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ABSTRACT: In this study a Dissipative Particle Dynamics (DPD) method is employed with

its input parameters directly determined from the fluid properties, such as the fluid mass

density, water compressibility and viscosity. The investigation of thermal fluctuation scaling

requires constant fluid properties, and this proposed DPD version meets this requirement.

Its numerical verifications in simple or complex fluids under viscometric or non-viscometric

flows indicate that (i) the level of thermal fluctuations in the DPD model for both types

of fluids is consistently reduced with increasing in coarse-graining level; and (ii) viscometric

or non-viscometric flows of a model fluid at different coarse-graining levels have a similar

behaviour. Furthermore, to reduce the compressibility effect of the DPD fluid in simulating

incompressible flows, a new simple treatment is presented and shown to be very effective.
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1 INTRODUCTION

Dissipative Particle Dynamics (DPD) method is a simulation technique designed for mod-

elling complex fluids, primarily in the mesoscale domains [1-4]. In this scheme, the system is

thermally equilibrated through a thermostat formed by the dissipative and random forces.

DPD conserves momentum locally and therefore preserves hydrodynamics. The method has

been used to simulate various fluid systems, for example, particulate suspensions [5,6,7],

microfluidic systems [8], red blood cells [9], thixotropic materials [10], polymer solutions

[11], nanoporous shales [12], to name a few. In DPD, the solvent phase is simply modelled

by a set of particles (called DPD particles) under their Newton second law motions, while

the suspended phases (e.g., solid particles, droplets, bubbles and polymer chains) can all be

constructed from the DPD particles through appropriate constraints. With its simplicity,

there are several issues in the DPD method related to (i) a fixed equation of state; (ii) no

formal way of deriving DPD from an atomistic system for simple fluids (unbonded atoms);

(iii) non-isothermal equations needs to be handled carefully; (iv) scaling of thermal fluctu-

ations may be inconsistent; and (v) specification of fluid properties is not physically clear

[13,14,15,16]. There have been many attempts made to improve the standard DPD formu-

lation. For example, the many-body DPD was introduced by Pagonabarraga and Frenkel

[17] to produce an arbitrary equation of state. To deal with non-isothermal problems, the

energy conserving DPD was developed by Bonet Avalos and Mackie [18] and Español [19]

independently. Mai-Duy et al. [20,21] made use of analytic expressions from the kinetic the-

ory due to [4] (see also [22]) to derive good estimates for the fluid viscosity, compressibility,

its time-scale ratio and its dynamic response – these fluid properties can now be specified

as input parameters to the DPD fluid. Note that the viscosity and mass density here are

defined in terms of DPD units which are the mass of a single DPD particle (m), force cut-off

radius (rc) and thermal energy (kBT ).

As a particle-based method, DPD may suffer from the effect of compressibility. The com-

pressibility of a DPD fluid was investigated in several works. For example, in [23], it was
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observed that, due to the compressibility effect, the DPD prediction of the drag force acting

on a sphere is no longer accurate when the Reynolds number is greater than 100. In [24],

the coherent structures of the transition to turbulence in compressible shear flows with DPD

was investigated, where the speed of sound in a DPD fluid is obtained by measuring the

speed of propagation of a density pulse. In [25], two test models were proposed, where both

the density and the divergence of the velocity field are considered. It was reported that the

condition of constant density and divergence-free of velocity can be approximately achieved

at large values of the repulsion parameter. In [26], reducing the particles’ mass was shown

to be an effective way to induce an incompressible slow viscous flow in a DPD fluid and

simultaneously enhance its dynamic response.

DPD is a coarse-graining technique for the simulation of fluids at the mesoscale, where

hydrodynamics and thermos fluctuations have a role. There was concern that the process of

coarse-graining in DPD has its upper limit that would prevent the method from widespread

use. By taking into account the dependence of the parameters in the model on the level

of coarse-graining, the DPD and the many-body DPD were shown to be truly mesocopic

methods in [27] and [28], respectively. With the scaling schemes presented in [27,28], the

DPD methods can be applied to any desired length scale, where different physical systems

can share some physical properties such as compressibility (but not viscosity, to be discussed

later).

It should be pointed out that the DPD can be employed in its generalised hydrodynamic

regime, where the transport coefficients are dependent on the wavelengths and frequencies of

thermal fluctuations and through which finite-size effects can be taken into account [29,30,31].

In this work, we will examine numerically the “physical input” version of DPD, and focus on

its coarse graining and scaling, and its compressibility. In the study of thermal fluctuation

scaling, the fluid properties (e.g., mass density, compressibility and viscosity) should remain

invariant with respect to the coarse-graining level. We will show that this requirement can

be met by scaling the original DPD inputs in a way that can make the pre-determined input
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values unchanged. It is observed that the thermal fluctuations reduce in magnitude with

higher coarse-graining levels, and the flows of a model fluid at different coarse-graining levels

are demonstrated to have a similar behaviour. In this work, the compressibility of the model

fluid is matched to that of water. To reduce unwanted compressibility effects, a simple way

based on the time-scale ratio is proposed and shown to be very effective.

The remainder of the paper is organised as follows. A brief review of DPDs with classical

and explicit input parameters is given in Section 2. The coarse graining process is shown

to achieve a consistent thermal fluctuation scaling in Section 3, and its flow behaviour and

some means of reducing unwanted compressibility effects of the DPD fluid are presented and

discussed in Sections 4 and 5, respectively. Section 6 gives some concluding remarks.

2 DPD

2.1 Classical DPD

In DPD, the fluid is modelled by a system of particles undergoing their Newton 2nd law

motions [1,2]:

mr̈i = miv̇i =
N∑

j=1,j 6=i

(Fij,C + Fij,D + Fij,R) + Fi,e, (1)

where m, ri and vi represent the mass, position vector and velocity vector of a particle i,

i = 1, . . . , N , respectively, N is the total number of particles, the superposed dot denotes a

time derivative, Fi,e is an external force on particle i, and the first three forces on the right

side represent the conservative (subscript C), the dissipative (subscript D) and the random
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forces (subscript R):

Fij,C = aijwCeij, (2)

Fij,D = −γwD (eij · vij) eij, (3)

Fij,R = σwRθijeij, wR =
√
wD, σ =

√
2γkBT . (4)

Here, aij (a scalar), γ and σ are constants reflecting the strengths of these forces, wC , wD and

wR configuration-dependent weighting functions, eij = rij/rij a unit vector from particle j

to particle i (rij = ri − rj, rij = |rij|), vij = vi −vj a relative velocity vector, θij a Gaussian

white noise, T the (absolute) temperature, and kB the Boltzmann constant (kBT the thermal

energy). All these interaction forces are pairwise, centre-to-centre, and zero outside a cutoff

radius rc. An example of the external force is gravity (body force), which is often used to

simulate the effect of a pressure gradient. It is noted that the random force is introduced

in such a way to guarantee the satisfaction of the fluctuation-dissipation theorem [2]. In

practice, the equations of motion (1) are solved in reduced units; one can take, for example,

m = 1, rc = 1 and kBT = 1.

There are three time scales in the stochastic differential equation (1) [22]:

• a fluctuation time scale τR of the random force, which is arbitrarily small,

• an inertia time scale τI = O (mγ−1),

• and a relaxation time scale τ = O (γH−1), where H is the stiffness of the system,

H = O(|∂rFC |) = O (aijr
−1
c ).

The flow domain is divided into a set of fixed small bins to collect results from numerically

solving the DPD equations of motion (1). Data collected in each bin include the velocities,

forces and the number of entries of the DPD particles. The averaging process is then carried

out to produce the flow properties (e.g., number density, fluid density and linear momentum).
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The stress tensor is computed using the Irving-Kirkwood formula and the pressure can be

found from the trace of the stress tensor [4].

In the classical DPD method, a standard choice of the weighting functions is wC = (1−r/rc)

and wD = (1− r/rc)
2, and the input parameters include aij, σ, kBT , m, n (particle density)

and rc. Note that γ is not an independent input parameter (γ = σ2/(2kBT )). In general, any

modification of the input DPD parameters can result in a change of the fluid properties (e.g.,

viscosity). In particular, by changing n while keeping all the other variables unchanged, the

resultant DPD system represents a different fluid, which makes the characteristic study of

DPD (e.g., scaling of thermal fluctuations) difficult.

2.2 DPD with explicit input parameters

In the proposed DPD here, the fluid viscosity, compressibility, dynamics response and time-

scale ratio can be specified in advance, as discussed in [20,21]. For the sake of completeness,

basic formulas of the physical input version of DPD [20,21] are reproduced below.

The weighting function for conservative forces is chosen as wC = (1 − r/rc)
s̄. The two free

parameters, aij and s̄ in function wC , are designed to satisfy given values of the time-scale

ratio α [21] and dimensionless compressibility κ−1 [32,33,27], according to

α =
τ

τI
=

γ2rc
maij

, (5)

κ−1 =
1

kBTnκT

=
1

kBT

∂p

∂n
. (6)

In (5), τ and τI are defined in the previous section. The time-scale ratio α can be utilised to

keep the dissipative and conservative forces balanced; its values can be acquired from some

numerical experiments in simple flows [21]. In (6), n is the number density, κT the isothermal

compressibility, p the pressure and κ−1 = 15.98 for water. Note that n = nphys/ν, where

nphys is the molecular number density and ν the number of molecules per DPD particle
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(coarse-graining level). The system, (5) and (6), can be solved analytically for the two

variables aij and s̄, given α and κ−1,

aij =
1

α

γ2rc
m

, (7)

s̄ =

√
5 + 4

√
C + 1− 5

2
, C =

8πaijnr
4
c

(κ−1 − 1)kBT
. (8)

It is noted that ∂p/∂n in (6) is explicitly expressed in terms of the cut-off radius, resulting

in C as a function of rc.

The weighting function for dissipative forces is chosen as wD = (1−r/rc)
1/2 [34]. Here, we are

interested in the case of high damping limit, where collisions are mainly due to the dissipative

and random forces. This limit is thought to be relevant to the general DPD case. From the

kinetic theory, there are two contributions to the viscosity, kinetic part and dissipative part.

When the dissipative contribution is dominant, the input/specified viscosity, namely η, of

the DPD system can be imposed by enforcing the following constraint

ηD =
γn2[R2wD]R

30
= η, (9)

in which ηD is the dissipative viscosity predicted by the kinetic theory and [R2wD]R ≡
∫
dRR2wD(R) = 1024πr5c/3465. This equation can be solved for the variable γ:

γ =
51975η

512πn2r5c
. (10)

If the Schmidt number/speed of sound is taken as an additional input to the DPD equation

(1), the weighting function for dissipative forces is employed in the form of (1− r/rc)
s. One

can then use the two parameters s and γ to match the viscosity and dynamic response

ηD = η, (11)

η

ρD
= Sc, D =

2ηK
ρ

, η ≃ ηD, ρ = mn, (12)
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where Sc is the Schmidt number, and ηK and η = ηK + ηD are the kinetic viscosity and the

viscosity predicted by the kinetic theory. In this case, the parameters s and γ take the form

s =
−9 +

√
1 + 4C

2
, C =

6ScmkBTn
2r2c

5η2
, (13)

γ =
5η(s+ 1)(s+ 2)(s+ 3)(s+ 4)(s+ 5)

16πn2r5c
. (14)

It is noted that contributions from the conservative forces to the viscosity are neglected

here. However, as shown in [20], when the repulsion parameter is chosen from the condition

of water-like compressibility, and high values of the input viscosity (values correspond to

s < 2, s: the exponent in the dissipative weighting function) are employed, the differences

between the measured viscosities, where the conservative forces are included and the viscosi-

ties predicted by the kinetic theory are shown to be less than about 4%. In the present work,

relatively high values of the imposed viscosity are chosen and all simulations are conducted

with the inclusion of conservative forces.

3 COARSE GRAINING AND SCALING

In the DPD, one typically employs the mass of a single DPD particle, force cut-off radius

and thermal energy as basic units. The time, mass, length and viscosity of the system are

thus not defined explicitly but in terms of these DPD units. We use the superposed bar to

denote a dimensional quantity and define the unit of mass, length and energy as m, rc and

ε = kBT , respectively.

In Füchslin et al. [27], a physical system represented by N phys molecular particles is to

be scaled (coarse-grained) at different levels ν so that one deals with a smaller number of

particles

N =
N phys

ν
, (15)
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in which ν = Nphys/N is referred to as a coarse-graining level. Two different coarse-graining

levels are considered, ν and ν ′ (modelled by
{
N, kBT , n,m, rc, a, γ

}
and

{
N

′
, kBT

′
, n′, m′, r′c, a

′, γ′
}
, respectively). Their relations in three dimensions are established

as (φ = ν ′/ν is the scaling)

N
′
= φ−1N, kBT

′
= φkBT , n′ = φ−1n,

m′ = φm, r′c = φ1/3rc, τ ′ = φ1/3τ ,

a′ = φ2/3a, γ′ = φ2/3γ, σ′ = φ5/6σ,

(16)

where τ and τ ′ are time scales. With these scalings, it can be shown that DPD is a scale-free

(truly mesoscopic) method.

One may rewrite equation (1) without external forces in the following dimensional differential

form

∆ri = vi∆t, (17)

m∆vi =
∑

j

aijwC (rij) eij∆t−
∑

j

γwD (rij) (eij · vij) eij∆t

+
∑

j

σwR (rij) θijeij
√
∆t. (18)

Let’s scale length by rc, mass by m, and time by τ (which later chosen as

(rc

√
m/kBT ) and define dimensionless variables:

m̂ =
m

m
= 1, r̂ =

r

rc
, t̂ =

t

τ
,

d

dt
=

d

τdt̂
, v̂ =

τ

rc
v. (19)
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Dimensional equations of motion (17) and (18) then reduce to

∆r̂i = v̂i∆t̂, (20)

m̂∆v̂i =
∑

j

aijτ
2

mrc
wC (r̂ij) eij∆t̂−

∑

j

γ τ

m
wD (r̂ij) (eij · v̂ij) eij∆t̂

+
∑

j

σ τ 3/2

mrc
wR (r̂ij) θijeij

√
∆t̂. (21)

By defining new dimensionless parameters as

âij =
aijτ

2

mrc
, γ̂ =

γ τ

m
, σ̂ =

σ τ 3/2

mrc
, (22)

they further reduce to

∆r̂i = v̂i∆t̂, (23)

m̂∆v̂i =
∑

j

âijwC (r̂ij) eij∆t̂−
∑

j

γ̂wD (r̂ij) (eij · v̂ij) eij∆t̂

+
∑

j

σ̂wR (r̂ij) θijeij

√
∆t̂. (24)

with the thermal equilibrium requiring

2kBT γ = σ2.

Making use of the last two expressions in (22) and also k̂BT = kBT/ε = kBT/kBT = 1, the

requirement becomes

2k̂BTkBT γ̂
m

τ
= σ̂2

m2r2c
τ 3

.

Thus the scaling

τ = rc

√
m

kBT
(25)
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will guarantee the thermal equilibrium of the DPD system (23)-(24):

2k̂BT γ̂ = σ̂2. (26)

It can be seen that every system with the same values of

âij =
aijrc

kBT
, γ̂ =

γ rc(
mkBT

)1/2 , σ̂2 =
σ2rc

m1/2kBT
3/2

(27)

will have the same state space. Making use of (16), the three dimensionless parameters scale

as
a′ijr

′
c

kBT
′ = φ2/3+1/3−1

aijrc

kBT
=

aijrc

kBT
, (28)

γ′r′c(
m′kBT

′
)1/2

= φ2/3+1/3−1/2−1/2 γrc(
mkBT

)1/2 =
γrc(

mkBT
)1/2 , (29)

σ′2r′c

m′1/2kBT
′3/2

= φ5/3+1/3−1/2−3/2 σ2rc

m1/2kBT
3/2

=
σ2rc

m1/2kBT
3/2

, (30)

indicating that the two coarse-graining systems are stochastically equivalent. Using (16),

let’s examine the relations for the mass density, compressibility and viscosity, respectively,

ρ′ = m′n′ = φ1−1mn = ρ (invariant) (31)

a′n′r′4c

kBT
′ = φ2/3−1+4/3−1

a n r4c
kBT

=
a n r4c
kBT

(invariant) (32)

γ′n′2r′5c = φ2/3−2+5/3γ n2r5c = φ1/3γ n2r5c (not invariant) (33)

With this scaling scheme, different coarse-graining levels will have the same mass density

and compressibility but different viscosities.

In the present work, the DPD equations are solved in reduced units (of mass, force cut-

off radius and thermal energy). Equations of motion (1) are employed here for simulation.

There are two additional parameters (s̄ in wC and s in wD), which make the relations for the
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parameters between two coarse-graining levels generally more complicated than those in (16).

When the particle number is reduced (n′ = φ−1n, φ > 1), we also take (m′ = φm), increase

the cut-off radius (r′c > rc), but keep not only the mass density and water compressibility but

also the viscosity and Schmidt number (where appropriate) constant. Values of (aij , s̄, γ, s)

and (a′ij , s̄
′, γ′, s′) are derived from expressions (7), (8), (10), (13) and (14) for given sets of

(kBT, α, η, (Sc)) and (kBT
′, α′ = α, η′ = η, (S ′

c = Sc)), respectively. These scalings can be

easily obtained numerically. Note that (i) s̄ is a function of (κ, aij, n, rc, kBT ), s a function

of (Sc, η, m, n, rc, kBT ), aij a function of (α, rc, m, γ), and γ a function of (η, s, n, rc);

and (ii) If Sc is not a specified value, the parameter s is taken to be 1/2.

The thermal fluctuations in the present scaling scheme are studied for both simple and com-

plex fluid systems. A consistent scaling of thermal fluctuations means that their magnitude

becomes smaller with larger particle volumes [35].

3.1 Simple fluids

We consider some Newtonian fluid modelled by α = 1, η = 30, kBT = 1, water-like com-

pressibility and constant mass density (ρ = mn = 8). Three coarse-graining levels employed

with n = {8, 6, 4}, m = {1, 4/3, 2} and rc = {1, 1.1006, 1.2599} are taken to represent

the model fluid. The domain is chosen as 15 × 15 × 15 (in DPD units). For rc, the scaling

factor used is the same as that in (16), i.e. φ1/3. The volume of particles can be regarded as

Vi ∼ 1/n. The results on the distribution of the velocity component of a DPD particle are

shown in Figure 1. It can be seen that the thermal fluctuations are reduced with lower num-

ber densities (larger particle sizes). Note that from the kinetic theory, the Schmidt number

is estimated as 290 for n = 8, 319 for n = 6 and 365 for n = 4.
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3.2 Particulate suspensions

We consider the suspension of a single rigid particle in a Newtonian fluid. The solvent phase

is modelled with α = 1, η = 30, ρ = mn = 8, kBT = 1 and water compressibility, and

the colloidal particle is constructed using the spring model [36]. The domain is chosen as

15× 15× 15 (in DPD units).

In the first test, we employ 3 different coarse-graining levels with n = {8, 6, 4}, rc =

{1, 1.1006, 1.2599} and m = {1, 4/3, 2} for the solvent and keep the volume fraction of

the suspended phase constant. For the spring model, the volume fraction is also the particle

fraction because the standard/basic DPD particles are used to represent both the constituent

and solvent particles. Let N0
C be the number of basic DPD particles used to represent the col-

loidal phase and NS be the number of basic particles used for the solvent phase, the volume

fraction is computed as φ = N0
C/(N

0
C +NS). In the present problem (one colloidal particle),

by taking the number of constituent particles per colloid as the (solvent) particle number den-

sity, the volume fraction remains invariant: φ = 1×n/(1×n+V n) = 1/(1+V ) = 2.96×10−4

(V : the box volume) for any value of n. Using the radial distribution function (RDF) to

measure the exclusion of the colloidal particle at three coarse-graining levels, they all lead

to similar results - the size of the exclusion zone is about 0.475 in DPD units. The results

are displayed in Figure 2, showing the change of n (solvent particle’s size) does not affect

the level of thermal fluctuations of the colloidal particle.

In the second test, we employ n = 8, rc = 1, m = 1 and Sc = 600 for the solvent and the

colloid of three different sizes, i.e. 6, 12 and 20 DPD particles per colloid (by means of RDF,

sizes of exclusion zones are measured as 0.30, 0.36 and 0.51 in DPD units, respectively). The

results are displayed in Figure 3, indicating that the thermal fluctuations of the colloid are

reduced with its larger size.

For the standard DPD method, the exponents of the weighting functions in the dissipative

and repulsive forces are fixed. For the present DPD method, these exponents are variables
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and they are functions of the viscosity, Schmidt number, fluid compressibility and time-scale

ratio. For the test in Section 3.1 (simple fluids) and the first test in Section 3.2 (particulate

suspensions), different coarse-graining levels are considered. When going from one coarse-

graining level to the other, one has different fluids for the standard DPD and the same

fluid for the present DPD. The standard DPD is thus not directly applicable to the study of

thermal fluctuation scaling for these tests. For the second test, only one coarse-graining level

for the solvent is considered. The exponents of the weighting functions in the dissipative

and repulsive forces all stay the same when changing the size of the colloid particle. In this

regard, the present DPD can be considered as the standard DPD and these two versions are

expected to produce similar results. Figure 4 shows a comparison of thermal fluctuations

between the standard DPD and the present DPD. The former is employed with n = 4, rc =

1.5, m = 1, kBT = 1, s̄ = 1, s = 1/2, σ = 3 and aij = 3.5320, which lead to, by means of

kinetic theory, α = 8.5997, η = 16.9721 and Sc = 1.6452× 102. The latter is employed with

n = 4, rc = 1.5, m = 1, kBT = 1, α = 8.5997, η = 16.9721 and Sc = 1.6452 × 102. Similar

behaviours are obtained, and when the size of the colloidal particle is increased, thermal

fluctuations of the colloid are reduced (variance: 0.1643, 0.0867 and 0.0493 for the standard

DPD and 0.1661, 0.0812, 0.0492 for the present DPD).

These tests demonstrate that the present DPD method has a proper scaling with respect to

its thermal fluctuations.

4 FLOWS OF THE MODEL FLUID AT DIFFERENT

COARSE-GRAINING LEVELS

For the viscosity approximation taken in the form of (9), its error depends on the two

quantities n and rc. Using the kinetic theory as a guide, the total viscosity η̄ of the DPD
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system is computed as

η̄ =
3

5

ρkBTnr
2
c

η(s+ 4)(s+ 5)
+ η, (34)

where η is the input viscosity and ρ is the fluid density. In (34), the first term on RHS is the

kinetic viscosity, which should be designed to be negligible. As a result, for a given set of η,

ρ and kBT , one needs to reduce rc if there is an increase in n (smaller mean distance between

particles). In our numerical experiments conducted in Sections 4.1 and 4.2, the product of

n and rc as well as kBT are kept constant. For rc, between two coarse-graining levels, the

scaling factor is chosen as φ.

4.1 Double Poiseuille flow

This flow is simulated in two dimensions. By dividing the domain of analysis into two equal

regions by the line y = 0 and then assigning an acceleration g = (Fe/m, 0) = (1, 0) to each

particle in the upper region (y > 0) and g = (−1, 0) to each particle in the lower region

(y < 0), a periodic Poiseuille flow is produced with the theoretical values of the velocity and

shear stress: ux = ρgxy(Ly/2−y)/(2η) and τxy = ρgx(Ly/2−2y)/2, where 0 ≤ y ≤ Ly/2 and

Ly is the length of the box in the y direction. The simulation results for the double Poiseuille

flows are shown in Figure 5, where three different sets of {n, rc, m} are employed as {8, 1, 1},

{6, 4/3, 4/3} and {4, 2, 2} corresponding to 3200, 2400 and 1600 particles, respectively, over

the flow domain. Other input parameters are η = 30, α = 1, kBT = 1, ∆t = 0.001 and

300000 time steps. The domain is chosen as 20 × 20 (in DPD units). It can be seen from

Figure 5 that both velocities and shear stresses at the three coarse-graining levels have similar

behaviours and they are in a good agreement with the theoretical values.

To test accuracy of the viscosity estimation based on the kinetic theory (i.e. equation (9))

for this problem, the following second order polynomial

ux(y) = −
(
ρgx
2η

)
y2 +

(
ρgx
2η

)
y
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is fitted to the velocity profile with y > 0, which returns the two coefficients from which

the viscosity is computed in an average sense. The obtained viscosity is 30.5173, 30.3265

and 30.0965 for the 3 coarse-graining levels employed. With the input viscosity η = 30, the

differences between the measured viscosities and the input viscosity are thus within 2%.

4.2 Flow past a periodic square array of fixed cylinders

For this type of flow, the analysis can be carried out in two dimensions. Because of its

periodicity, one can replace the infinite domain with a cell volume containing one cylinder.

Assume that the motion of a fluid is driven by a pressure drop in the x direction. Consider

some Newtonian fluid defined by η = 100, ρ = nm = 4, nrc = 16, kBT = 1 and α = 1. Three

coarse-graining levels using relatively small values of the number density (n = {10, 8, 6})

are employed to represent the model fluid. A cell is chosen as 10× 10 (in DPD units).

A cylinder is constructed with the spring model [36]. For n = 8, as shown in Figure 6, the

number of constituent particles used to model a cylinder are chosen as 19 and they are located

at the cylinder’s centre and at the distances r1 = 0.1(1/nx + 1/ny)/2 = 0.1(1/2 + 1/4)/2 =

0.0375 (nxny = n) and r2 = 2r1, in which (1/nx + 1/ny)/2 is regarded as the mean distance

between the solvent particles, and the factor 0.1 is introduced to prevent the fluid particles

from penetrating the cylinder. For other values of n, cylinders are also constructed in a

similar manner, except that the constituent particles are chosen in a way that the ratio of

the number of constituent particles to the total number of particles in the system (particle

fraction) is kept constant, i.e. 0.0232.

Fluid-fluid and fluid-cylinder radial distribution functions (RDFs) at no-flow conditions for

three values of the number density are displayed in Figure 7. If the exclusion zone is defined

as an area where the value of RDF is less than 0.01, then the cylinders are of similar sizes

(about 0.47) and the sizes of fluid particles can be negligible. The small (negligible) size of

the fluid particle is mainly due to the use of large rc (greater than 1) as discussed in [37].
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We impose a range of the body force (Fe = {0.01, 0.02, · · · , 0.10, 0.12, · · · , 0.30}) on the

fluid particles in the x direction to drive the fluid motion. The flows here are slow with

their Reynolds numbers (Re = ρUL/η) being less than 0.2 (L and U : the distance between

the cylinders and mean velocity in the x direction), the diffusion time scale t = ρL2/η = 4

and the convection time scale t = L/U ≃ 20 (for the maximum value of U). For these slow

flows (Re < 0.2), one can have a wide choice of the size ratio of the cylinder to the solvent

particle in the simulation without causing spurious behaviour, and the diffusion time scale is

important as the Peclet number, which measures the ratio of the convection and the diffusion

terms, is small, i.e. Pe = ρLU/η ≃ 0.2. Figure 8 shows the effect of the imposed body force

on the cylinder’s size and fluid particle’s size. It can be seen that the sizes of the cylinder

and fluid particles are not much affected by the change in the imposed force.

Figure 9 displays the obtained drag forces on the three coarse-graining levels. It can be

seen that their behaviours are similar in trend and their values are consistently closer to

each other with decreasing in the mean flow velocity. As the Reynolds number is increased

(larger velocity), a higher Mach number is also resulted and the compressibility effect of the

DPD fluid becomes more significant (Figure 10), which can strongly affect the prediction of

the drag force. The use of lower coarse-graining levels (larger values of the number density)

has higher speeds of sound (lower Mach number) according to equation (36) and thus can

alleviate this problem. This is probably the reason why the coarse-graining level affects the

drag forces predicted here. For this type of flow, an analytic expression of the drag force

derived from the solution of the Stokes equation was reported in [38]. Here, its values are

referred to as theoretical ones. The DPD results are seen to be in better agreement with the

theoretical values as the Reynolds number is reduced.
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5 REDUCING UNWANTED COMPRESSIBILITY EF-

FECTS

Like any fluid that is modeled by a set of particles, a DPD fluid is compressible. Special

attention is thus needed when simulating incompressible flows. In [32,26], water compress-

ibility was enforced in the DPD system. In [26], in addition, the particles’ mass was proposed

to reduce in order to increase the speed of sound. In the present context (DPD with explicit

inputs), compressibility of the DPD fluid is matched to that of water. We investigate the

effect of using lower mass and also propose a new means that can further reduce unwanted

compressibility effects.

We measure compressibility of the DPD fluid by the density residual defined as

∆n =

√∑Nb

i=1
(ni − n)2

Nb
, (35)

where Nb is the number of bins, ni the number density of the ith bin and n the reference

number density.

5.1 The mass approach

Expression for the speed of sound of the DPD fluid is given by [4]

c2s =
kBT

m
+

π

15

anr4c
m

(36)

If the particle’s mass is reduced, it leads to a higher speed of sound as well as a lower Reynolds

number and a smaller diffusion time scale. When the Mach number (M = U/cs, U is a flow

characteristic velocity) is less than 0.3, the flow may be regarded as an incompressible flow.

On the other hand, one has to deal with overdamped (stiff) systems, for which much smaller
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time steps are required for a proper simulation. This can be alleviated by means of the

stochastic exponential time differencing (SETD) scheme [26]. For a given number density,

reducing m leads to fluids of different mass densities.

5.2 The time-scale ratio approach

The time-scale ratio (α = τ/τI) relates to the conservative and dissipative forces. This

dimensionless quantity can thus be used to control the quantitative relation between the two

forces. It will be demonstrated that varying α can lead to a significant improvement in the

distribution of the number density over the flow domain. Unlike the use of low mass, the

mass density of the model fluid will not be affected by the change in α.

First, we examine the performance of the SETD scheme. Consider a Couette flow with

the imposed shear rate γ̇ = 0.2. The two plates move with the same velocity U but in

opposite direction. The mass is specified as m = 0.01 and some other input parameters are

η = 100, n = 10, kBT = 1, α = 10, rc = 1.6 and 100 bins per a unit area. The simulations

are carried out in two dimensions on the domain 10 × 10 (in DPD units) with 106 time

steps. Table 1 displays computed values of the mean thermal energy by the velocity-Verlet

and SETD schemes for different times steps, which show that larger time steps and better

accuracy are acquired with the latter.

The obtained results concerning the number density by the mass and time-scale approaches

are displayed in Figure 11 for simple flows and in Figure 12 for complex flows. Here, Couette

flow is chosen as an example for simple flows. The density residual is observed to reduce

with a decreasing mass (1.3568 for m = 1, 1.2833 for m = 0.1 and 1.2687 for m = 0.01).

Taking U = 1 and L = 5 (γ̇ = 0.2), the Reynolds number is 0.5 for m = 1, 0.05 for m = 0.1

and 0.005 for m = 0.01. For a given m, by changing the value of α, it can be seen that

a significant improvement in the number density distribution is achieved without affecting

the fluid mass density. Also, varying α for m = 1 yields better results than the case of
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low mass m = 0.01 with standard repulsion. As expected, the optimal value of α = τ/τI

increases as the mass is reduced (smaller inertia time). For any mass employed here, a simple

selection of α = 1 is still able to lead to reasonable results when compared to the case of

standard repulsion. Turning to complex flows: flow past an array of fixed cylinders, similar

remarks can be made here. The Reynolds number is approximately 0.2 for m = 1, 0.02 for

m = 0.1 and 0.002 for m = 0.01. It appears that varying α is more effective and efficient

than reducing the particles’ mass.

Figure 13 shows that the variations of α for simple and complex flows have similar behaviours.

It can be seen that their minimum density residuals all occur in the range α = 0.01− 1. A

simple mechanism to find the optimal value of α can thus be suggested. For a given set of

DPD input parameters, the simulation is first conducted on some simple flows (e.g. Couette

flow) and the obtained best value of α can then be utilised in the simulation of the flow of

interest.

6 CONCLUDING REMARKS

In this study, the DPD simulations are conducted with the viscosity, compressibility, dynamic

response (where appropriate) and time-scale ratio being specified as input parameters, from

which a consistent scaling of thermal fluctuations and similar behaviours of the flow at

different coarse-graining levels have been demonstrated. The issue of compressibility is

also studied. Reducing the particles’ mass and/or varying the time-scale ratio can reduce

unwanted compressibility effects. The advantages of the time-scale ratio approach over the

low mass approach are (i) one still has the same model fluid (constant viscosity, water

compressibility and mass density) without the need to change other input parameters; and

(ii) a much improved result for the number density distribution can be achieved. Attractive

features from the use of pre-determined input parameters are expected to allow an effective

DPD scheme to simulate (nearly) incompressible multiphase flows to be developed.
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27. R. M. Füchslin, H. Fellermann, A. Eriksson, and H.-J. Ziock, “Coarse graining and

scaling in dissipative particle dynamics,” J. Chem. Phys. 130, 214102 (2009).

28. M. Arienti, W. Pan, X. Li and G. Karniadakis, “Many-body dissipative particle dynam-

ics simulation of liquid/vapor and liquid/solid interactions,” J. Chem. Phys. 134(20),

204114 (2011).
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Table 1: Couette flows, U = 1, η = 100, n = 10, rc = 1.6, kBT = 1, α = 10, simulation box
with dimensions of 10 × 10, 100 bins per unit area and 106 time steps: Comparison of the
mean thermal energy of the velocity-Verlet and SETD schemes for m = 0.01. The former
fails to converge at ∆t ≥ 2.5× 10−4.

Velocity-Verlet SETD

∆t kBT Error(%) kBT Error(%)
5.0× 10−4 - - 0.4928 50.7
2.5× 10−4 - - 0.7717 22.8
1.0× 10−4 0.8917 10.82 0.9525 4.74
7.5× 10−5 0.9164 8.36 0.9723 2.76
5.0× 10−5 0.9422 5.78 0.9871 1.28
2.5× 10−5 0.9696 3.03 0.9959 0.41
1.0× 10−5 0.9872 1.28 0.9984 0.15
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Figure 1: Simple fluid with water-like compressibility, α = 1, η = 30 and ρ = mn = 8;
simulation box with dimensions of 15 × 15 × 15; s = 0.5; kBT = 1; and ∆t = 0.001:
Probability density function (PDF) of vx of a DPD particle at 3 different coarse-graining
levels (n = {8, 6, 4}; rc = {1, 1.1006, 1.2599};m = {1, 4/3, 2}). Thermal fluctuations are
reduced (variance: 1.0272, 0.7546, 0.5054) with larger particle size.
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Figure 2: Suspension with water-like compressibility, α = 1, η = 30 and ρ = 8 for the solvent
phase; constant volume fraction for the suspended phase; simulation box with dimensions
of 15 × 15 × 15; kBT = 1; and ∆t = 0.001: Probability density function (PDF) of vx
of a single colloidal particle in the solvent employed at 3 different coarse-graining levels
(n = {8, 6, 4}; rc = {1, 1.1006, 1.2599}; m = {1, 4/3, 2}). Its computed variances are
similar (0.1318, 0.1247, 0.1321).
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Figure 3: Suspension with the solvent phase: water-like compressibility, α = 1, η = 30,
ρ = mn = 8 and Sc = 600; simulation box with dimensions of 15 × 15 × 15; kBT = 1; and
∆t = 0.001: Probability density function (PDF) of vx of a single colloidal particle employed
with 3 different sizes at the same solvent coarse graining level (n = 8, rc = 1, m = 1).
Thermal fluctuations of the colloid are reduced (variance: 0.1790, 0.1109, 0.0912) with its
larger size.
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Figure 4: Probability density function (PDF) of vx of a single colloidal particle employed
with 3 different sizes at the same solvent coarse graining level by the standard (top) and
present (bottom) DPDs. It can be seen that the two methods produce similar behaviours.
When the size of the colloidal particle is increased, thermal fluctuations of the colloid are
reduced (variance: 0.1643, 0.0867 and 0.0493 for the standard DPD and 0.1661, 0.0812,
0.0492 for the present DPD).
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Figure 5: Poiseuille flow: Some typical results by the present DPD at n = {8, 6, 4}. Theo-
retical values for velocity and shear stress are also included.
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Figure 6: Modelling of the fixed cylinder with the surrounding fluid defined by {η = 100, n =
8, rc = 2, m = 0.5, kBT = 1, α = 1}: Reference sites of constituent particles of the cylinder
(top), its repulsion force field in the radial direction (middle) and fluid-cylinder radial dis-
tribution function at no-flow conditions (bottom). Note that, for both constituent and fluid
particles, Fij,C = 23.96(1− r/rc)

6.67.
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Figure 7: Flows past a periodic array of fixed cylinders: Fluid-fluid (left) and fluid-cylinder
(right) radial distribution functions for different number densities at no-flow conditions: By
defining the exclusion zone as an area where the RDF values are less than 0.01, the cylinders
for different resolutions are of similar sizes (about 0.47), and the fluid particle sizes can be
negligible. The obtained variations of fluid-cylinder RDFs imply that (i) cylinders modelled
by the spring model are soft cylinders; and (ii) using lower levels of coarse graining can
improve the hardness of the cylinder.
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Figure 8: Flows past a periodic array of cylinders, n = 8: Fluid-fluid (left) and fluid-
cylinder (right) radial distribution functions for different imposed body forces Fe =
(0, 0.01, 0.02, · · · , 0.10, 0.12, · · · , 0.30). Their sizes are generally well maintained over the
range of the body force applied.
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Figure 9: Flows past a periodic array of cylinders: Drag forces against the mean
flow velocity U for three coarse-graining levels with the body forces imposed as Fe =
(0.01, 0.02, · · · , 0.10, 0.12, · · · , 0.30). The three cases have similar behaviours in trend and
their values are in better agreement as U is reduced.
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Figure 10: Flows past a periodic array of cylinders, n = 10: Distribution of the number
density in a cell for 3 typical values of the imposed body force (Fe = 0 top; Fe = 0.1
middle, and Fe = 0.3 bottom). Attention is needed for large Fe values due the effect of
compressibility of the model fluid.
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Figure 11: Couette flows, η = 100, n = 10, ∆t = 0.0001, simulation box with dimen-
sions of 10 × 10, U = 1, rc = 1.6, kBT = 1, 100 bins per unit area and 106 time steps:
Density residual against time-scale ratio for 3 typical values of m. Values of α used are
(10−2, 5 × 10−2, 10−1, 5 × 10−1, · · · , 102). Results with the standard repulsion are also in-
cluded. Changing the value of α can lead to a significant improvement in the distribution of
number density over the flow domain.
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Figure 12: Flows past a periodic square of cylinders, η = 100, n = 10, ∆t = 0.0001,
simulation box with dimensions of 10 × 10, Fe = 0.3, rc = 1.6, kBT = 1, 100 bins per unit
area and 106 time steps: Density residual against time-scale ratio for 3 typical values of m.
Values of α used are (10−2, 5 × 10−2, 10−1, 5 × 10−1, · · · , 102). Results with the standard
repulsion are also included. Changing the value of α can lead to a significant improvement
in the distribution of number density over the flow domain.
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Figure 13: Density residual against time-scale ratio for Couette flows (U = 1) and flows
past a periodic square array of cylinders (Fe = 0.3) with η = 100, n = 10, ∆t = 0.0001,
simulation box with dimensions of 10×10, rc = 1.6, kBT = 1, 100 bins per unit area and 106

time steps. Values of α used are (10−2, 5 × 10−2, 10−1, 5 × 10−1, · · · , 102). The two flows
have similar optimal values of α.
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