
PIECEMEAL: A FORMAL COLLABORATIVE EDITING

TECHNIQUE GUARANTEEING CORRECTNESS

Stijn Dekeyser* and Jan Hidders**
*University of Southern Queensland

**Delft University of Technology

ABSTRACT

While collaboration on documents has been supported for several decades by a variety of systems and tools, in recent

months a renewed interest is apparent through the appearance of new collaborative editors and applications. Some of

these distributed groupware systems are plug-ins for standalone word processors, while others have a purely web-based

existence. Most exemplars of the new breed of systems are based on Operational Transformations, although some are

using traditional version management tools and still others utilize document-level locking techniques.

All current techniques have their own drawbacks, creating opportunities for new methods. In this paper we present a

novel collaborative technique for documents which is based on transactions, schedulers, conflicts and locks. It is not

meant to replace existing techniques; rather, it can be used in specific situations where the alternatives are less attractive.

While our approach is highly formal with an emphasis on proving desirable properties such as guaranteed correctness, the

work is part of a university-industry linkage project which aims to fully implement our technique.

KEYWORDS

Collaborative editing, transactions and scheduling, locking, distributed computing, theory.

1. INTRODUCTION

While some lesser known approaches exist (e.g. Dekeyser et al, 2004 and Oster et al, 2007), collaboration on

documents is typically done in two distinct ways. In the asynchronous setting collaborators typically check

out a document from a central repository, make changes off-line over an extended time, and then check in

their version of the document at which time they are typically asked to solve inconsistencies with the version

currently stored in the repository. This type of collaboration has been possible since the introduction of the

Source Code Control System (SCCS) in the early seventies of the previous century. Successors of SCCS

have included RCS, CVS, and Subversion. The last of these is still in widespread use and for example

provides the collaboration functionality of systems such as ICE (Sefton et al, 2006).

The second approach to collaboration, found in most modern CSCW (Computer-Supported Cooperative

Work) systems, involves synchronous collaboration where editors are aware of other users’ changes while

working on their own content. This setting requires on-line communication and uses a replicated

architecture: shared documents are replicated at local sites such that each works on their own local copy and

changes are propagated to other users. Such systems are called real-time: the response for local operations is

quick and the latency for remote operations is relatively low. Examples of real-time editors include CoWord

(Xia et al, 2004), Google Docs, and Google Wave (which is more than just a real-time editor, but that is

beyond the scope of this paper). The newest such systems call themselves really real-time: local operations

are applied immediately, and remote operations are applied within seconds. EtherPad, recently acquired by

Google, is an example of a really real-time editor.

1.1 Current Techniques

We briefly discuss existing collaboration techniques and highlight some of their strengths and drawbacks.

Due to a lack of space we limit this discussion to the two dominant methods.

IADIS International Conference Collaborative Technologies 2010

125

1.1.1 Version Control Systems

As discussed above, Subversion is currently the most widely used versioning control system, but has its

foundations in SCCS. The underlying collaboration technique is well understood and robust, although not

grounded on a formal model or supported by a theory of correctness. The technique makes use of a so-called

diff between two text documents, at the level of individual lines. At its most basic level, a diff is represented

by lines that are marked as additions, lines that are marked as deletions and lines that are not marked and that

are used as a context to help decide where a change was made in a document. This implicit notion of a

context is one that we will formalize in our approach.

In contrast to techniques based on locking, the use of a diff cannot fully prevent conflicts between

document versions. This is the main weakness of the version control approach for collaboration; users are

asked to resolve conflicts if they occur. Other weaknesses include: the limitation to asynchronous

communication and the lack of visual feedback on collaboration in the client. The main strength is in the

technique’s simplicity and that it does not require on-line connection and can synchronize documents that

have been edited off-line over lengthy periods.

Compared to this approach, our proposed technique, dubbed Piecemeal, will maintain the simplicity (at

least for clients), and seamlessly offer both real-time synchronous as well as off-line asynchronous operation.

1.1.2 Operational Transformations

Most real-time and real real-time collaborative editors make use of the Operational Transformation technique

(Ellis and Gibbs, 1989) as it is a highly optimistic method that fundamentally allows any operation to proceed

at the local copy and then relies on appropriate transformation of the operation at remote sites. The

transformation of an operation typically involves modifying the position in the local document where the

operation needs to be applied. Hence, as in the previous approach, the technique is strongly tied to position in

a sequential list of characters.

The consistency model used by OT relies on three properties: (1) convergence which means that

ultimately copies of shared documents will become identical when all operations have been applied

everywhere; (2) causality preservation which, simplified, means that dependent operations are executed in

the same order on all sites; and (3) intention preservation which means that the intention of an operation is

maintained at all sites (Wang et al, 2002).

The main advantages of OT are: that it is highly suitable for real-time collaboration because its optimistic

approach results in high speed, that it does not require locks nor a central server, and that under most

circumstances it works well (Sun and Ellis, 1998). However, the drawbacks of OT are also significant: there

is no guarantee for correctness and the consistency model is problematic (Sun and Sun, 2009),

implementation of a correct transformation for operations is difficult and has in fact been proven to be faulty

in many systems (Imine et al, 2006), supporting undo operations is problematic (Ressel et al, 1996; Ressel

and Gunzenhauser, 1999), and there is no inherent support for merging of document versions produced in an

off-line manner.

In comparison to OT, the proposed Piecemeal technique will seamlessly support both real-time as well as

off-line operation, will formally guarantee correctness and show that its rules are as strict as they need to be

but not stricter, and will enable simple, specification driven implementation. Piecemeal has the additional

benefit that support for undo actions is comparatively straightforward. Measured against OT, our approach

has a number of perceived drawbacks which we briefly address:

• Central server. While OT allows peers to communicate without a server, Piecemeal employs a

scheduler that accepts or disallows operations. While this may be seen as a bottleneck, it is instructive to

note that current OT-based really real-time editors are web-based: a central web server relays communication

from client to client. Due to cloud-type implementation this setup does not lead to a bottleneck, and our

approach would be comparable.

• Stricter strategy. Our approach uses locks to allow a scheduler to determine whether an operation

can proceed or not. Such a strategy is by nature conservative and strict, even if applied by an optimistic

scheduler, but leads to guaranteed correctness and is simpler to implement correctly.

• Overhead. Our server keeps track of locks, which is an overhead not incurred in OT. However,

note that the number of locks in a collaborative editor is orders of magnitude less than in a database

environment, as documents have relatively few concurrent editors and each editor typically holds only a few

locks at a time due to the nature of text processing. Furthermore, our approach allows the user to decide on

ISBN: 978-972-8939-21-2 © 2010 IADIS

126

the size of context, making it possible to reduce the number of (read) locks held. Similarly, the size of

constituent pieces in a document (the granularity of locking) is a parameter in our approach.

In (Sun and Sosi! 1999) the authors show that integrating locks in OT cannot solve any of the three

problems of convergence, causality violation and intention violation. Crucially, what enables us to do so

using locking (without the use of OT) is that we use a fundamentally different document model (where

position has been substituted by unique identifiers for ‘blocks’) and our operations are dependent on a

context.

2. THE THEORY OF PIECEMEAL

The focus of this paper lies firmly in providing a solid theoretical foundation for Piecemeal such that both

correctness and necessity of the proposed locking technique can be proven. Due to space constraints we refer

to (Dekeyser and Hidders 2010) for proofs and more details.

Our approach is inspired both by CVS and its successors, and traditional concurrency control theory for

relational databases.

2.1 Documents and Operations

To simplify the final correctness proof, we start from a relatively simple model and subsequently refine it. At

first, documents will be modeled as general graphs where the nodes represent blocks that have a unique

identifier and contain data (text, markup, or both) and the edges represent the fact that a block immediately

precedes another block. The delimiters of a block (and hence its size) can be set by the system prior to the

document being shared for collaborative editing. Since blocks have identifiers, clients will need to be able to

manage globally unique identifiers. Operations on such graphs are modeled as graph-manipulation operations

that add and remove edges. To create a new block (e.g. a paragraph of text), it will need to be positioned in

the document by creating edges that connect it to existing blocks the document. Later in the paper, when

documents have been further restricted, this means that the new block will need a new incoming and

outgoing edge and existing edges will need to be deleted

Definition 1 (Instance and Operation). Given the set of blocks (or nodes) N, an instance is a set I ! N "

N. The set of all instances is I. An operation is a tuple o = (P, D, A) where P, D, A ! N " N are

respectively pattern edges, deleted edges and added edges, such that D # A = $.

Operations, through the A and D edges, encapsulate what needs to change in the document graph. The

edges in D are removed, and the edges in A are added. The P edges are the context in which these changes

occur. They are the formalization of the diff tools’ non-marked lines and will correspond to read locks in our

concurrency model. It is important to note that client editors may determine the size (and even the location)

of the context for every individual operation, although the set of edges in the pattern will need to be at least a

subset of the set of edges that are to be deleted although we formally do not require this at this stage.

The semantics of an operation o = (P, D, A) is defined as a partial function o : I " I such that o(I) = (I %

D) & A if P ! I and undefined otherwise. The concatenation of two such partial functions o1 and o2 is

denoted as o1 ° o2 and defined such that (o1 ° o2)(I) = o1(o2(I)) if o1(o2(I)) is defined, and undefined otherwise.

There is a clear conflict between two operations if one removes the edges that the other one requires.

Operation o1 = (P1, D1, A1) is said to disable operation o2 = (P2, D2, A2) if P2 # D1 ' $.

Theorem 1. Operation o1 disables o2 iff o2 ° o1 is undefined for all instances.

The proof is given in [TR].

Corollary. Two operations o1 and o2 are mutually disabling iff both o1 ° o2 and o2 ° o1 are undefined for

all instances.

2.2 Graph Locking

Transaction-oriented concurrency control is usually based on the commutativity of operations that do not

conflict, i.e., the fact that their order in a schedule can be changed without affecting the final outcome of the

schedule. It is this notion that is used in concurrency control theory to show the correctness of a scheduler by

IADIS International Conference Collaborative Technologies 2010

127

demonstrating for example that under the absence of cycles in the conflict graph the schedule can be

serialized, i.e., the operations can be moved around in the schedule without changing its semantics to an

order where the operations of the transactions are not interleaved. The challenge here is to come up with a

notion of conflict that is optimal in the sense that the scheduler will disallow as little as possible schedules

(and therefore stop certain operations from executing) that are in fact serializable, and thereby allows the

maximum amount of parallelism.

We therefore now proceed with defining conflicts and showing operation commutativity in the relatively

simple case where documents are graphs as defined in Definition 1. In subsequent sections we will refine

this model.

Definition 2 (Conflicting operations). Two operations o1 = (P1, D1, A1) and o2 = (P2, D2, A2) are said to

conflict if at least one of the following holds:

C1. P1 # D2 ' $ C2. P2 # D1 ' $

C3. P1 # A2 ' $ C4. P2 # A1 ' $

C5. D1 # A2 ' $ C6. D2 # A1 ' $

Note that mutually disabling operations are also conflicting operations. The following theorem shows that

if we only consider not-mutually disabling operations it holds that non-conflicting operations indeed do

commute and that all commuting operation are non-conflicting or mutually disabling, i.e., for those

combinations of operations the defined of conflict is theoretically optimal.

Theorem 2 (Commutativity). For all operations o1 and o2 that are not mutually disabling it holds that o1

and o2 do not conflict iff o1 ° o2 = o2 ° o1.

The proof is given in [TR].

The conflict rules also have to deal with the case were both o1 ° o2 and o2 ° o1 are never defined, in which

case the operations commute even though they conflict. We can show that this is indeed the only exception:

Proposition 1. For all operations o1 and o2 it holds that o1 ° o2 = o2 ° o1 iff o1 and o2 do not conflict or

are mutually disabling.

A basic notion in transaction theory is that of schedule which represents a sequence of operations which

would or would not be allowed by a scheduler. Since in practice a scheduler will only allow operations that

have a defined result we will try to syntactically characterize such schedules.

Definition 3 (Schedules). A schedule is a non-empty sequence S = !o1, …, on" of operations. A schedule

is said to be sound if there is an instance I such that (on ° … ° o1)(I) is defined. A schedule S = !o1, …, on" is

said to be well-defined if it holds that for all two operations oi = (Pi, Di, Ai) and oj = (Pj, Dj, Aj) in S such that i

< j and edges (v1, v2) (Di # Pj there is an operation ok = (Pk, Dk, Ak) such that i < k < j and (v1, v2) (Ak.

Theorem 3. A schedule is sound iff it is well-defined.

The proof is given in [TR].

Piecemeal is a conservative concurrency control technique but not necessarily a pessimistic one. A

document server may be implemented using either a commit scheduler or a conflict scheduler. The former

one would be pessimistic in the sense that as soon as an operation arrives that causes a conflict, the scheduler

would make the originating transaction wait and try again. However, a more optimistic conflict scheduler

would allow the conflicting operation to proceed, and then ensure that subsequent operations do not generate

a cycle in the so-called conflict graph. Next to the normal conflict graph we also define a restricted conflict

graph where the conflicts between mutually disabling operations are ignored, i.e., this graph indicates exactly

when operations commute or not.

Definition 4 (Conflict Graphs). The conflict graph of a schedule S = !o1, …, on" is GS = (V, E) where V =

{1, …, n} and E contains the edge (i,j) iff i < j and oi and oj conflict. The restricted conflict graph of a

schedule S = !o1, …, on" is G
r
S = (V, E) where V = {1, …, n} and E contains the edge (i,j) iff i < j and oi and oj

conflict and are not mutually disabling.

It can then be shown that the restricted graph is in terms of paths equivalent to the non-restricted graph.

Theorem 4. For every sound schedule S and edge (i,j) in GS there is a path from i to j in G
r
S.

It follows that an optimistic scheduler which bases its decisions on the presence of cycles, can use the

simpler unrestricted conflict graph without disallowing serializable schedules and would therefore still be

theoretically optimal.

ISBN: 978-972-8939-21-2 © 2010 IADIS

128

2.3 From Graph over Cyclic Instance to Document Locking

As an intermediate step towards restricting instances to documents we first consider cyclic instances that

consist of one or more disjoint simple cycles. Note that we can model a document as a single cycle with one

special edge that connects the end node with the begin node and cannot be removed.

In the following, the set of nodes in a set of edges X is denoted as NX. The set of incoming and outgoing

edges of a node v in a set of edges X is denoted as inX(v) and outX(v), respectively. The indegree and

outdegree of a node v in X are denoted as |inX(v)| and |outX(v)|, respectively.

Definition 5 (Cyclic Instance). An instance I is said to be cyclic if it is finite and for every node v in NI

it holds that |inI(v)| = |outI(v)| = 1.

We now define what a cyclically sound operation is. Intuitively this is an operation where at least for one

instance all additions are real additions, i.e., the edges are not in the instance, the deletions are real deletions,

and the nodes not appearing in the pattern or the delete set are completely new. These restrictions are chosen

such that they represent what might be expected of a correct operation that is specified by the user.

Definition 6 (Cyclically Sound Operation). An operation o = (P, D, A) is said to be cyclically sound if

there is at least one cyclic instance I such that I # A = $, D ! I, NI # (NA % NP&D) = $ and o(I) is defined

and is a cyclic instance.

The problem with Definition 6 is that it suggests that soundness of an operation must be tested by

checking the instance. Since the instance can be very large, it would be better if could determine soundness

by looking only at the operation itself. The following definition is a syntactic approximation of a cyclically

sound operation.

Definition 7 (Cyclically Well-formed Operation). An operation o = (P, D, A) is said to be cyclically well-

formed if it holds that P, D and A are finite, for every node v (NP&D it holds that |inP&D(v)|) 1 and

|outP&D(v)|) 1, P # A = $ and for every node v (ND & NA one of the following holds:

Cwf1: |inA(v)| = 1, |outA(v)| = 1, |inP&D(v)| = 1, |outP&D(v)| = 0

Cwf2: |inA(v)| = 0, |outA(v)| = 0, |inD(v)| = 1, |outD(v)| = 1

Cwf3: |inA(v)| = 1, |outA(v)| = 0, |inD(v)| = 1, |outD(v)| = 0

Cwf4: |inA(v)| = 0, |outA(v)| = 1, |inD(v)| = 0, |outD(v)| = 1

Cwf5: |inA(v)| = 1, |outA(v)| = 1, |inD(v)| = 1, |outD(v)| = 1

The following theorem states that the syntactical notion of cyclically soundness coincides with the

syntactical notion of cyclically well-formedness.

Theorem 5. An operation is cyclically sound iff it is cyclically well-formed.

The preceding theorem states that a cyclically well-formed expression might return a correct result. It can

be shown that under the given restrictions for the input instance it in fact must return a correct result.

Theorem 6. If an operation o = (P, D, A) is cyclically well-formed and I a cyclic instance such that D ! I,

A # I = $, NI # (NA % NP & D) = $ and o(I) is defined, then o(I) is a cyclic instance.

A reasonable restriction on operations is one where the delete set is a subset of the pattern; i.e., it is

checked whether all edges that are to be deleted are indeed present in the instance. This restriction is useful

in the remainder of the theory; hence, we give this property a name.

Definition 8 (Well-guarded Operation). An operation (P, D, A) is said to be well-guarded if D ! P.

The following theorem states that if the result of a well-guarded cyclically well-formed operation is

defined and the new nodes are indeed new nodes, then the result is a cyclic instance.

Theorem 7. For every cyclic instance I and well-guarded cyclically well-formed operation o = (P, D, A)

such that NI # (NA % NP & D) = $ and o(I) is defined then o(I) is a cyclic instance.

Figure 1. Graphical respresentation of Cyclically Well-formed rules as given in Definition 7.

IADIS International Conference Collaborative Technologies 2010

129

We are now ready to revisit the notion of conflicts. We redefine it so that it coincides with the notion of

conflict in a locking protocol where read-locks are requested for edges in P and write locks for edges in A

and D.

Definition 9 (Lock-Conflicting Operations). Two operations o1 = (P1, D1, A1) and o2 = (P2, D2, A2) are

said to conflict if at least one of the following holds:

LC1. P1 # D2 ' $ LC2. P2 # D1 ' $

LC3. P1 # A2 ' $ LC4. P2 # A1 ' $

LC5. D1 # A2 ' $ LC6. D2 # A1 ' $

LC7. A1 # A2 ' $ LC8. D1 # D2 ' $

Note that the conditions LC1, …, LC6 are the same as C1, …, C6 from Definition 2 in Section 2.2

regarding conflicting operations in the setting of graph instances. Only the conditions LC7 and LC8 are new,

indicating that when we look at cyclic instances, operations can cause a lock conflict when they both try to

add or delete the same edges. This will then also imply an alternative notion of conflict graph.

Definition 10 (Lock-conflict Graph). The lock-conflict graph of a schedule S = !o1, …, on" is G
l
S = (V, E)

where V = {1, …, n} and E contains the edge (i,j) iff i < j and oi and oj lock-conflict.

It can then be shown that this lock-conflict graph is in terms of paths equivalent with the preceding

conflict graphs if we restrict ourselves to cyclically sound schedules.

Theorem 8. For every cyclically sound schedule S and edge (i,j) in G
l
S there is a path from i to j in GS.

It therefore follows that although the notion of conflict is here more restrictive, the scheduler that uses it

will still be theoretically optimal for cyclically sound schedules.

As already explained earlier, a document can be represented as a single cycle with a special irremovable

edge that connects the last node with the first node. Unfortunately it is not possible to syntactically

characterize the operations that preserve this property for instances as this is possible for cyclic instances.

This is because the same operation might, given a single cycle as input, sometimes return a single cycle and

sometimes several cycles. As an example, consider the operation o = (P, D, A) with P = D = {(1,2), (3,4),

(5,6)} and A = {(1,6), (3,2), (5,4)}. Consider the instances I1 = (1-2-3-4-5-6) and I2 = (5-6-3-4-1-2). Then

o(I1) results in the document (1-6) plus the separate cycles (2-3) and (4-5), but o(I2) = (5-4-1-6-3-2).

This of course does not mean that we cannot restrict the operations such that they always result in a

document, but the above operation is generated by a fairly straightforward move that moves the blocks (4-1)

from between the blocks 3 and 2 to between the blocks 5 and 6.

A consequence of this is that the document server will, in addition to the syntactical checks on the

operation, still have to check whether the result of the operation still correctly represents a document.

However, there are indexing and optimization techniques that can be used to avoid computing the complete

result and checking whether it consists of a single cycle.

2.4 Working Offline – Operation Merging

The operations as defined in Section 2.1 are highly general in nature. We have seen that only some

operations will be accepted and result in a document as defined in Section 2.3. Even so, they remain

powerful and can encapsulate editing actions from diverse collaborative client editors on complex documents

such as word processing files and serialized graphical content. Mapping client-side editing actions to

Piecemeal operations can proceed on the basis of the needs of the editor and hence may depend on what sort

of document is being edited.

However, the contents of individual operations need not only depend on editors’ requirements. The

generality of operations as allowed in our approach also makes it possible to vary the length or size of a

single operation. Clients may decide to send minute changes to the server, resulting in a steady stream of

tiny operations. Such operations may be seen by other clients (if they so wish) but only become ‘permanent’

upon committing a transaction. Alternatively, clients may decide to go offline and concatenate all changes

into one sole operation. Such a ‘merged’ operation has the advantage of acting as a diff between the version

of the document as last seen from the server, and the one that the offline client currently manages. In

addition, the merged operation is not simply the union of the individual P, A, and D sets; instead, it gives a

condensed presentation of all changes since check-out occurred.

We present the intricate theory behind operation merging in (Dekeyser and Hidders 2010).

ISBN: 978-972-8939-21-2 © 2010 IADIS

130

3. CONCLUSION

We have presented a novel conservative and strict technique for enabling collaborative editing of documents

both on- and offline. Inspired by CVS’s diff approach and its implicit context, we have given a formal

foundation and proven that our technique guarantees correctness while limiting locking to the bare essential.

While requiring a central scheduler and incurring locking overhead, the approach offers an alternative to

Operational Transformations in those situations where a correctness guarantee is critical, clients should be

easy to implement (correctness being the responsibility of the document server), undo operations should be

easy to deal with, and collaboration may occur in online and offline circumstances.

ACKNOWLEDGEMENT

This work was partially funded by IWT, the Flemish agency for innovation by science and technology, under

grant nr. 070171. In addition the authors wish to thank Xenit B.V. for their support and participation in the

execution and implementation of this research.

REFERENCES

Dekeyser, Stijn et al, 2004. A Transaction Model for XML Databases. World Wide Web Journal, 7:1, 29—57.

Dekeyser, Stijn and Hidders, Jan, 2010, A Notion of Serializability for Document Editing and Corresponding Optimal

Locking Protocols, Delft University of Technology technical report, March, Available at:

http://www.st.ewi.tudelft.nl/~hidders/docs/piecemeal-tr.pdf

Ellis, Clarence and Gibbs, S, 1989, Concurrency Control in Groupware Systems. Proceedings of the ACM SIGMOD

Conference on Management of Data. Seattle, US, 399—407.

Imine, Abdessamad et al, 2006. Formal design and verification of operational transformation algorithms for copies

convergence. Theoretical Computer Science, 351:2, 167—183.

Oster, Gerald et al, 2006, Data Consistency for P2P Collaborative Editing. Proceedings of the 2006 ACM conference on

Computer supported cooperative work (CSCW’06). Banff, Canada.

Oster, Gerald et al, 2007, Supporting Collaborative Writing of XML Documents. Proceedings of the International

Conference on Enterprise Information Systems (ICEIS’07). Madeira, Portugal.

Ressel, M. and Gunzenhauser, R, 1999, Reducing the Problems of Group Undo. Proceedings of the ACM conference on

Supporting Group Work (GROUP’99). Phoenix, US, 131—139.

Ressel, M. et al, 1996, An integrating, transformation-directed approach to concurrency control and undo in group

editors. Proceedings of the 1996 ACM conference on Computer supported cooperative work (CSCW’96). New York.

Sun, Chengzheng and Sosi!, Rok, 1999, Optimal locking integrated with operational transformation in distributed real-

time group editors. Proceedings of the eighteenth annual ACM symposium on Principles of distributed computing

(PODC’99). Atlanta, US, 43—52.

Sun, Chengzheng and Ellis, Clarence, 1998, Operational transformation in real-time group editors: issues, algorithms,

and achievements. Proceedings of the 1998 ACM conference on Computer supported cooperative work (CSCW’98).

Seattle, US, 59—68.

Sun, David and Sun, Chengzheng, 2009. Context-Based Operational Transformation in Distributed Collaborative Editing

Systems. IEEE Trans. Parallel Distrib. Systems, 20:10, 1454-1470.

Wang, Xueyi et al, 2002, A New Consistency Model in Collaborative Editing Systems. Proceedings of the 4th

International workshop on Collaborative Editing.

Xia, S. et al, 2004, Leveraging Single-User Applications for Multi-User Collaboration: the CoWord Approach.

Proceedings of the ACM conference on Computer supported cooperative work (CSCW’04). Chicago, US, 162—171.

IADIS International Conference Collaborative Technologies 2010

131

!

AUTHOR INDEX
!
"#$%&&'(!)*! ***+,!

"-.$/$'&/$'(!0**,,1!

"&2%33454(!6*! ***78!

9:&;<'==%(!>*! **,?@!

9:&&:(!A*!***7,+!

9:&&'&4(!B*! ***?C(!7,C!

9:&&%;'--%(!9* ***,7(!78!

9'5(!D*!***,C7!

9'33%3(!E*!***,@7(!,+F!

945=;<'G(!9*! **,FC!

943%4(!H*!**78!

9&4'5%5I(!H* ***@J!

K:.%=L:(!B*! ***,8?!

K:&&%#:5(!E*! ***C1!

K:$(!"***,1F!

K'&&%(!)* **,+C!

K<::&%(!M* **,+C!

K<:5#(!N***,1C!

K<'.%-(!K*!***,+C!

K<'5(!O***,1C!

K4&=P3(!B* **?C(!7,C!

K4&=P3(!Q* **?C!

R:5%-';I%(!"* **,??!

R'I'S3'&(!)***,7J!

R45#(!0*! ***FJ!

B'=='&(!T*! ***,8,!

B%#$'%&:!B%-<4(!B*! ***,,1!

B4&.'3(!E*! **C1!

B&:53'5(!B* **@J!

H:--'#4(!R*! **,J1!

H:&;U:(!A*!***+,!

H'$3(!V* **,,1!

H4S(!"*! *** !78!

H&'#4&(!R*!**?C(!7,C!

H&433(!Q* ***11(!,8,!

H$4(!)*!***,1C!

N%22'&3(!0**,7J!

N4-$.(!V**,JC!

N4$&%L%(!O*! ***C1!

N$:5#(!6*!***7F!

N$:5#(!D* ***7F!

W:;4.(!K*! **,7(!78!

0:&2%XYH45Z:-G'3(!O* *************************************,FC!

04<5345(!V***C1!

[:;3$I(!V**+?!

[-'%5<$%3(!H*! *** @J!

[4.$3%!3I:(!"*! ** ,??!

6'\\]5%'X%(!0* ** ,F?!

6'$(!0** 7F!

6%5(!D* ** ,1C!

64;:='--%(!T*!** ,8?!

6$(!D*! ** ,C7!

T:#:.-'<(!T* *** ,1F!

T:%5'==%(!6*!** ,?@!

T:\-'(!K*** ,@7(!,+F!

T:&=U5'L(!W!** !,J1!

T'524(!"*! *** 7,+!

T%--:(!0*! *** ?C!

T4&'54(!R*! ** +,!

T$5=':5(!T** 781!

^&-:524(!"** ,?@!

V'I4(!H*!*** FJ!

V'=&45'(!H*! *** !78!

V&%'=4(!R*! *** 7,+!

_$'X:2:(!0*** +,!

O:3X$33'5(![*** C!

O4<2'(!T*!** FJ!

):-G:;<`:(!0** ,J1!

):5=(!V* *** ,@7(!,+F!

);<%&X'&(!T* ** 11!

)'#5:5(!T*! *** !78!

)<:(!M*!** ,C7!

)%X45'(!K*** ,8?!

)%\43(!H*!** +?!

)4=%&%:2%3(!)*! ** ,@7(!,+F!

)$52:&:X(!R*** FJ!

Q:\%:24&(!"*! ** 7,+!

Q<%XX(!N*! *** C!

Q4&:-(!)*** ?C(!7,C!

Q&4$.%-(!V*! *** ,JC!

Q3$'%(!T* ** JC!

a:&#:3(!T*!*** ?C!

a'&#:--4(!O* ** ,?@!

a%G'3(!0*** 7,+!

M:&2(!T* ** ,1F!

b'2:5(!N*!*** ,1F!

b<:5#(!6* ** ,C7!

b<$(!6*!*** ,7(!78!

!

	CT 2010, WBC 2010 - Cover
	CT 2010, WBC 2010
	COPYRIGHT
	SECTION I - CT 2010
	TABLE OF CONTENTS
	FOREWORD
	PROGRAM COMMITTEE
	KEYNOTE LECTURE
	FULL PAPERS
	INFORMATION MODELLING FOR FLEXIBLE INFORMATION PROVISIONING IN COLLABORATIVE NETWORKS
	NEW DESIGN STRATEGIES: USING THE HIVE MIND SPACE MODEL TO ENHANCE COLLABORATION
	OPEN, COLLABORATIVE TASK MANAGEMENT IN WEB 2.0
	EFFECTIVENESS OF INTER-ORGANIZATIONAL SYSTEMS IN GLOBAL MANUFACTURING: EVIDENCE FROM INDUSTRIAL CASES IN TAIWAN
	A FRAMEWORK FOR MANAGING COLLABORATION AND CONFLICT IN COMPLEX SYSTEMS
	SECURITY FOR ICT COLLABORATION TOOLS
	A STUDY OF SYNCHRONOUS PEER-TUTORING SYSTEM FOR ENHANCING ELEMENTARY STUDENTS’ MATHEMATICS
	SFDL: MVC APPLIED TO WORKFLOW DESIGN
	EFFICIENT PARTITIONING OF GRAPHS IN COLLABORATIVE WORKFLOW EDITOR SYSTEMS
	COLLABORATIONBUS AQUA: EASY COOPERATIVE EDITING OF UBIQUITOUS ENVIRONMENTS
	CONTEXT-AWARE MEDIATED LEARNING SYSTEM FOR ORGANISATIONAL TRANSFORMATION
	SMART CAMERAS FOR COOPERATIVE URBAN APPLICATIONS
	DISCLOSURE TEMPLATES FOR SELECTIVE INFORMATION DISCLOSURE
	AWARENESS INFORMATION TO SUPPORT COLLABORATION AMONG HETEROGENEOUS COMMUNITIES: THE CASE OF CARE NETWORKS
	BROADENING THE PERSPECTIVE ON CLASSIFICATION SYSTEMS IN THE WEB: ANALYZING WEB CLASSIFICATION AS A SITUATED ACTIVITY WITHIN COMMUNITIES OF PRACTICE
	PIECEMEAL: A FORMAL COLLABORATIVE EDITING TECHNIQUE GUARANTEEING CORRECTNESS
	COMPLIANCE VERIFICATION USING A JOINT MODEL OF OPEN WORKFLOW NET AND GLOBAL CALCULUS
	ENCODING MINIMUM REQUIREMENTS OF INTERCONNECTED GRID VIRTUAL ORGANISATIONS USING GENETIC ALGORITHMS

	SHORT PAPERS
	EYE-CONTROL OF VIDEOCONFERENCING ENVIRONMENT USING COMMON WEB-CAMERAS
	GENERATING AWARENESS FROM COLLABORATIVE WORKING ENVIRONMENT USING SOCIAL DATA
	PERFORMANCE EVALUATION OF E-COLLABORATION
	A MOBILE AGENT STRATEGY FOR GRID INTEROPERABLE VIRTUAL ORGANISATIONS
	SERVICE CONFIGURATION ITEM: INTERACTION- BASED SERVICE DESCRIPTION FRAMEWORK
	TOWARDS A MULTILINGUAL SEMANTIC FOLKSONOMY
	ONTOLOGY-BASED CONTENT DEVELOPMENT IN COLLABORATIVE ENVIRONMENTS WITH SEMANTIC SERVICES
	DOMAIN SPECIFIC SERVICE ORIENTED REFERENCE ARCHITECTURE (CASE: DISTRIBUTED DISASTERS AND EMERGENCY KNOWLEDGE MANAGEMENT)
	FROM ITEM TO HUMAN TRACEABILITY BY EPC-AWARE TECHNOLOGIES: A CASE STUDY
	MESSAGE LOGGING FOR EXTERNAL SUPPORT OF WEB SERVICES RECOVERY

	REFLECTION PAPER
	ABOUT PORTAL-BASED COLLABORATIVE ENVIRONMENTS

	POSTERS
	A WIRELESS CORBA ADAPTATION FOR BUILDING A MULTI-USER ENVIRONMENT
	RESOURCE´S RELATIONSHIPS IN THE DESIGN OF COLLABORATIVE WEB APPLICATIONS
	A WIRELESS CORBA ADAPTATION FOR BUILDING A MULTI-USER ENVIRONMENT
	RESOURCE´S RELATIONSHIPS IN THE DESIGN OF COLLABORATIVE WEB APPLICATIONS

	AUTHOR INDEX

	SECTION II - WBC 2010
	TABLE OF CONTENTS
	FOREWORD
	PROGRAM COMMITTEE
	KEYNOTE LECTURE
	WORKSHOP
	FULL PAPER
	THE ROLE OF WEB-BASED SOCIAL MEDIA IN THE FORMATION OF A TOURISM DESTINATION IMAGE

	SHORT PAPERS
	CREATING A COLLABORATIVE ENVIRONMENT FOR THE SUPPORT AND MANAGEMENT OF GEOGRAPHICALLY DISPARATE EDUCATORS
	ONLINE COMMUNITY FOR THE PROMOTION OF HEALTH DISPARITIES RESEARCH AND TRAINING
	SUPPORTING OPEN INNOVATION COMMUNITIES BY AN INTERACTIVE NETWORK VISUALIZATION
	WEB COMMUNITY CONTRIBUTORS’ MOTIVATION: JAPANESE WIKIPEDIA CASE STUDY

	REFLECTION PAPERS
	ONLINE COMMUNITIES AND OC BUILDING – A REVIEW OF DEFINITIONS AND BEST PRACTICES
	WEB2.0-BASED INTERACTIVE MODE OF INQUIRY-BASED LEARNING AND INTERACTIVE QUALITATIVE RESEARCH
	THE POWER OF COMMUNITY: SURVIVAL STRATEGIES FOR COMPANIES IN THE SOCIAL WEB

	POSTER
	STUDY ON THE APPLICATION OF THE NETWORK FORUM BASED ON 3G TO ENGLISH WRITING COURSE

	AUTHOR INDEX

