u w.r.t. y at the boundary and interior points on the y grid line
are given by

∂̂pu

∂yp
= D̂pyû+ k̂py, (3.26)

∂̂p−1u

∂yp−1
= D̂(p−1)yû+ k̂(p−1)y, (3.27)

. . .
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∂̂2u

∂y2
= D̂2yû+ k̂2y, (3.28)

∂̂u

∂y
= D̂1yû+ k̂1y, (3.29)

where D̂1y, D̂2y, D̂(p−1)y and D̂py , are known matrices of dimension n by n: and

k̂1y, k̂2y, k̂(p−1)y and k̂py are known vectors of length n.

3.1.4 Multiquadric (MQ) function

Generally it has been accepted that the multiquadric based schemes tend to result
in highly accurate results as compared to other RBFNs. The present 1D-RBFN
method implemented with MQ function which is

MQ =
√

(x− ci)2 + a2i , (3.30)

where ci and ai are the centre and the width of the MQ function, respectively
and the MQ widths are calculated by ai = βdi. The β is a factor and di is
the distance between the ith centre and its closest neighbour. Throughout our
research we consider β=1.

3.1.5 Relative error

As no analytical solutions of equation (2.1) are known we will modify the equation
by adding a forcing term F (x, t), to allow analytical solution to exist,

∂tu = −A(∂xu)2∂2xu+B(∂xu)4 + C∂6xu + F (x, t). (3.31)

The error between the 1D-IRBFN solution u(x, t) and the exact solution ue(x, t)
is determined as

Ne =

√∑n
i=1[ue(xi, t)− u(xi, t)]2∑n

i=1 u
2
e(xi)

, (3.32)

where u(xi, t) and ue(xi, t) are the calculated and exact solution at the point
i, respectively an n is number of collocation/grid points or nodes. The error
reduces with refining grid size. Smaller Ne ensures that the approximation is
more accurate. After verifying the 1D-IRBFN method by solving Eq. (3.31), we
apply the method to solve Eq. (2.1). Eq. (2.1) is solved on different grid sizes
(e.g., n=11, 21, 31, 41...., n is number of grid points). The influence of grid size
on the numerical solution is studied to obtain the converged solution. We will
use the exact solution to measure the error.
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3.2 Numerical examples and convergence of the

IRBFN method

To verify the convergence behavior of the 1D-IRBFN method over FDM we have
solved two simple problems, one in 1D and the other in 2D case. The IRBFs are
implemented with the multiquadric (MQ) function (3.30) for each stencil, the set
of nodal points is taken to be the set of MQ centres. We assess the performance
of the 1D-IRBFN method through a measure: (i) the relative discrete L2 error
defined by Eq. (3.32). The 1D-IRBFN method is validated through the solution
of our test problems; the result proves satisfactory.

Example 1.

Consider the following second-order ODE

d2u

dx2
+
du

dx
+ u = − exp(−5x)[9979 sin(100x) + 900 cos(100x)]. (3.33)

The exact solution to this boundary value problem is chosen to be

u(e)(x) = sin(100x) exp(−5x),

which is highly oscillatory and 0 ≤ x ≤ 1.

Figure 3.1: Exact solution of Eq. (3.33).

Dirichlet boundary conditions are adopted: u = 0 is prescribed at x = 0
and x = 1. There are two ways to improve accuracy: (i) the grid is refined (d
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Figure 3.2: Convergence study for the 1D-IRBFN and FDM (central difference)
of Eq.(3.33).

adaptivity) and (ii) the MQ width is increased (β adaptivity). The β adaptivity
is out of scope of this present research as we consider β = 1 throughout our
research studies.

Table 3.1: Example 1: 1D second-order problem subject to the Dirichlet
boundary conditions; comparison of relative error norm (Ne) between the finite-
difference method and 1D-IRBFN method (β = 1).

Grid h 1D-IRBFN FDM
100 0.0101 7.9300E-2 9.0700E-2
150 0.0067 1.8100E-2 3.8900E-2
200 0.0050 6.9000E-3 2.1600E-2
250 0.0040 3.4000E-3 1.3700E-2
300 0.0033 1.9000E-3 9.5000E-3
350 0.0029 1.2000E-3 6.9000E-3
450 0.0022 5.3833E-4 4.2000E-3
600 0.0017 2.1303E-4 2.4000E-3

Calculations are conducted on sets of uniformly distributed points, from 100
to 600. Results concerning the solution accuracy, the relative errors by the finite
difference (FD) method with central difference scheme and the IRBF method
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are presented in Table 3.1 and Fig. 3.2.The convergence behaviour of the FDM
and 1D-IRBFN are O(h2.02) and O(h3.25) respectively. Numerical results show
that in terms of accuracy, the 1D-IRBFN scheme converges faster and is much
more accurate than the FDM. In an average sense, the FDM and IRBF solutions
converge, respectively. At a grid of 600, the error Ne is 2.4 × 10−3 for FDs and
2.1303×10−4 for the IRBFs.The computer codes were written using MATLAB and
run on a Dell X-based PC (Intel 3 GHz). Given a grid size, the CPU time by the
1D-IRBFN method is greater than that by the FDM. However, for a prescribed
accuracy, the FDM requires much more grid nodes than the 1D-IRBFN method.
In this regard (accuracy), the 1D-IRBFN method is more efficient than the FDM.

Example 2.

Consider the two-dimensional Poisson equation defined on a square domain

∂2u

∂x2
+
∂2u

∂y2
= −2(π)2 sin(πx) sin(πy). (3.34)

The square domain for the problem is 0 ≤ x, y ≤ 1 and it is subject to Dirichlet
boundary conditions. The Dirichlet boundary conditions are imposed along all
four edges.

The problem has the following exact solution

uE = sin(πx) sin(πy), (3.35)

from which the boundary values of u can be derived.

Figure 3.3: Exact solution of Eq. (3.34).
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Figure 3.4: Poisson equation in a square domain subject to Dirichlet boundary
conditions: Convergence study for 1D-IRBFN and FDM (central difference).

The grid convergence study for the IRBFN and FDM methods is presented in
Fig. 3.4. Table 3.2 describes the relative error norms Ne of both the methods.The
convergence behaviour of the FDM and 1D-IRBFN are O(h1.97) and O(h3.12)
respectively. Numerical results show that in terms of accuracy, the 1D-IRBFN
scheme converges faster and is much more accurate than the FDM. Thus the grid
size can be refined to obtain more accurate solutions as shown in Fig. 3.4.

Table 3.2: Example 2: Poisson equation in a square domain subject to the
Dirichlet boundary conditions. Comparison of relative error norm (Ne) between
the finite-difference method and 1D-IRBFN method (β = 1) and h is the grid
size (distance between consecutive grid nodes).

Grid h 1D-IRBFN FDM
15 x 15 0.0714 2.8892E-4 4.2000E-3
20 x 20 0.0526 1.1577E-4 2.3000E-3
30 x 30 0.0345 3.2171E-5 9.7854E-4
35 x 35 0.0294 1.9770E-5 7.1178E-4
50 x 50 0.0204 6.3722E-6 3.4200E-4
59 x 59 0.0172 3.7400E-6 2.4400E-4
89 x 89 0.0114 9.8300E-7 1.0620E-4

126 x 126 0.0080 3.0663E-7 5.2640E-5



3.3 Innovation and possible outcomes 35

3.3 Innovation and possible outcomes

3.3.1 Innovation

In the present research work a 6th-order nonlinear partial differential equation of
Strunin (1999, 2009) will be solved by the 1D-IRBFN method, to simulate the
dynamics of reaction fronts such as solid flames and fronts of detonation.Untill
now Strunin (1999) has computed the dynamics to limited extent in the one-
dimensional case whereas Mohammed and Strunin (2015), have computed the
dynamics of two-dimensional case using finite differences but in a different phys-
ical context. In both cases, the range of studied dynamical regimes were limited,
for example Strunin (1999) presented only one settled regime showing spinning
waves, and Mohammed and Strunin (2015), presented only two numerical exper-
iments but due to a very slow computer program performance, the information
of the dynamics was limited.

Our plan is to apply a different numerical method, namely the one-dimensional
integrated radial basis function network (1D-IRBFN) method. As a result, we will
develop numerical code to accurately solve the model. A rich variety of dynamical
regimes, primarily in 1D and also in 2D, will be thoroughly explored and analysed.
Different settled regimes will be investigated against the size of available space
domain under different boundary and initial conditions. In order to validate the
method and MATLAB code a comparitive study will be carried out with existing
data, which helps us make predictions of the dynamical characteristics of the
Eq. (2.1).

3.3.2 Significance

In this PhD project we will develop numerical codes based on the 1D-IRBFN
method to solve and analyse the NEP equation. The code on its own will be
valueable as a solving tool for high-order nonlinear partial differential equations.
The 1D-IRBFN method has been applied to solve many engineering problems
such as viscous flows Cong et al. (2012), turbulant dispersion in channel flows
Mohammed et al. (2015), Structural analysis (P Le et al., 2008). The advan-
tages of the 1D-IRBFN method over other numerical methods (e.g. FDM ) in
terms of accuracy, faster approach and efficiancy has been demonstrated in (Mai-
Duy, N. Tran-Cong, T., 2001; 2003). Our current 1D code for solving Eq. (2.1)
is very efficient when running on a PC with 3.0 GHz CPU and 4 GB RAM.
However the code will be further developed for 2D equation with a large elapsed
time and large domain, therefore the use of HPC will be helpful to reduce the
computational time. This project will substantially advance the numerical mod-
elling of non-stationary reaction front dynamics. It will help us to gain better
insight into the dynamics of detonation fronts, which are shock waves in gases
accompanied by combustion reaction; solid flames, which are combustion front
propagating through solid-phase compounds; super-adiabatic fronts propagating
through complex compounds such as solid industrial waste.



Chapter 4

Verification of the 1D-IRBFN

method for solving the NEP

equation with one spatial

dimension

4.1 Introduction

The main purpose of this chapter is to verify the 1D-IRBFN method through
several numerical examples to demonstrate the accuracy of the method. Due
to the chosen way of testing, this chapter also presents an independent physical
interest because it studies a physically interesting case of the forced version of the
NEP equation. We select an exact solution of the the forced version of the NEP
equation and derive the forced function f(x, t) for this equation. The comparison
of the exact and numerical solutions demonstrates satisfactory performance of
the numerical code. We solve the forced NEP equation with different sizes of the
domain.

4.2 Construction of the forced NEP equation

We consider the equation,

du

dt
= −Ad

2u

dx2
(
du

dx
)2 +B(

du

dx
)4 + C

d6u

dx6
. (4.1)

In order to allow analytical solution we modify the equation by adding a forced
term f(x, t) in the above equation, and we arrive at the forced equation

du

dt
= −Ad

2u

dx2
(
du

dx
)2 +B(

du

dx
)4 + C

d6u

dx6
+ f(x, t) . (4.2)
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The error between the 1D-IRBFN solution u(x, t) and the desired exact solu-
tion ue(x, t) will be determined. Smaller relative error Ne will ensure that the
approximation is more accurate.

We desire that the forced Eq.(4.2) have a solution

u = sin(kx+ ωt) . (4.3)

Assuming k = 1, ω = −1 and also A = 1, B = 1 and C = 1 we get

∂xu = cos(x− t) , ∂2xu = − sin(x− t) , ∂3xu = − cos(x− t),

∂4xu = sin(x− t) , ∂5xu = cos(x− t) , ∂6xu = − sin(x− t)),

∂tu = − cos(x− t).
(4.4)

By sustituting (4.4) into Eq.(4.2) we find,

− cos(x− t) = (sin(x− t))(cos(x− t))2 + (cos(x− t))4 − sin(x− t)+

f(x, t),
(4.5)

f(x, t) = − cos(x− t)− (sin(x− t))(cos(x− t))2 − (cos(x− t))4+

sin(x− t).
(4.6)

4.3 Exact solutions of the forced equation.

Testing the numerical code

We wrote the Matlab numerical code for solving the unforced and the forced NEP
equation (4.2) (see Appendix B). The spatial part of the equation is discretized
using 1D-IRBFN and the resulting system of differential equations is integrated
in time. We carry out the test to ensure a good accuracy as described below.
To solve the forced equation we require an initial condition and 6 boundary
conditions, so we derive an initial condition and 3 Newmann boundary conditions
at x = 0 and other 3 at x = L, using the exact solution.

For equation (4.2) we would not know apriori whether our chosen solution
is stable or not, but if it is stable, our numerical code should be capable of
reproducing it. If it proves unstable, we would need to choose a different solution
candidate. Of course the solution needs to be nontrivial (non-constant) is space
and must satisfy the boundary conditions. For the test we created a nonstationary
solution which is represented by the single formula

u = sin(kx+ ωt) , (4.7)

Write equation (4.2) as
∂tu = RHS + f(x, t) , (4.8)
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where RHS stands for the right-hand side of (1.1). Substituting (7.2) into (4.2)
we get

∂tu = RHS−cos(x−t)−(sin(x−t))(cos(x−t))2−(cos(x−t))4+sin(x−t) , (4.9)

Table 4.1: Case1: 1D NEP forced equation subject to the Dirichlet boundary
conditions. Comparison of the relative error norm (Ne) between the exact solution
and the 1D-IRBFN solution with A = 1, B = 1 and C = 1 (β = 1).

h 1D-IRBFN
0.0510 2.9990E-5
0.0449 2.9548E-5
0.0367 1.8532E-5
0.0347 2.5919E-6
0.0265 1.3105E-6
0.0224 8.3000E-7
0.0184 5.7020E-7
0.0163 3.4163E-7
0.0143 2.3200E-7
0.0122 1.4795E-7

Table 4.2: Case 2: 1D NEP forced equation subject to the Dirichlet boundary
conditions. Comparison of relative error norm (Ne) between the exact solution
and the 1D-IRBFN solution where A = 2, B = 1 and C = 1 (β = 1).

h 1D-IRBFN
0.0510 2.1818E-5
0.0449 2.9914E-5
0.0367 1.7421E-5
0.0347 2.6057E-6
0.0265 1.3150E-6
0.0224 8.3763E-7
0.0184 6.4715E-7
0.0163 3.4184E-7
0.0143 2.3243E-7
0.0122 1.4811E-7
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Figure 4.1: Exact solution of Eq. (4.2). A = 1, B = C = 1, L = 3.The axes show
grid points.

Figure 4.2: The numerical (1D-IRBFN) solution of Eq. (4.2). A = 1, B = C = 1,
L = 3. The axes show grid points.
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4.3.1 Grid convergence study

Two cases of boundary conditions are considered as follows.

Set 1: Dirichlet and Newmann Bounday conditions are imposed at the both
ends of the x-axis.

Set 2: Only Newmann Bounday conditions are imposed at the both ends of
the x-axis.
To verify the 1D-IRBFN method, We intend to demonstrate that the numeri-
cal solution by the method well agrees with the analytical solution (4.3). The
boundary and initial conditions must be consistent with (4.3). The initial time
moment is taken at t0 = 0. Table 4.1, 4.2 and Fig. 4.3 present the numerical
results, namely, the relative error norms (Ne) of the present numerical method for

Case 1: A=1, B=1, C=1
and
Case 2: A=2, B=1, C=1.

The relative error norm is calculated as

Ne =

√∑n
i=1[ue(xi, t)− u(xi, t)]2∑n

i=1 u
2
e(xi)

, (4.10)

where ue(x, t) denotes the analytical solution; and N is the total number of
unknown nodal values in the computational domain. Assuming that the solution
is convergent with respect to the grid refinement, the behaviour of the error of the
solution is assumed to be Ne ≈ αhλ = O(hλ), in which h is the grid spacing; and
α and λ the parameters of the exponential model (λ > 0 is the convergence rate).
The convergence behaviour for Case 1 and Case 2 is found to be O(h2.73) and
O(h2.75), respectively. Fig. 4.3 shows that the 1D-IRBFN method can produce
accurate numerical results with high convergence rates for both Case1 and Case
2. The convergence study for Set 1 and Set 2 is shown in Fig. 4.4, the numerical
results show that 1D-IRBFN method is highly convergent for the both sets but it
is a bit more accurate when we apply Dirichlet boundary and Newmann boundary
condition (mixed boundary conditions) as compared to only Newmann boundary
conditions, where convergence rates are O(h2.73) and O(h2.24) for Set 1 and Set 2
respectively.
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Figure 4.3: The convegence study for Case 1 and Case 2. L = 1. The axes show
grid points.

Figure 4.4: The convegence study for set 1 and set 2. L = 1. The axes show grid
points.
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Figure 4.5: Exact solution of equation (4.2). A = 2, B = C = 1, L = 4 t = 5.
The axes show grid points.

Figure 4.6: The numerical (1D-IRBFN) solution of Eq. (4.2). L = 4. The axes
show grid points.
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Figure 4.7: Exact solution of equation (4.2). A = 1, B = C = 1, L = 15 t = 6.
The axes show grid points.

Figure 4.8: The numerical (1D-IRBFN) solution of Eq. (4.2). L = 15. The axes
show grid points.
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4.4 Chapter Summary

In this chapter, we derived the forced version of the NEP equation addressing
nonuniformity of the reacting medium in space. Selected exact solutions of this
version were constructed. Different non-stationary solutions were obtained for
different domain sizes. Stability of the solutions was demonstrated by the numer-
ical experiments. Comparison of the exact and numerical solutions demonstrates
satisfactory performance of the numerical code.



Chapter 5

Dynamics of curved reaction

fronts

5.1 Introduction

For convenience, we start this section by writing the NEP equation again,

∂tu = −A(∂xu)2∂2xu+B(∂xu)4 + C∂6xu , (5.1)

where A, B and C are constants (A > 0, C > 0). As we mentioned earlier
in this thesis, Eq. (5.1) simulates combustion waves (fronts) having the shape
of one or more steps and developing instabilities in nonlocal reaction-diffusion
systems. In the context of combustion waves, u stands for the distance, measured
along, say, axis z, passed by the combustion front through a hollow cylinder, as a
function of the coordinate x and time t. The equation generates a rich variety of
dynamical regimes, the most spectacular of which is the spinning wave illustrated
by Figs. 1.1-1.2. The Fig. 1.1 shows the wave solution of Eq. (5.1) simulating the
experiment for Fig.1.2. On the graph the cylinder is rolled out into a plane and
two periods are shown. The moving x locations of the steepest sections in Fig
1.1 correspond to luminous spots spinning along the cylinder, due to extremely
high temperatures.

Previously Eq. (5.1) has been solved numerically in 1D – with one independent
spatial dimension x – using the spectral Galerkin method (Strunin, 1999) and in
2D using a straightforward finite difference scheme. As we mensioned, we aim to
apply a different numerical method, which has proved to be fast and accurate in
a number of problems, namely the 1D-IRBFN method. First we would like to
test the method. Eq. (5.1) is unlikely to allow analytical solutions because of the
nonlinearity, so we intend to obtain a single-step travelling wave and compare
it with the results shown in Fig. 1.1. Our modelling in this chapter presents a
new series of numerical exercises targeting various dynamical regimes generated
by Eq. (5.1).
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5.2 The numerical method

To solve the main equation (5.1) we developed numerical codes based on the 1D-
IRBFN method. This method was tested in many engineering problems incuding
viscous flows (Ngo-Cong, Mai-Duy et al., 2012) and structural analysis (Le, Mai-
Duy et al., 2008). It was demonstrated that the 1D-IRBFN method has advantage
over other numerical methods, for example finite difference and finite element
methods, in terms of accuracy, faster approach and efficiancy (Mai-Duy and Tran-
Cong 2001; 2003).

In the 1D-IRBFN method highest-order derivative in a differential equation
is approximated by radial basis functions (RBFs) and, further, the lower-order
derivatives and function itself are then obtained by integration. The purpose
of using integration to constuct the approximants is to avoid the reduction in
convergence rate caused by differentiation and also to improve the numerical
stability of a discrete solution. The integration process naturally gives rise to
arbitrary constants that serve as additional expansion coefficients. Therefore they
facilitate the employment of some extra equations in the process of converting
the RBF weights into the function values, which helps in the implementation of
multiple boundary conditions. Results showed that RBFs yield better accuracy,
are easy to implement and have the capability to provide a very accurate solution
using relatively low numbers of grid points. The so-called multiquadric functions
were found to be the most efficient basis function to use in the method we are
using in our research. It was found that among RBFNs the multiquartic functions
yield more accurate results (Haykin, 1999) then others.The IRBFN ability to
capture sharp gradients and the resultant sparse system matrix will enable us to
effectively investigate Eq. (5.1). For time integration we used the second order
Crank-Nicolson method.

Although RBF methods can be easily implemented in a truly meshless man-
ner based on scattered data points, it proves very efficient and effective to dis-
cretise a domain using Cartesian grids. Thus, the purpose of using integration
(a smoothing operator) to construct the approximants is to avoid the reduction
in convergence rate caused by differentiation, and also to improve the numerical
stability of a discrete solution.

This distinguishing feature of the integral formulation provides effective ways
to overcome well-known difficulties associated with conventional differential ap-
proaches: (i) the implementation of multiple boundary conditions (Mai-Duy and
Tanner, 2005); (ii) the description of non-rectangular boundaries on a Cartesian
grid (Mai-Duy, See and Tran-Cong, 2008); (iii) the imposition of high-order con-
tinuity of the approximate solution across subdomain interfaces (Mai-Duy and
Tran-Cong, 2008); and (iv) the incorporation of nodal derivative values into the
approximations via compact IRBFN stencils (Mai-Duy and Tran-Cong, 2011).

The ability of the IRBFN methods to capture very sharp gradients, which is
highly desirable for Eq. (5.1), has been demonstrated with the effective simulation
of shockwave-like behaviours as in the dynamic strain localisation in a quasi-
brittle material subjected to a sudden step loading (Le, Mai-Duy, Tran-Cong and
Baker, 2008).
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5.3 Numerical experiments

5.3.1 Settling of the travelling front under homogeneous
boundary conditions

Experiment 1.

Figs 5.1–5.2 show a sequence of snapshots displaying the solution of Eq. (5.1)
evolving from the initial condition chosen in the step-like (front-like) form

u(x, 0) = 8 exp[−(x− 5)2] for x ≥ 5 ,

u(x, 0) ≡ 8 for x < 5 .

The idea is to help the solution curve acquire the step-like shape hinted by Fig. 1.1,
although we realise that ultimate settled configuration of the solution will not
depend of the initial condition.

In our numerical experiments we chose not to transform the equation to the
canonical form, in order to be able to adjust the coefficient values as necessary, for
example to increase or reduce the energy release in the system in hope to achieve a
self-sustained balance between the release and dissipation. The parameter values
were: A = 5, B = 1, C = 1, the number of nodes 401, the length of the x-interval
10, time step 2 · 10−6. The x-interval was constantly shifted to the right to follow
the main kink, which, according to the initial shape, was to move to the right.
When looking at Fig. 1.1, if one stretches the x-axis enough, the long shoulders
would become nearly horizontal.

In fact each shoulder could stretch to infinity on both sides of an isolated
single step. Aiming at such a solution, we adopt the boundary conditions

∂xu = 0 , ∂2xu = 0 , ∂3xu = 0

on the left and right ends of the (moving) x-interval. The experiment showed that
after some period of transitional evolution lasted from t0 = 0 to about t = 0.03,
the curve practically ceased changing in shape. Continuing the experiments fur-
ther gave the same frozen shape of the solution moving with constant speed to
the right. Looking at the solution displayed in Fig. 1.1 we see the same charac-
teristic tale of ripples in front of the main kink. They were expected to form,
caused by the high order of the dissipation acting in the system. Immediately in
front of the main kink sits a shorter one, followed, as we look from left to right,
by barely distinguishable smaller ripples. The height of the main kink relative to
its neighbour is about 4:1 or a bit higher, for the both figures. The fact that the
solution settles into a steady moving shape of correct proportions correlates with
the earlier result.
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t = 0.0002 t = 0.0008

t = 0.0032 t = 0.0068

Figure 5.1: Evolving solution of Eq. (5.1) via the 1D-IRBFN method.
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t = 0.0140 t = 0.0236

t = 0.0320 t = 0.0400

Figure 5.2: Evolving solution of Eq. (5.1) via the 1D-IRBFN method.
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Experiment 2.

In this set of numerical experiments we assume the homogeneous boundary con-
ditions,

∂xu|x=L1 = ∂xu|x=L2 = 0 ,

∂2xu|x=L1 = ∂2xu|x=L2 = 0 ,

∂3xu|x=L1 = ∂3xu|x=L2 = 0 .

The equation coefficients are chosen arbitrarily, A = 2, B = 1, C = 1. We
recall that regardless of concrete values of the coefficients, the governing equation
can always be transformed to the canonical form with A = B = C = 1 by re-
scaling x, t and u. The space domain was constantly shifted to the right, following
the moving front. The number of nodes was 500, the covered length L2−L1 = 30.

The initial condition was

u(x, 0) = 5 exp
[
−(x− 1)2

]
.

After some transitional period Fig. 5.3 , the front clearly settles in constant
shape (most evident at the later moments), with the nearly horizontal tails Fig.
5.4 . Ahead of the front goes the characteristic chain of small-scale oscillations
caused by the high-order dissipation. Effectively this regime represents an isolated
step from Fig. 1.1. In the next chapter we present a more direct matching between
our results and the periodic solution in Fig. 1.1.

Fig. 5.5 displays the solution dynamics in the form of a surface u = u(t, x).
See that the front’s motion and shape start to settle around t = 6 and then the
velocity is practically constant. We obtained similar results when using different
initial conditions and values of the parameters. Fig. 5.6 shows the time depen-
dence of the position of the local maximum of u, that is that of the top point of
the step. Apparently, after some transitional period characterised by fluctuations
of the velocity, the graph becomes a straight line that is the velocity becomes
constant.

Experiment 3.

In this numerical experiment we want to achieve periodic solutions and there-
fore require continuity of u and its five derivatives on the edges,

u|x=L1 = u|x=L2 , ∂xu|x=L1 = ∂xu|x=L2 ,

∂2xu|x=L1 = ∂2xu|x=L2 , ∂3xu|x=L1 = ∂3xu|x=L2 .

∂4xu|x=L1 = ∂4xu|x=L2 . ∂5xu|x=L1 = ∂5xu|x=L2 .

The equation coefficients are chosen to be A = 1, B = 1 and C = 1. We
emphasise again that concrete values of the coefficients are not important in
terms of the shape of the front and the way it moves, because any of our graphs
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t = 2 t = 3

t = 5 t = 10

Figure 5.3: Settling of the fixed-shape front.
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Figure 5.4: A spinning front solution of Eq. (5.1).

Figure 5.5: The surface diagram for the times between t = 0 and t = 10.
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Figure 5.6: The propagation of the local maximum of u for t = 0 through t = 10.

can be viewed as one corresponding to the canonical form of Eq. (5.1), only in
scaled coordinates.

The initial condition is
u(x, 0) = sin x , (5.2)

see Fig. 5.7. The number of nodes is taken to be 120, the time step 0.001 and
L2 − L1 = π. Figs. 5.8-5.9 shows the dynamics at early times. In this particular
experiment the initial condition is periodic and hence, is consistent with the
boundary conditions. As a result at t = 0 the value of the function on the left
edge and the right edge is same/equal.

For the NEP equation, by denoting the characteristic scale of the phase vari-
ations by U > 0 and L > 0 and evaluating in absolute value:

∇2u(∇u)2 ∼ U3/L4, (∇u)4 ∼ U4/L4, ∇6u ∼ U/L6. (5.3)

The balance between the three terms of (1.1),

AU3/L4 ∼ BU4/L4 ∼ CU/L6 , (5.4)

governs the scales of the dissipative structures,

U ∼ A/B, L ∼ (B2C/A3)1/2. (5.5)

In case L is very small the term U/L6 is largest as compared to the other
two terms. As a result dissipation term of the NEP equation prevails and system
is heading towards decay. Fig 5.10 demonstrates that under smaller lengths the
NEP equation for combustion systems decays forever.
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Figure 5.7: The initial condition.

Figure 5.8: The solution at t=0.001 to t= 0.013.



5.3 Numerical experiments 55

Figure 5.9: The solution at t=0.1 to t= 0.5.

Figure 5.10: The solution at t=1 to t= 20.
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Experiment 4.

(a): In this numerical experiment we want to find the bifurcation point in terms
of L beyond which a non trivial regime may settle and below which only a trivial
(flat) settled state is possible. In such a case there is enough space for dissipa-
tive structures to form as discussed in Experiment 3. We set periodic boundary
conditions, therefore require continuity of u and its five derivatives on the edges.
The equation coefficients are chosen to be A = 1, B = 1 and C = 1.

The initial condition is

u(x, 0) = 10 sinx , (5.6)

see Fig. 5.11. The number of nodes is taken to be 120, the time step 0.001 and
L2 − L1 = π as in experiment 3. Figs. 5.12–5.13 show the dynamics at early
times. In this particular experiment the initial condition is periodic and, hence
is consistent with the boundary conditions.

In this experiment, we intentionally take the amplitude bigger than in the Ex-
periment 3, and we get the following numerical results. We see in Figs. 5.12–5.14
that even if the amplitude is ten times the amplitude of the previous experiment
the system starts decaying until it becomes flat. This demonstartes that if the
length of the domain is smaller than the bifurcation length, the system decays
irrespectively of the amplitude of the initial condition. We found that the bifur-
cation length L∗ lies in the interval 15 < L∗ < 17 as supported by Figs.5.15–5.17
and Figs. 5.18-5.20.

Figure 5.11: The initial condition.
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Figure 5.12: The solution at t=0.001 to t= 0.013.

Figure 5.13: The solution at t=0.1 to t= 0.5.
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Figure 5.14: The solution at t=1 to t= 20.

(b): For this experiment we set periodic boundary conditions on the edges.
The equation coefficients are chosen to be A = 1, B = 1 and C = 1. The initial
condition is

u(x, 0) = u(x, 0) = 1.1

[
sin(3x) +

1

2
sin(4x) +

x

8

]
. (5.7)

The number of nodes is taken to be 180, the time step 0.001 and L2 − L1 = 15.
Figs. 5.15–5.16 show the dynamics at early times. The final solution Fig. 5.17
decays with time, so the dynamics of the solution demonstrates that the length
of the domain is smaller than the bifurcation length.

(c): For this experiment we again set periodic boundary conditions on the
edges. The equation coefficients are chosen to be A = 1, B = 1 and C = 1. The
initial condition is the same as in Experiment 4 (b). The number of nodes is
taken to be 180, the time step 0.001 and L2−L1 = 17. Figs. 5.18–5.19 show the
dynamics at early times. The final solution Fig. 5.20 shows that the length of
the domain is larger than the bifurcation length as the fronts survives and finally
develops into strong spinning waves.

5.4 Conclusions

We applied the 1D-IRBF numerical method to solve Eq. (5.1) simulating spinning
combustion fronts and oscillations in reaction-diffusion systems with non-local
effects.
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Figure 5.15: The solution at t=0.4 to t= 3.5.

Figure 5.16: The solution at t=4.0 to t= 17.
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Figure 5.17: The solution at t=18 to t= 30.

Figure 5.18: The solution at t=0.4 to t= 3.5.
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Figure 5.19: The solution at t=7 to t= 10.

Figure 5.20: The solution at t=17.2 to t= 17.6.
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To our satisfaction, the method successfully reproduced a similar shape of
the settled spinning regimes as in the earlier study (Strunin, 1999). We also
determined the interval within which the bifurcation point lies. In the next
chapter we will use the 1D-IRBF approach to study more complicated regimes
such as co-directed motion of several fronts, collision of counter-directed fronts
etc.



Chapter 6

Numerical simulation of 1D

reaction fronts using 1D-IRBFNs

6.1 Introduction

The following equation simulates certain type of active systems with dissipation,

∂tu = −A(∂xu)2∂2xu+B(∂xu)4 + C∂6xu , (6.1)

A, B, C > 0. In particular, Eq. (6.1) is relevant to fronts of solid-phase com-
bustion waves (Strunin, 1999) and nonlinear instabilities in reaction-diffusion
systems with nonlocal effects (Strunin, 2009b).The literature on these phenom-
ena is very extensive and we refer to the cited papers for further references. In
the context of the combustion fronts, u(x, t) stands for the distance, measured
along, say, axis z, passed by the combustion front through a hollow cylinder, as
a function of the transversal coordinate x and time t. The equation generates
rich variety of dynamics, the most spectacular of which is the spinning front il-
lustrated by Fig. 1.1. It shows spatially periodic solutions of Eq. (6.1) at several
consecutive moments of time; two periods are displayed for better visualisation.

If one rolls the plane of the graph into a cylindrical tube by connecting the
right and left edges, the solution curves would represent the spinning regime
on a hollow cylinder, in agreement with experimental observations. Previously
Eq. (6.1) was solved in 1D – with one independent spatial coordinate x – using
the spectral Galerkin method (Strunin, 1999) and in 2D using finite difference
scheme (Strunin and Mohammed, 2015). In the present research we apply a dif-
ferent numerical method formulated relatively recently, which has proved efficient
in a number of modelling problems – the 1D Integrated Radial Basis Function
Networks, 1D-IRBFN. As part of our numerical exercises we will reproduce the
solution in Fig. 1.1.

Although the method has been tested successfully before in a number of pa-
pers, getting the spinning regime with this method would provide yet another
test. In Fig. 1.1 see a train of step-like fronts, each featuring a steep section (step
itself) followed by a long nearly flat plateau. The latter appears inclined on the
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graph, however the slope is small relative to the step. The velocity of the steps,
its height and width are controlled by the equation and not initial conditions.
This is a consequence of the fact that the step-like structure is a result of the
balance between the energy release, represented by the term −A(∂xu)2∂2xu, and
the dissipation, represented by the term C∂6xu. The term B(∂xu)4 plays the role
of the bridge between the two; it is responsible for the energy flow from the energy
source towards dissipation.

Note that by re-scaling t, x and u, Eq. (6.1) can always be transformed into
canonical form where all the coefficients, A, B, and C, become units.

6.2 The numerical method

The 1D-IRBFN method has been successfully verified through several engineering
problems such as turbulent flows (Mohammed, Ngo-Cong, Strunin, Mai-Duy and
Tran-Cong, 2014), laminar viscous flows (Tran-Cong and Mai-Duy, 2001; Mai-
Duy and Tanner, 2007; Ngo-Cong, Mai-Duy, Karunasena and Tran-Cong, 2012),
structural analysis (Ngo-Cong, Mai-Duy, Karunasena and Tran-Cong, 2011), and
fluid-structure interaction (Mai-Duy, Ngo-Cong, Karunasena and Tran-Cong,
2012). Radial basis function networks are used to accurately approximate scat-
tered data (Haykin, 1999). A function f(x), to be approximated, can be repre-
sented by a RBFN as

f(x) ≈ u(x) =
N∑
i=1

wiGi(x) , (6.2)

where x is the input vector, N the number of RBFs, {wi}Ni=1 the set of network
weights to be found, and {Gi(x)}Ni=1 the set of RBFs. According to Micchelli’s
theorem (Franke, 1982), there is a large class of RBFs, e.g. the multiquadric,
inverse multiquadric and Gaussian functions, whose design/interpolation matrices
obtained from Eq.(6.2) are always invertible. It is proved that RBFNs are capable
of representing any continuous function to a prescribed degree of accuracy.

Furthermore, according to the Cover theorem, the higher the number of
RBFs used, the more accurate the approximation will be, indicating the prop-
erty of “mesh convergence” of RBFNs. Among RBFs, the multiquadric functions
(Gi(x) =

√
(x− ci)T (x− ci) + a2i , ci is called the centre and ai the width) are

ranked as the most accurate and possess an exponential convergence with the
spatial discretisation refinement (Franke, 1982). A review of the application of
RBFNs for solving partial differential equations can be found, e.g., in (Fasshauer,
2007). The usual approach (Kansa, 1990) is to differentiate Eq. (6.2) as often as
required to obtain approximate derivatives of f(x). If the error in f(x) is O(hs),
where h is the mesh size and s > 0, the error in the n-th derivative of f(x) is
O(hs−n). Therefore, there is a reduction in convergence rate for derivatives and
this reduction is an increasing function of derivative order.

Thus, differentiation will magnify any error that might exist in the approxima-
tion of f(x). To avoid this problem, recognising that integration is a smoothing
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process, the integral formulation was proposed (Mai-Duy and Tran-Cong, 2001;
Mai-Duy and Tran-Cong, 2003), where spectral approximants, e.g. RBFNs, are
utilised to represent highest-order derivatives under consideration and then inte-
grated analytically to yield approximate expressions for lower-order derivatives
and the function itself, to construct the approximations for the field variables in a
problem. Although RBF methods can be easily implemented in a truly meshless
manner based on scattered data points, it proves very efficient and effective to
discretise a domain using Cartesian grids. Thus, the purpose of using integration
(a smoothing operator) to construct the approximants is to avoid the reduction
in convergence rate caused by differentiation, and also to improve the numerical
stability of a discrete solution.

The integration process naturally gives rise to arbitrary constants that serve as
additional expansion coefficients, and therefore facilitate the employment of some
extra equations in the process of converting the RBF weights into the function val-
ues. This distinguishing feature of the integral formulation provides effective ways
to overcome well-known difficulties associated with conventional differential ap-
proaches: (i) the implementation of multiple boundary conditions (Mai-Duy and
Tanner, 2005); (ii) the description of non-rectangular boundaries on a Cartesian
grid (Mai-Duy et al., 2008); (iii) the imposition of high-order continuity of the ap-
proximate solution across subdomain interfaces (Mai-Duy and Tran-Cong, 2008);
and (iv) the incorporation of nodal derivative values into the approximations via
compact IRBFN stencils (Mai-Duy and Tran-Cong, 2011).

The ability of the IRBFN methods to capture very sharp gradients such as
the steps in Fig. (3.3), is particularly valuable for the purposes of our research.

Generally the RBFN schemes based on the multiquadric (MQ) functions result
in highly accurate results as compared to other RBFNs. In the present study we
use the MQ functions Gi(x) =

√
(x− xi)2 + a2i , where the width ai is assumed

equal to the distance between the i-th centre and its nearest neighbour.
As we already discussed in Chapter 3, we descretise an interval L1 < x < L2

using a uniform cartesian grid having n number of nodes. Following the basic
idea of the integral RBF method (Tran-Cong and Mai-Duy, 2001) we decompose
the highest p-th-order derivative (p = 6 in our case) of the function u into RBFs,

∂pu

∂xp
=

n∑
i=1

wiGi(x) =
n∑
i=1

wiI
(p)
i (x) , (6.3)

where [wi]
n
i=1 is the set of network weights, and [Gi(x)]ni=1= [I

(p)
i (x)]ni=1 is the set

of known RBFs. Lower-order derivatives and the function itself are then obtained
through further integration,

∂p−1u

∂xp−1
=

n∑
i=1

wiI
(p−1)
i (x) + c1 , (6.4)

∂p−2u

∂xp−2
=

n∑
i=1

wiI
(p−2)
i (x) + c1x+ c2 , (6.5)
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. . . . . . . . .

∂3u

∂x3
=

n∑
i=1

wiI
(3)
i (x) + c1

xp−4

(p− 4)!
+ c2

xp−5

(p− 5)!
+ · · ·+ cp−4x+ cp−3 , (6.6)

∂2u

∂x2
=

n∑
i=1

wiI
(2)
i (x) + c1

xp−3

(p− 3)!
+ c2

xp−4

(p− 4)!
+ · · ·+ cp−3x+ cp−2 , (6.7)

∂u

∂x
=

n∑
i=1

wiI
(1)
i (x) + c1

xp−2

(p− 2)!
+ c2

xp−3

(p− 3)!
+ · · ·+ cp−2x+ cp−1 , (6.8)

u =
n∑
i=1

wiI
(0)
i (x) + c1

xp−1

(p− 1)!
+ c2

xp−2

(p− 2)!
+ · · ·+ cp−1x+ cp , (6.9)

where I
(p−1)
i (x) =

∫
I
(p)
i (x)dx, I

(p−2)
i (x) =

∫
I
(p−1)
i (x)dx, I

(0)
i (x) =

∫
I
(1)
i (x)dx

and c1, c2, ... , cp are the constants of integration. The number of constants
generated by continuous integration is always equal to highest order present in
the differential equation. Further in this research we use the following notations:

n is number of collocation points, u approximant of the exact solution, [̂ ] for a
vector/matrix [ ] that is associated with a grid line, [ ](n,m) to denote selected n
rows and m columns of the matrix , [ ](n) to pick out selected components n of
the vector, [ ](:,m) to denote all m rows of the matrix, and [ ](n,:)to denote all n
columns of the matrix.

The evaluation of (6.3)–(6.9) at a set of collocation points [xj]
n
j=1 leads to

∂̂pu

∂xp
= Î

(p)
[p] ŵ , (6.10)

∂̂p−1u

∂xp−1
= Î

(p−1)
[p] ŵ , (6.11)

. . . . . . . . .

∂̂2u

∂x2
= Î

(2)
[p] ŵ , (6.12)

∂̂u

∂x
= Î

(1)
[p] ŵ , (6.13)

û = Î
(0)
[p] ŵ , (6.14)

Here ŵ = (w1, w2, . . . , wn, c1, c2, . . . , cp)
T . The Î

(0)
[p] is an n by (n + 6) matrix,

the subscript [.] and superscript (.) are used to denote the order of the IRBFN

scheme and the order of a derivative function, respectively. We find Î
(p)
[p] where p

is 0, 1, 2, ....p and can be used to estimate Eq. (6.10)-(6.14).



6.3 Implementation of 1D-RBFNs for solving PDEs on a single
domain 67

Î
(p)
[p] =


I
(p)
1 (x1) I

(p)
2 (x1) . . . I

(p)
n (x1) 0 0 . . . 0 0

I
(p)
1 (x2) I

(p)
2 (x2) . . . I

(p)
n (x2) 0 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I
(p)
1 (xn) I

(p)
2 (xn) . . . I

(p)
n (xn) 0 0 . . . 0 0

 ,

Î
(p−1)
[p] =


I
(p−1)
1 (x1) I

(p−1)
2 (x1) . . . I

(p−1)
n (x1) 1 0 . . . 0 0

I
(p−1)
1 (x2) I

(p−1)
2 (x2) . . . I

(p−1)
n (x2) 1 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I
(p−1)
1 (xn) I

(p−1)
2 (xn) . . . I

(p−1)
n (xn) 1 0 . . . 0 0

 ,

. . . . . . . . .

Î
(1)
[p] =


I
(1)
1 (x1) I

(1)
2 (x1) . . . I

(1)
n (x1)

xp−2
1

(p−2)!
xp−3
1

(p−3)! . . . 1 0

I
(1)
1 (x2) I

(1)
2 (x2) . . . I

(1)
n (x2)

xp−2
2

(p−2)!
xp−3
2

(p−3)! . . . 1 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I
(1)
1 (xn) I

(1)
2 (xn) . . . I

(1)
n (xn) xp−2

n

(p−2)!
xp−3
n

(p−3)! . . . 1 0

 .

Î
(0)
[p] =


I
(0)
1 (x1) I

(0)
2 (x1) . . . I

(0)
n (x1)

xp−1
1

(p−1)!
xp−2
1

(p−2)! . . . x1 1

I
(0)
1 (x2) I

(0)
2 (x2) . . . I

(0)
n (x2)

xp−1
2

(p−1)!
xp−2
2

(p−2)! . . . x2 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I
(0)
1 (xn) I

(0)
2 (xn) . . . I

(0)
n (xn) xp−1

n

(p−1)!
xp−2
n

(p−2)! . . . xn 1

 .

6.3 Implementation of 1D-RBFNs for solving

PDEs on a single domain

6.3.1 Space and time discretisation

Consider the following time dependent differential equation,

∂u

∂t
= F

(
u,
∂u

dx
,
∂2u

∂x2
, . . . ...,

∂pu

∂xp

)
, (6.15)

in fully discrete schemes, Eq. (6.15) is discretized with respect to both time
and space variables. Firstly, the time interval [0, T ] is partitioned into NT subin-
tervals [t(n), t(n+1)] of length ∆t = T

NT
with t(0) = 0 t(NT+1) = T . The temporal

discretization is then accomplished by a time-stepping scheme, followed by the
spatial discretization based on the IRBFN method. Among many possible time-
stepping schemes, the standard θ-scheme , (0 ≤ θ ≤ 1 ) is used in this work.

It should be noted that the extreme cases θ = 0 and θ = 1 correspond to the
well-known forward (fully explicit) and backward (fully implicit) Euler schemes,
respectively. Applying the θ-scheme to Eq. (6.15) gives

u(n+1) − u(n)

∆t
= θF (n+1) + (1− θ)F (n) , (6.16)
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the scheme with θ = 1/2 is known as the (semi-implicit) Crank-Nicolson method
which is second-order accurate,

u(n+1) − u(n)

∆t
=

1

2
F (n+1) +

1

2
F (n) . (6.17)

Making use (6.17), Eq. (6.1) becomes

u(n+1) − u(n)

∆t
=

1

2

[
− A(∂xu)2∂2xu+B(∂xu)4 + C∂6xu

](n+1)

+
1

2

[
− A(∂xu)2∂2xu+B(∂xu)4 + C∂6xu

](n)
(6.18)

To linearize the nonlinear terms, we use the linearization form given by (Rubin
and Graves, 1975).

u(n+1) − u(n)

∆t
=

1

2

{
−A[(∂xu)2](n)(∂2xu)(n+1)+B[(∂xu)3](n)(∂xu)(n+1)+C(∂6xu)(n+1)

}

+
1

2

{
− A[(∂xu)2](n)(∂2xu)(n) +B[(∂xu)4](n) + C(∂6xu)(n)

}
(6.19)

where ∆t = t(n+1) − t(n) is the time step; the superscript (n) and (n + 1)
denotes the time levels, u(n+1) = u(x, t(n+1)) , u(0) = u(x, 0) initial condition
and u(n) represents the approximate value of u at time level n. We consider

H0 = Î
(0)
[6] ,H1 = Î

(1)
[6] ,H2 = Î

(2)
[6] and H6 = Î

(6)
[6] . Eq. (6.19) is then discretised in

space based on the 1D-IRBFN method as follows,

[
H0

∆t
− 1

2

[
− AH2(H1ŵ

(n))2 +B(H1ŵ
(n))3(H1) + C(H6)

]]
ŵ(n+1) =

[
H0

∆t
+

1

2

[
− AH2(H1ŵ

(n))2 +B(H1ŵ
(n))3(H1) + C(H6)

]]
ŵ(n) (6.20)

For simplicity above equation. can be written as,

E1ŵ
(n+1) = RHS1, (6.21)

and boundary conditions are

u = H0ŵ
(n+1) = j1

∂xu = H1ŵ
(n+1) = j2,

∂2xu = H2ŵ
(n+1) = j3,
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∂3xu = H3ŵ
(n+1) = j4,

∂4xu = H4ŵ
(n+1) = j5,

and so on where j1,j2,j3 ,j4 and j5 are known values.
All boundary conditions are changed into single matrix E2 as

E2ŵ
(n+1) = RHS2, (6.22)

The system of equations Eq. (6.21) and Eq. (6.22) is solved simultaneously at each
time step for ŵ(n+1) until the prescribed time T is reached using the corresponding
nodal values at the previous time t = t(n) , ŵ(n). We can obtain the all values of
u by putting back the values of ŵ in Eq. (6.14).

6.4 Results of the numerical experiments

In this section we present numerical solutions of Eq. (6.1) which we repeat here
for convenience,

∂tu = −A(∂xu)2∂2xu+B(∂xu)4 + C∂6xu .

Various initial conditions will be used, and for the boundary conditions we will
either set zero value for first three derivatives of u on each edge of the domain,
or stipulate spacial periodicity of u implying equal values of u and its first five
derivatives on the edges, respectively.

6.4.1 Single-step regimes under periodic boundary condi-
tions

In these numerical experiments we want to achieve periodic solutions and there-
fore require continuity of u and its five derivatives on the edges,

u|x=L1 = u|x=L2 , ∂xu|x=L1 = ∂xu|x=L2 ,

∂2xu|x=L1 = ∂2xu|x=L2 , ∂3xu|x=L1 = ∂3xu|x=L2 .

∂4xu|x=L1 = ∂4xu|x=L2 . ∂5xu|x=L1 = ∂5xu|x=L2 .

The solutions obtained here can be associated with the reaction front moving on
a cylinder in the same manner as shown in Fig. 3.3. In this context the covered
x-length corresponds to the perimeter of the cylinder.

The equation coefficients are chosen to be A = 4, B = 1 and C = 2. We
emphasise again that concrete values of the coefficients are not important in
terms of the shape of the front and the way it moves, because any of our graphs
can be viewed as one corresponding to the canonical form of Eq. (6.1), only in
scaled coordinates.

The initial condition is

u(x, 0) = 6.1
exp[−0.25(x+ 1.1)]− exp[−0.25(x+ 1.1)]

exp[−0.25(x+ 1.1)]] + exp[−0.25(x+ 1.1)]
, (6.23)
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Figure 6.1: The initial condition.

Figure 6.2: The solutions at t = 0.001 to t = 0.013 .
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Figure 6.3: The solutions at t = 0.01 to t = 0.09 .

Figure 6.4: The solutions at t = 0.1 to t = 0.5.
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Figure 6.5: The solutions at t = 4.9 to t = 6.4.

see Fig. 3.3. The number of nodes is taken to be 340, the time step 0.001 and
L2 − L1 = 9π. Fig. 6.2 shows the dynamics at early times. Remarkably, in
this particular experiment the initial condition does not match the boundary
conditions, because at t = 0 the value of the function on the left edge and the
right edge is not the same.

However, the code quickly makes the ends of the curve meet; this creates
the large step which is opposite in orientation to the smooth step represented
by the formula (6.23). As a result, an intensive energy release starts within the
large step, pushing it to the right. This motion happens to be so powerful that
the new step climbs over the “original” step and continues to move on top of
it. Eventually the right-moving regime settles, representing the spinning reaction
front (Fig. 6.3-6.5).

For the next experiments we used A = 6, B = 2 and C = 2, and the initial
condition

u(x, 0) = 1.1

[
sin(3x) +

1

2
sin(4x) +

x

8

]
displayed in Fig. 6.6. The number of nodes is 400, the time step 0.001, the period
L2 − L1 = 12π.

As is seen, the initial shape looks like a saw. However, the dissipation quickly
smoothens out the sharp angles. After a while the settled spinning regime estab-
lishes with the direction of motion to the right (Fig.6.7-6.9).

As in the previous example, this direction is dictated by the orientation of
the large step which is created from the initial jump between the values of the
function on the left and on the right.
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Figure 6.6: The initial condition

Figure 6.7: Early stage of the evolution (a) t = 0 (b) t = 0.01 to t = 0.09.
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Figure 6.8: Late stage of the evolution t = 0.1 to t = 0.5.

Figure 6.9: Late stage of the evolution t = 4.1 to t = 6.9.
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In the next numerical experiment we used A = 8, B = 3 and C = 2 and the
lumpy initial condition (Fig. 6.10)

u(x, 0) = 2 sinx .

The initial condition is periodic and, hence, is consistent with the boundary
conditions. The number of nodes was 340, the time step is 0.001, the period
L2 − L1 = 25. Figs. 6.11-6.14 show the early evolution of the front. See that the
initially symmetric shape gradually becomes asymmetic. We explain this effect
by the small initial asymmetry introduced by spatial discretisation. With time
the asymmetry amplifies, with the four initial crests gradually merging into one.
Fig. 6.15 presents the later stages of the evolution during which a single-step
regime forms. Thus, the small initial asymmetry eventually progressed into a
fully developed step travelling to the left. This case again demonstrates indepen-
dence of the final regime (do be precise, the hight and width of individual steps,
but not their number) of the details of the initial condition.

Figure 6.10: The initial condition u(x, 0) = 2 sinx.
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Figure 6.11: The solution evolved from u(x, 0) = 2 sinx between t = 0 and t = 2.

Figure 6.12: The solution evolved from u(x, 0) = 2 sin x between t = 2.1 and
t = 2.9.
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Figure 6.13: The solution evolved from u(x, 0) = 2 sin x between t = 3.5 and
t = 4.5.

Figure 6.14: The solution between t = 4.9 and t = 6.5.
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Figure 6.15: The solution between t = 6.8 and t = 9.6.

6.4.2 Two-step regimes under homogeneous boundary con-
ditions

Here we use homogeneous boundary conditions and the initial condition

u(x, 0) = 7.8 exp[−(x− 5)2] .

The coefficients are A = 2, B = 1, C = 1; the period L2−L1 = 70, the number of
nodes 1000, the time step is 0.001. The initial peak turns out to be large enough
to create two-step formation, see Figs 6.18-6.19.

Notice the close proximity of the steps.
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Figure 6.16: The initial condition.

Figure 6.17: The solution evolved at t = 3.5 .
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Figure 6.18: The solution at t = 4.9 .

Figure 6.19: The solution between t = 19 and t = 24.
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6.4.3 Two-step regimes under periodic boundary condi-
tions

Here we use periodic boundary conditions and the initial condition

u(x, 0) = 1.5 sin(x) .

Our selection of the coefficients was A = 3, B = 1, C = 1; the period L2−L1 = 70,
the number of nodes 1000, the time step is 0.001.

Figure 6.20: The solution from t = 2.6 to t = 4.

As in the previous section, the initial condition was symmetric which gradually
transformed into an asymmetric shape. The final settled shape had two steps
shown in Fig. 6.25.

We were particularly interested in the question whether or not the two steps
(defined as the local maxima of the profile f) eventually locate equidistantly from
each other over the length of the spacial period, or, in terms of the motion on the
cylinder diametrally opposite to each other. The answer turned out to be that in
the settled regime, the answer is no. The distance between the steps measured
in the direction from the left to right is not equal to the distance measured from
the opposite direction.
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Figure 6.21: The solution from t = 5 to t = 7.8.

Figure 6.22: The solution from t = 10 to t = 12.
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Figure 6.23: The solution from t = 13 to t = 15.8.

Figure 6.24: The solution from t = 19 to t = 24 (above) and the settled regime
between t = 410 and t = 415 (below).
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One can view this regime as two steps moving as a joint formation. To describe
the motion quantitatively, we measured the distance between the steps against
time. Fig. 6.26-6.28 show how the distance is measured. At t = 16 the distance D
reaches its largest value, which is allmost half the period, or perimeter if translated
into a cylindrical geometry. The distance decreases sharply between t = 16 to
t = 19.5. At about t = 20 the two steps couple with each other (Fig. 6.28) and,
from the moment on, move together in close proximity. Fig. 6.29 shows that after
t = 100, the distance D becomes practically constant.

Figure 6.25: The settled regime between t = 410 and t = 415.
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t = 16.5 t = 17

t = 18 t = 18.5

Figure 6.26: Measuring the distance between the steps.
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t= 19 t=19–22

Figure 6.27: Measuring the distance between the steps.

Figure 6.28: A snapshot of the fully settled regime, t = 410.
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Figure 6.29: Evolution of the distance between the steps.

6.4.4 Three-step regimes under homogeneous boundary
conditions

In our last experiment we again used the homogeneous boundary conditions and
the initial condition in the form of a peak,

u(x, 0) = 8.5 exp
[
−(x− 5)2

]
.

The parameters were A = 2, B = 1, C = 1, the number of nodes 700, the time
step 0.001, L = 120.It is interesting to compare the results with Section 3.3 where
the similar initial condition was used, but the peak was a bit shorter, Fig. 18.
However, the increase in height from 7.8 to 8.5 (by 9 %) was sufficient to create the
third step, see Figs. 6.30-6.32. As is seen, the two leading steps are settled, and
the distinct horizontal plateaus are formed stretching to the right of the leading
(1st) step and to the left from the following (2nd) step. The 3rd step is not
quite settled yet as it still remembers the initial condition via the non-horizontal
plateau to the left. A remarkable feature of this dynamic is close proximity of
the two leading steps. The highest point of the 1st step sits right on the crest of
the small sub-peak in front of the 2nd step. It would be interesting to investigate
whether such a tight formation is the closest possible; we leave this question for
further study.
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Figure 6.30: The initial condition.

Figure 6.31: Early stage of the evolution.
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Figure 6.32: The three-step regime.

6.5 Conclusions

We applied the 1D-IRBF numerical method to solve Eq. (6.1) governing the
behaviour of the spinning combustion fronts and oscillations in certain class of
reaction-diffusion systems with nonlocal interactions. The method successfully
reproduced the settled spinning regimes of the earlier modelling (Strunin, 1999).
We presented and analysed the complex process of formation of the spinning
fronts, in which the energy pumping within the most sharp segments of the front
control the dynamics : it determines the direction of motion and, jointly with
the dissipation, erases memory about the details of the initial conditions. Single-
step, two-step and three-step regimes are investigated under homogeneous and/or
periodic boundary conditions.



Chapter 7

2D numerical solutions for the

NEP equation

7.1 Introduction

The spinning waves occur in solid flames and detonation fronts when the plane
uniformly propagating reaction front loses stability. As a result, the front breaks
down into localized zones of intensive reaction. In this chapter we study a 2D time
dependent phenomenological model aimed at modeling such phenomena.This
work contains results demonstrating the capacity of the model to reproduce basic
experimental features of the front inside a solid cylinder in case of solid flame
and a gas tube in case of detonation wave: metastability of the uniform state and
formation of self-sustained regime with predominantly lateral propagation of the
front curvature.

As we discussed in the previous chapters, spinning combustion is an interesting
nonlinear phenomenon initially discovered in detonation (Zel’dovich and Kompa-
neets, 1960) and later on in solid-phase combustion (Merzhanov et al., 1973)
and others. By comparison, small amplitude waves in fluids are linear and the
nonlinear effects become significant when the amplitude is relatively large. Any
combustion wave is already nonlinear by its nature. However, small perturbations
to the traveling wave solution of the original reaction-diffusion equations satisfy
linearized equations. If instability develops, the nonlinear effects come into play.
The spinning waves in solid-phase combustion were extensively studied since the
early 1970s experimentally (Dvoryankin et al., 1982) and theoretically (Ivleva
et al., 1980; Aldushin et al., 1981) and still attract considerable attention.

In deriving a 1D model (6.1) the goal was to reproduce three main qualitative
features of the actual process, which are : (1), The decay of a front with relatively
smooth curvatures; this would correspond to the decay of a front with insufficient
initial concentration of energy. (2), The self-sustained non- trivial dynamics of a
front with relatively sharp curvatures so that a typical amplitude of the settled
curvatures is governed by the equation, not the initial condition. (3), the self-
propagating front moving predominantly in lateral direction at any particular
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moment. These properties are ensured by the dynamical structure of (6.1): the
purely dissipative linear part, nonlinear nature of the source and overall dynamical
balance involving all three terms in the right-hand side. Equ. (6.1) was shown to
give spinning wave solutions corresponding to the front moving around a hollow
cylinder with thin walls.

Here we solve the NEP equation in 2D using the 1D-IRBFN method. Pre-
viously, a two-dimensional version of the equation was formulated and solved
under zero boundary conditions (Strunin and Mohammed, 2015; Strunin and
Suslov, 2005) using a less accurate finite difference method.

7.2 Two-dimensional model

Here we generalize equation (6.1) to incorporate the second transversal dimension,
y, in order to model the front propagation through a 3D continuum. With the
distance u measured along the third axis, z, we aim to obtain a three-dimensional
pattern. In 2D equation (6.1) has the form

∂tu = −A(∂2xu+ ∂2yu)
[
(∂xu)2 + (∂yu)2

]
+B
[
(∂xu)4 + 2(∂xu)2(∂yu)2 + (∂yu)4

]
+ C

[
∂6xu+ 3∂4x∂

2
yu+ 3∂2x∂

4
yu+ ∂6yu

]
. (7.1)

In this set of numerical experiments we use circular domain and the homogeneous
boundary conditions on the circular boundary expressed by,

∂xu = 0 , ∂2xu = 0 , ∂3xu = 0 ,

∂yu = 0 , ∂2yu = 0 , ∂3yu = 0,

at each point on the boundary.
The simulated system is assumed adiabatic so that energy is nither coming

into the system nor going out of the system. The zero first derivatives/zero slope
of the front towards the boundary represents the adiabatic condition.

7.3 Results of the numerical experiments

As stated above, we assume the homogeneous boundary conditions on the circum-
ference of the circular domain. The equation coefficients are chosen arbitrarily,
A = 80, B = 4, C = 1. We recall that, regardless of concrete values of the
coefficients, the governing equation can always be transformed to the canonical
form with A = B = C = 1 by re-scaling x, t and u. The number of grid nodes
are 60× 60.
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The initial condition is

u = cos(x/2× y/5) , (7.2)

To solve the equation, as discussed in the previous chapter the temporal dis-
cretization is accomplished by a time-stepping scheme, followed by the spatial
discretization based on the IRBFN method. Among many possible time-stepping
schemes, the standard θ-scheme , (0 ≤ θ ≤ 1 ) is used in this work. We used all
the derivatives in x and y from Eq. (3.20)-(3.29).

Note that the extreme cases θ = 0 and θ = 1 correspond to the well-known
forward (fully explicit) and backward (fully implicit) Euler schemes, respectively.
The scheme with θ = 1/2 is known as the (semi-implicit) Crank-Nicolson method
which is second-order accurate.

Equation (7.1) and boundary conditions are discretised in space on a uniform
equilateral grid using the1D-IRBFN method, within a circle of radius L. Since
Equation (7.1) is nonlinear, to avoid expensive iterative solution of a system of
nonlinear difference equations at each time step, Crank-Nicolson method was
chosen for time discretization. To avoid numerical instability in time integration
a sufficiently small time step was used. It was found that for the spatial dis-
cretization steps of x = y = 0.03 (for which the numerical solution was obtained)
the time step t = 0.001 was sufficiently small to ensure numerical stability for
all regimes.The computations were performed up to time t = 50. The average
position of a front always increases with time as shown in Figs. 7.2–7.12 which
confirms the relevance of the proposed model to realistic situation of a propagat-
ing combustion front. The dynamics of u (represented by z-axis) shows that the
front propagates with a non-constant speed.

We started with the initial condition displayed in Fig. 7.1 . The initial
amplitude, that is the vertical distance between the highest and lowest points of
the u surface, was 1.2 × 10−3 and there were four humps. Early stages of the
evolution were quite violent and obviously unsettled so we do not show those
stages. Around t=36 the dynamics calmed down as shown by Fig. 7.2. The
amplitude was of the order 1. Some of our graphs are presented using small
vertical scale, in order to demonstrate that the front never decayed completely.
Apparently this would not be clear had we used the same scale.

At t=37 (Fig 7.3) after some interaction between the remnants of the initial
humps they merge into a single centrally located hump. It shifts towards the
boundary (Fig 7.4) with the amplitude about 3 and moves anticlockwise is a
spinning fashion. However, this motion did not continue and the hump moved
towards the centre (Figs. 7.5-7.6). Remarkably, by t=41 its amplitude decreased
to roughly one tength of the initial amplitude. Keep decreasing in amplitude the
hump passed through the center to the other side of the domain (Fig. 7.7) but
later by t=46 it grew back (Figs. 7.8-7.11)and reached the amplitude 4 (Fig. 7.12)
from what we observe, the dynamics did not reach a settled stage yet, but we
obtained a spinning motion of the front at certain interval of time and amplitude
a fully settled spinning regime to eventually occur at this on slightly different
diameter.
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Figure 7.1: The initial condition.

Figure 7.2: The front at t = 36.28.
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Figure 7.3: The front at t = 37.

Figure 7.4: The front at t = 37.9.
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Figure 7.5: The front at t = 38.1.

Figure 7.6: The front at t = 38.8.
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Figure 7.7: The front at t = 41.

Figure 7.8: The front at t = 42.
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Figure 7.9: The front at t = 43.

Figure 7.10: The front at t = 45.
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Figure 7.11: The front at t = 46.

Figure 7.12: The front at t = 49.7.
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7.4 Conclusions

In this chapter we have successfully applied the 1D-IRBF numerical method to
solve Eq. (7.1) governing the behaviour of the spinning combustion front in 3D
space. The method successfully produced the spinning motion of the front during
limited time.



Chapter 8

Conclusions

8.1 Research outcomes

This research is focused on the active-dissipative partial differential equation

∂tu = −(∇u)2∇2u+ (∇u)4 +∇6u.

simulating the dynamics of the reaction fronts (combustion) in different physical
systems such as solid flames, detonation and super-adiabatic waves. This equation
is referred to as the nonlinearly excited phase (NEP) equation .This equations is
based on nonlinear excitation in its most simple form, and hence, the equation is
interesting as a basic model of pattern formation as well as regular and irregular
dynamics in such systems.

Our approach is also applicable to other equations which have similar structure
to the NEP equation (Strunin, 2009). The following results have been obtained
in this research:

A forced version of the NEP equation is derived and used to test the
numerical code We derived a forced version of the NEP equation addressing
combustion fronts. Selected exact solutions are constructed. Stability of the solu-
tions is demonstrated in the course of the numerical experiments. The numerical
code uses 1D-IRBFN in space; the resulting system of partial differential equa-
tions is integrated in time. The comparison of the exact and numerical solutions
demonstrated satisfactory performance of the code.

The unforced NEP equation is solved and analysed numerically in
1D We used the code to solve the unforced NEP equation in one spatial dimen-
sion. Onset of non-trivial regimes from the trivial state is analysed as the domain
size is increased. We presented new results in the form of one, two and three step
regimes.

The unforced NEP equation is solved and analysed numerically in
2D We used the code to solve the unforced NEP equation in two spatial dimen-
sion. We presented new results in the form of solid spining waves revolving in a
circular boundary.
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8.2 Future Directions

As we have already mentioned, Eq. (1.1) describes a generic scenario of pattern
formation in a fairly wide group of active systems of different physical or biological
nature. Another application of this model concerns superadiabatic combustion
waves used for waste treatment. Processing of waste by superadiabatic combus-
tion is an effective clean technology (Institute of Problems of Chemical Physics,
Russian Academy of Sciences, www.icp.ac.ru/eng/developments/; yet practically
overlooked in Australia. Model (1.1) presents a single-equation simulation tool
for the superadiabatic waves.

However, we have already explained that the numerical scheme which is used
to solve Eq. (1.1) was 1D-IRBFN for the spatial terms and a Matlab code for
the time stepping of the system of differential equations.

So, further research in the direction of this thesis can be done by considering
the following points:

1. Explore to a greater precision the onset of spatio-temporal chaos from the
regular dynamics with the expansion of space domain.

2. Evaluate the Lyapunov exponents and fractal dimensions characterising the
chaotic regimes.

3. Focus on circular 2D geometry in order to achieve regular and chaotic spin-
ning regimes.

8.3 Significance

The further work will help us to understand fundamentals of environmentally
friendly technologies of waste treatment and material synthesis. Yet, the project’s
significance goes beyond this field since Eq. (1.1) describes a generic scenario of
pattern formation in a fairly wide group of active systems of different physical,
chemical or biological nature.
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Appendix A

Matlab program to solve the

NEP equation with one spatial

dimension

We developed the Matlab code to solve the Strunin equation in one spatial di-
mension under zero boundary conditions on the both ends of the x-domain.

A.1 Matlab program to set initial condition and

set the grid system

%------------------

clc; clear; close all; myeps = 1e-6; tic

scrsz = get(0,’ScreenSize’); % [ 1 1 1920 1200]

% -----------------------------

A_control = load(’z_Wave_engine1a.txt’);

istep_CM = A_control(1,1); % 10; % istep_CM to display CM

istep_CM1 = A_control(2,1); % 10; % istep_CM1 to save CM;

% istep_S2 = A_control(3,1); % istep_S2 to save A1;

istep_S2 = 10 % 0.1/dt; % istep_S2 to save A1;

% -----------------------------

method_eps = 0

method_dis = 1 % 1: 1D-IRBFN

betaG=1;

theta = 0.5;

% Problem’s parameters

A=10; B=1.0; C=1.0;

C1=1; C2=0; % Initial condition
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% 1/ Geometry

nx = 201

L = 30;

xA = 0;xB = L;

xC=L/2;

dx = abs(xA-xB)/(nx-1);

x = [xA:dx:xB]’;

dt=1e-5

%Tmax=100*dt % 1 % 10*dt % 1.0;

Tmax=1500*dt;

% 2/ Find

% 2a/ Initial condition

%for i_fold = 1

% u0 = zeros(nx,1);

% u0(x<=xC+myeps)=C1;

% u0(x>xC+myeps)=C2;

% u0i=u0;

%end % for i_fold = 1

u0 = 7*exp(-1*x.^2);

u0i=u0;

% 3/ Discretisation

for i_fold = 1

c1=x;a1 = betaG*dx;

[D1x,D2x,D3x,D4x,D5x,D6x,...

D1xB,D2xB,D3xB,D4xB,D5xB,D6xB] = Determine1D6_f3A_both(x,c1,nx,a1);

% Determine E1

Inx = eye(nx,nx);

EL = (1/dt*Inx - theta*C*D6x);

end

A.2 Matlab program to solve the equation

% for i_fold = 1

% 4/ Solve

A1=[];

t1=0;

istep = 0;

method_load = 0
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if (method_load==1)

t1 = 0.1

filename = sprintf(’Result_1D\\W1a_dis_%02d_nx_%03d_dt_%2.1f_t_%2.5f_A.mat’,...

method_dis,nx,abs(log(dt)/log(10)),t1)

% save(filename,’A1’,’u0’,’u_1’);

load(filename);

istep = A1(end,1);

t1 = A1(end,2);

end

while (t1<=Tmax+myeps)

t1=t1+dt;

istep = istep+1;

temp1 = A*(D1x*u0).^2;

[ED1] = Multiply_v_m(temp1,D2x);

E1 = EL+ED1;

E1 = sparse(E1);

[L1,U1,P1,Q1] = lu(E1);

RHS1 = u0/dt + (1-theta)*C*(D6x*u0) + B*(D1x*u0).^4;

u1 = Q1*(U1\(L1\(P1*RHS1)));

CM = norm(u0-u1)/norm(u1);

temp=[istep t1 CM toc];

u0=u1;

if (mod(istep,istep_CM)<myeps)

A_control = load(’z_Wave_engine1a.txt’);

istep_CM = A_control(1,1); % 10; % istep_CM to display CM

istep_CM1 = A_control(2,1); % 10; % istep_CM1 to save CM;

% istep_S2 = A_control(3,1); % istep_S2 to save A1;

% istep_S2=1; %0.2/dt; % istep_S2 to save A1;

end

if (mod(istep,istep_CM)<myeps)

temp

end

if (mod(istep,istep_CM1)<myeps)

A1=[A1;temp];

end

if (mod(istep,istep_S2)<myeps)

filename = sprintf(’Result_1D\\W1a_dis_%02d_nx_%03d_dt_%2.1f_t_%2.5f_A.mat’,...

method_dis,nx,abs(log(dt)/log(10)),t1)

save(filename,’A1’,’u0’,’u1’);

end

end % while (t1<=Tmax+myeps)

filename = sprintf(’Result_1D\\W1a_dis_%02d_nx_%03d_dt_%2.1f_t_%2.5f_A.mat’,...

method_dis,nx,abs(log(dt)/log(10)),t1)

save(filename,’A1’,’u0’,’u1’);
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function [D1x,D2x,D3x,D4x,D5x,D6x,...

D1xB,D2xB,D3xB,D4xB,D5xB,D6xB] = Determine1D6_f3A_both(x,c1,nx,a1)

% Version Determine1D4_2: rectangular domain

% Version Determine1D4_3: rectangular domain, non-CM

% Version Determine1D4_4: rectangular domain, non-CM, only nip

% Step 1: Determine H0, H1, H2, H3, H4 for direction X

for i_fold = 1

H0 = zeros(nx,nx+6);

H1 = zeros(nx,nx+6);

H2 = zeros(nx,nx+6);

H3 = zeros(nx,nx+6);

H4 = zeros(nx,nx+6);

H5 = zeros(nx,nx+6);

H6 = zeros(nx,nx+6);

for i =1:nx

%Determine H6 (H6 = G)

for j=1:nx+6

if j<=nx

r=(x(i)-c1(j));

H6(i,j)=(r^2+a1^2)^0.5;

else

H6(i,j)=0;

end

end

%Determine H5

for j=1:nx+6

if j<=nx

r=(x(i)-c1(j));

A=(r^2+a1^2)^0.5;

B=log(r+A);

H5(i,j)=0.5*r*A + 0.5*a1^2*B;

elseif j==nx+1

H5(i,j)=1;

else

H5(i,j)=0;

end

end

%Determine H4

for j = 1:nx+6

if j<=nx

r=(x(i)-c1(j));

A=(r^2+a1^2)^0.5;

B=log(r+A);

H4(i,j)=(r^2/6-a1^2/3)*A + 0.5*a1^2*r*B;

elseif j==nx+1

H4(i,j)=x(i);
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elseif j==nx+2

H4(i,j)=1;

else

H4(i,j) = 0;

end

end

%Determine H3

for j=1:nx+6

if j<=nx

r=(x(i)-c1(j));

A=(r^2+a1^2)^0.5;

B=log(r+A);

H3(i,j) = (-13*a1^2*r/48 + r^3/24)*A + (-a1^4/16 + a1^2*r^2/4)*B;

elseif j==nx+1

H3(i,j) = x(i)^2/2;

elseif j==nx+2

H3(i,j) = x(i);

elseif j==nx+3

H3(i,j) = 1;

else

H3(i,j) = 0;

end

end

%Determine H2

for j=1:nx+6

if j<=nx

r=(x(i)-c1(j));

A=(r^2+a1^2)^0.5;

B=log(r+A);

H2(i,j) = (a1^4/45 - 83*a1^2*r^2/720 + r^4/120)*A

+ (-3*a1^4*r/48 + 4*a1^2*r^3/48)*B;

elseif j==nx+1

H2(i,j) = x(i)^3/6;

elseif j==nx+2

H2(i,j) = x(i)^2/2;

elseif j==nx+3

H2(i,j) = x(i);

elseif j==nx+4

H2(i,j) = 1;

else

H2(i,j) = 0;

end

end

%Determine H1

for j=1:nx+6

if j<=nx

r=(x(i)-c1(j));

A=(r^2+a1^2)^0.5;

B=log(r+A);

H1(i,j) = (15*a1^6*B + 60*a1^2*B*r^2*(-3*a1^2 + 2*r^2)

+ A*r*(113*a1^4 - 194*a1^2*r^2 + 8*r^4))/5760;

elseif j==nx+1
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H1(i,j) = x(i)^4/24;

elseif j==nx+2

H1(i,j) = x(i)^3/6;

elseif j==nx+3

H1(i,j) = x(i)^2/2;

elseif j==nx+4

H1(i,j) = x(i);

elseif j==nx+5

H1(i,j) = 1;

else

H1(i,j) = 0;

end

end

%Determine H0

for j=1:nx+6

if j<=nx

r=(x(i)-c1(j));

A=(r^2+a1^2)^0.5;

B=log(r+A);

H0(i,j) = (3*B*(5*a1^6*r-20*a1^4*r^3+8*a1^2*r^5)

+1/35*A*(-128*a1^6+1779*a1^4*r^2-1518*a1^2*r^4+40*r^6))/5760;

elseif j==nx+1

H0(i,j) = x(i)^5/120;

elseif j==nx+2

H0(i,j) = x(i)^4/24;

elseif j==nx+3

H0(i,j) = x(i)^3/6;

elseif j==nx+4

H0(i,j) = x(i)^2/2;

elseif j==nx+5

H0(i,j) = x(i);

elseif j==nx+6

H0(i,j) = 1;

else

H0(i,j) = 0;

end

end

end

end % i_fold - step 1

% Step 2: Add boundary conditions

K = [H1([1 end],:);H2([1 end],:);H3([1 end],:)];

C = [H0;K]; % (nx+3; nx+6)

C_inv = pinv(C);% (nx+6; nx+3)

% Step 3: Determine D41x D42x D43x D44x

D1x = H1*C_inv;% (nx-1,nx+2)

D2x = H2*C_inv;% (nx-1,nx+2)

D3x = H3*C_inv;% (nx-1,nx+2)

D4x = H4*C_inv;% (nx-1,nx+2)

D5x = H5*C_inv;% (nx-1,nx+2)

D6x = H6*C_inv;% (nx-1,nx+2)
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D1xB = D1x(:,nx+1:nx+6);% (nx-1,5)

D2xB = D2x(:,nx+1:nx+6);% (nx-1,5)

D3xB = D3x(:,nx+1:nx+6);% (nx-1,5)

D4xB = D4x(:,nx+1:nx+6);% (nx-1,5)

D5xB = D5x(:,nx+1:nx+6);% (nx-1,5)

D6xB = D6x(:,nx+1:nx+6);% (nx-1,5)

D1x = D1x(:,1:nx);% (nx-1,nx)

D2x = D2x(:,1:nx);% (nx-1,nx)

D3x = D3x(:,1:nx);% (nx-1,nx)

D4x = D4x(:,1:nx);% (nx-1,nx)

D5x = D5x(:,1:nx);% (nx-1,nx)

D6x = D6x(:,1:nx);% (nx-1,nx)

function [ED1] = Multiply_v_m(uy,D1xt)

nX = length(uy);

% Multiply a column vector by a matrix: ED1 = uy(nX,1)*D1xt(nX,nX)

ED1 = D1xt;

for i=1:nX

ED1(i,:) = uy(i)*ED1(i,:);

end

A.3 Matlab program to plot the solution

% Plotting

clc; clear; close all; myeps = 1e-6; tic

scrsz = get(0,’ScreenSize’); % [ 1 1 1920 1200]

% -----------------------------

A_control = load(’z_Wave_engine1a.txt’);

istep_CM = A_control(1,1); % 10; % istep_CM to display CM

istep_CM1 = A_control(2,1); % 10; % istep_CM1 to save CM;

% istep_S2 = A_control(3,1); % istep_S2 to save A1;

istep_S2 = 10 % 0.1/dt; % istep_S2 to save A1;

% -----------------------------

method_eps = 0

method_dis = 1 % 1: 1D-IRBFN

betaG=1;

theta = 0.5;

% Problem’s parameters

A=10; B=1.0; C=1.0;

C1=1; C2=0; % Initial condition

% 1/ Geometry

nx = 201

L = 10;

xA = 0;xB = L;

xC=L/2;

dx = abs(xA-xB)/(nx-1);

x = [xA:dx:xB]’;

dt=1e-3

Tmax=100*dt % 1 % 10*dt % 1.0;
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% 2/ Find

% 2a/ Initial condition

for i_fold = 1

u0 = zeros(nx,1);

u0(x<=xC+myeps)=C1;

u0(x>xC+myeps)=C2;

u0i=u0;

end % for i_fold = 1

% 3/ Discretisation

% 4/ Load filename

t1=0.001

filename = sprintf(’Result_1D\\W1a_dis_%02d_nx_%03d_dt_%2.1f_t_%2.5f_A.mat’,...

method_dis,nx,abs(log(dt)/log(10)),t1)

% save(filename,’A1’,’u0’,’u1’);

load(filename);

% 5/ Plot

for i_fold = 1

figure(1)

pos1 = [1+2*scrsz(3)/4 scrsz(4)*0.1+0*scrsz(4)/3 scrsz(3)/4 1.5*scrsz(4)/3];

set(1,’OuterPosition’,pos1)

% plot(x,u0i,’.-’)

% hold on

plot(x,u0,’m--’)

xlabel(’\fontsize{18} {\it x(m)}’)

ylabel(’\fontsize{18} {\it u_0}’)

% legend(’t=0’,’t’)

title(sprintf(’Time t = %2.2f’,t1))

grid on

NFS = 18.0; % fontsize

NLW = 0.8; % linewidth

set(gca,’FontSize’,NFS,’LineWidth’,NLW);

filename = sprintf(’Result_1D\\W1a_dis_%02d_nx_%03d_dt_%2.1f_t_%2.5f_f1.jpg’,...

method_dis,nx,abs(log(dt)/log(10)),t1)

print(’-f1’,’-djpeg’,filename)

end % for i_fold = 1

A.4 Matlab program to plot the solution as a

movie

%Plotting Movies

clc; clear; close all; myeps = 1e-6; tic

scrsz = get(0,’ScreenSize’); % [ 1 1 1920 1200]

% -----------------------------

A_control = load(’z_Wave_engine1a.txt’);

istep_CM = A_control(1,1); % 10; % istep_CM to display CM
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istep_CM1 = A_control(2,1); % 10; % istep_CM1 to save CM;

% istep_S2 = A_control(3,1); % istep_S2 to save A1;

istep_S2 = 100 % 0.1/dt; % istep_S2 to save A1;

% -----------------------------

method_eps = 0

method_dis = 1 % 1: 1D-IRBFN

betaG=1;

theta = 0.5;

% Problem’s parameters

A=7; B=1.0; C=1.0;

C1=1; C2=0; % Initial condition

% 1/ Geometry

nx = 401

L = 10;

xA = 0;xB = L;

dx = abs(xA-xB)/(nx-1);

x = [xA:dx:xB]’;

dt=2e-4

%Tmax=100*dt % 1 % 10*dt % 1.0;

Tmax2=20000*dt;

% 2/ Find

xC=3;

xD=xC+3;

idiC = find(abs(x-xC)<myeps);

if (isempty(idiC)==1)

disp(’Choose nx again (nx=100*k+1, k integer)’)

stop

end

% 2a/ Initial condition

u0=zeros(nx,1);

kA=18;

for i=1:nx

if (x(i)<=xC)

u0(i) = kA;

elseif (x(i)>=xC & x(i)<=xD)

u0(i) = kA*exp(-1*(x(i)-xC)^2);

else

u0(i) = 0;

end

end

%u0 = 7*exp(-1*x.^2);

u0i=u0;

% 3/ Discretisation

% 4/ Load filename
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t1=0.2

n=10

dt0=100*dt % 1e-4

for t1=[dt0:dt0:Tmax2]

close all;

filename = sprintf(’Result_1D\\W2c_dis_%02d_nx_%03d_dt_%2.1f_t_%2.5f_A.mat’,...

method_dis,nx,abs(log(dt)/log(10)),t1)

% save(filename,’A1’,’Ax_wave’,’u0’,’u1’);

load(filename);

% 5/ Plot

for i_fold = 1

figure(1)

pos1 = [1+2*scrsz(3)/4 scrsz(4)*0.1+0*scrsz(4)/3 scrsz(3)/4 1.5*scrsz(4)/3];

set(1,’OuterPosition’,pos1)

% plot(x,u0i,’.-’)

% hold on

x_real = x+sum(Ax_wave(:,3));

plot(x_real,u0,’m-’)

xlabel(’\fontsize{18} {\it x}’)

ylabel(’\fontsize{18} {\it u}’)

% legend(’t=0’,’t’)

title(sprintf(’t = %2.5f’,t1))

% axis([xA xB -2.0 10.0])

axis([min(x_real) min(x_real)+L min(u0)-2 max(u0)+5 ]) % ..change y limits

grid on

NFS = 18.0; % fontsize

NLW = 0.8; % linewidth

set(gca,’FontSize’,NFS,’LineWidth’,NLW);

filename = sprintf(’Result_1D\\Fig_W2c_dis_%02d_nx_%03d_dt_%2.1f_t_%2.5f_f1.jpg’,...

method_dis,nx,abs(log(dt)/log(10)),t1)

print(’-f1’,’-djpeg’,filename)

end % for i_fold = 1

end % for t1=[0.001:0.001:0.01]

%figure(2)

%pos1 = [1+3*scrsz(3)/4 scrsz(4)*0.1+0*scrsz(4)/3 scrsz(3)/4 1.5*scrsz(4)/3];

%set(2,’OuterPosition’,pos1)

%plot(x,u0i,’.-’)

%hold on

%plot(x_real,u0,’m-’)

%xlabel(’\fontsize{18} {\it x}’)

%ylabel(’\fontsize{18} {\it u}’)
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%legend(’t=0’,’t1’)

%title(sprintf(’Time t = %2.5f’,t1))

%axis([xA xB min(min(u0)-1,min(u0i)-1) max(max(u0)+1,max(u0i)+1) ])

%grid on

%NFS = 18.0; % fontsize

%NLW = 0.8; % linewidth

%set(gca,’FontSize’,NFS,’LineWidth’,NLW);

function [u_up,u_down,x_wave] = Deter_wave(x,u0)

% Determine u_up,u_down,x_wave

% Determine x_up,x_down

u_up = u0(1);

u_down = u0(end);

idi_up = find(abs(u0-u_up)<0.1*(u_up-u_down));

idi_down = find(abs(u0-u_down)<0.1*(u_up-u_down));

x_up = x(idi_up(end));

x_down = x(idi_down(1));

x_wave = 0.5*(x_up+x_down);

function [x_wave,delta_xs,u0] = Deter_shift_u0(xA,xM,dx,myeps,x,u0)

% Determine u_up,u_down,x_wave

[u_up,u_down,x_wave] = Deter_wave(x,u0);

plot(x,u0)

% Shift the solution (x,u0) back if (delta_xs=x_wave-xM > 0)

% Determine delta_xs,u0

nx = length(x);

delta_xs = x_wave-xM;

if (delta_xs>0)

k=round(delta_xs/dx);

delta_xs= k*dx;

idi = find(x>=xA+delta_xs-myeps);

u2 = zeros(nx,1) + u_down;

u2(1:length(idi))=u0(idi);

u0=u2;

else

delta_xs = 0;

end
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Matlab program

The numerical code for chapter 5 is the same as for chapter 4 just Matlab program
to discretize the spatial part of the equation is slightly different here as we added
the forced function.

B.1 Matlab program to solve the forced NEP

equation

clear; clc; close all;tic;

% Step 1a: Create a geometry(IRBFN method for 1D case)

nx =100; % no of nodes

xA = 0;

xB =10;%4*pi;

dx = abs(xB-xA)/(nx-1); %distance between consecutive nodes

x = [xA:dx:xB]’;% dx is distance between two consecutive nodes

c = [xA:dx:xB] ;

Tmax =20; % maximum time period

theta = 0.5;

dt = 1e-3; %time step

t = [0:dt:Tmax]’;

nt = length(t) ; %number of time step

[xx,tt]=ndgrid(x,t);

nxnt = nx*nt;

X = reshape(xx,nxnt,1);

T = reshape(tt,nxnt,1);

% Step 2: Determine the exact solution

k1=-1;

uE1 = sin(X+k1*T);

uEm = reshape(uE1,nx,nt);

% Derivatives

uE = @(x,t) sin(x+k1*t);
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du = @(x,t) cos(x+k1*t);

ddu = @(x,t) -sin(x+k1*t);

dddu = @(x,t) -cos(x+k1*t);

uE2m = reshape(uE(X,T),nx,nt);

% Determine fxt

fxt = @(x,t) k1*cos(x+k1*t) - 1*(sin(x+k1*t)).*(cos(x+k1*t)).^2

- (sin(x+k1*t)).^4 + (sin(x+k1*t));

% Step 3: Discretisation using 1D-IRBFNs method ...........

[H0,H1,H2,H3,H4,H5,H6] = Deter_IRBF_H0_H6(x,c,dx);

C_inv = pinv(H0);

% Initial condition

u0=uE(x,0);

%----------------------------

U = [];

CM = 1;

W=[];

for k=1:nt

tk = t(k)

% Determine w0

w0=C_inv*u0;

L=(H1*w0).*(H1*w0);

P=zeros(nx,nx+6);

for i=1:nx

P(i,:)= L(i,:)*H2(i,:);

end

M=(H1*w0).*(H1*w0).*(H1*w0);

Q=zeros(nx,nx+6);

for i=1:nx

Q(i,:)= M(i,:)*H1(i,:);

end

% Determine E

E = H6-1*P+Q;

E1 = 1/dt*H0 - theta*E;

% Determine fxt

f = fxt(x,tk);

b1 = H0/dt*w0 + (1-theta)*E*w0 + f;

% Determine boundary conditions

E2=H1(1,:);

E3=H1(nx,:);

E4=H2(1,:);

E5=H2(nx,:);

E6=H0(1,:);

E7=H0(nx,:);

E=[E1;E2;E3;E4;E5;E6;E7];
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b2=du(x(1),tk);

b3=du(x(nx),tk);

b4=ddu(x(1),tk);

b5=ddu(x(nx),tk);

b6=uE(x(1),tk);

b7=uE(x(nx),tk);

b=[b1;b2;b3;b4;b5;b6;b7];

w1=E\b;

u1=H0*w1;

U(:,k) = u1;

u0 = u1;

W(:,k)=w1;

w0=w1;

end

Ne= norm(U-uE2m)/norm(uE2m)

% 5/ Plot

figure(1)

%subplot(2,1,1)

surf(xx,tt,uEm,’EdgeColor’,’none’);

%contour(xx,tt,uEm);

xlabel(’x’)

ylabel(’t’)

grid on

title(sprintf(’Exact solution uE(x,t), k1=%2.2f’,k1))

%uEm(:,1)

figure(2)

%subplot(2,1,2)

surf(xx,tt,U,’EdgeColor’,’none’);

%contourf(xx,tt,U);

xlabel(’x’)

ylabel(’t’)

grid on

title(sprintf(’IRBF solution u(x,t), k1=%2.2f’,k1))

%axis([0 4*pi -4 12])

NFS = 18.0; % fontsize

NLW = 0.8; % linewidth

set(gca,’FontSize’,NFS,’LineWidth’,NLW);

toc;

function [H0,H1,H2,H3,H4,H5,H6] = Deter_IRBF_H0_H6(x,c,dx)
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nx=length(x);

%IRBFNs ...........

H6 = zeros(nx,nx+6);

% dx=a

for i = 1:nx

for j = 1:nx+6

if ( j <= nx)

r = (x(i)-c(j));

A = sqrt(dx^2+r^2);

B=log(r + A);

H6(i,j)= sqrt(dx^2+ r^2);

elseif(j == nx+1)

H6(i,j) =0 ;

elseif(j== nx+2)

H6(i,j) =0 ;

elseif(j== nx+3)

H6(i,j) = 0;

elseif(j== nx+4)

H6(i,j) = 0;

elseif(j== nx+5)

H6(i,j) = 0;

elseif(j== nx+6)

H6(i,j) = 0;

end

end

end

%Determine H5

H5 = zeros(nx,nx+6);

for i = 1:nx

for j = 1:nx+6

if ( j <= nx)
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r = (x(i)-c(j));

A = sqrt(dx^2+r^2);

B=log(r + A);

H5(i,j)= 0.5*A*r+0.5*B*dx^2;

elseif(j == nx+1)

H5(i,j) = 1 ;

elseif(j== nx+2)

H5(i,j) =0 ;

elseif(j== nx+3)

H5(i,j) = 0;

elseif(j== nx+4)

H5(i,j) = 0;

elseif(j== nx+5)

H5(i,j) = 0;

elseif(j== nx+6)

H5(i,j) = 0;

end

end

end

H4 = zeros(nx,nx+6);

for i = 1:nx

for j = 1:nx+6

if ( j <= nx)

r = (x(i)-c(j));

A = sqrt(dx^2+r^2);

B=log(r + A);

H4(i,j)= 1/6*(3*dx^2*B*r+A*(-2*dx^2+r^2));

elseif(j == nx+1)

H4(i,j) =x(i) ;

elseif(j== nx+2)
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H4(i,j) =1 ;

elseif(j== nx+3)

H4(i,j) = 0;

elseif(j== nx+4)

H4(i,j) = 0;

elseif(j== nx+5)

H4(i,j) = 0;

elseif(j== nx+6)

H4(i,j) = 0;

end

end

end

H3 = zeros(nx,nx+6);

for i = 1:nx

for j = 1:nx+6

if ( j <= nx)

r = (x(i)-c(j));

A = sqrt(dx^2+r^2);

B=log(r + A);

H3(i,j)= 1/48*(-3*dx^4*B+12*dx^2*B*r^2+A*r*(-13*dx^2+2*r^2));

elseif(j == nx+1)

H3(i,j) =1/2*( x(i)*x(i)) ;

elseif(j== nx+2)

H3(i,j) =x(i) ;

elseif(j== nx+3)

H3(i,j) = 1;

elseif(j== nx+4)

H3(i,j) = 0;

elseif(j== nx+5)

H3(i,j) = 0;
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elseif(j== nx+6)

H3(i,j) = 0;

end

end

end

H2 = zeros(nx,nx+6);

for i = 1:nx

for j = 1:nx+6

if ( j <= nx)

r = (x(i)-c(j));

A = sqrt(dx^2+r^2);

B=log(r + A);

H2(i,j)= 1/720*(B*(-45*dx^4*r+60*dx^2*r^3)

+A*(16*dx^4-83*dx^2*r^2+6*r^4));

elseif(j == nx+1)

H2(i,j) =1/6*( x(i)*x(i)*x(i)) ;

elseif(j== nx+2)

H2(i,j) =1/2*( x(i)*x(i)) ;

elseif(j== nx+3)

H2(i,j) = x(i);

elseif(j== nx+4)

H2(i,j) = 1;

elseif(j== nx+5)

H2(i,j) = 0;

elseif(j== nx+6)

H2(i,j) = 0;

end

end

end

H1 = zeros(nx,nx+6);
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for i = 1:nx

for j = 1:nx+6

if ( j <= nx)

r = (x(i)-c(j));

A = sqrt(dx^2+r^2);

B=log(r + A);

H1(i,j)= 1/5760*(15*dx^6*B+60*dx^2*B*r^2*(-3*dx^2+2*r^2)

+A*r*(113*dx^4-194*dx^2*r^2+8*r^4));

elseif(j == nx+1)

H1(i,j) =1/24*( x(i)*x(i)*x(i)*x(i)) ;

elseif(j== nx+2)

H1(i,j) = 1/6*( x(i)*x(i)*x(i));

elseif(j== nx+3)

H1(i,j) =1/2*( x(i)*x(i)) ;

elseif(j== nx+4)

H1(i,j) = x(i);

elseif(j== nx+5)

H1(i,j) = 1;

elseif(j== nx+6)

H1(i,j) = 0;

end

end

end

H0=zeros(nx,nx+6);

% i= Row number j=column number

for i = 1:nx

for j = 1:nx+6

if ( j <= nx)

r = (x(i)-c(j));

A = sqrt(dx^2+r^2);

B=log(r + A);

H0(i,j)= 1/5760*(3*B*(5*dx^6*r-20*dx^4*r^3+8*dx^2*r^5)
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+(1/35)*A*(-128*dx^6+1779*dx^4*r^2-1518*dx^2*r^4+40*r^6));

elseif(j == nx+1)

H0(i,j) = 1/120*( x(i)*x(i)*x(i)*x(i)*x(i)) ;

elseif(j== nx+2)

H0(i,j) = 1/24*( x(i)*x(i)*x(i)*x(i)) ;

elseif(j== nx+3)

H0(i,j) = 1/6*( x(i)*x(i)*x(i)) ;

elseif(j== nx+4)

H0(i,j) = 1/2*( x(i)^2);

elseif(j== nx+5)

H0(i,j) = x(i);

elseif(j== nx+6)

H0(i,j) = 1;

end

end

end
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