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This study investigated potential Ross River virus (RRV) exposure sites in Greater Brisbane during the Queensland coronavirus 
disease 2019 lockdown (January–July 2020). Using RRV notifications, cluster identification techniques, and mobile phone data 
for movement network analysis, the study examined 993 RRV cases and 9 million movement trajectories from residential RRV 
cluster areas (hot spots). The findings revealed that population movement was a key risk factor to RRV incidence within hot 
spots, whereby highly interconnected areas had more RRV cases during lockdown. While environmental conditions within RRV 
hot spots were less significant compared with their connectivity, areas with higher vegetation density had fewer RRV cases. The 
study also noted that individuals from RRV hot spots spent less time in green areas before lockdown than during and after 
lockdown. The results suggest that population movement significantly influenced the 2020 RRV outbreak. These insights can 
help adapt current vector control and surveillance protocols to target areas identified in this study.
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Ross River virus (RRV) infection is the most incident arboviral 
disease in Australia [1], with approximately 5000 cases reported 
annually [2]. The disease has an incubation period that varies 
from 7 to 9 days [3]. Even though most cases are asymptomatic, 
infection can result in prolonged and debilitating disease that 
includes headaches, lethargy, rash, fever, and muscle pain [4, 5], 
with no vaccination or specific treatment available [6]. 
Despite the significant human health burden, the transmission 
cycle of RRV and associated ecological risk factors are not fully 
understood.

The relationship between vectors and RRV hosts is complex 
and changes across landscapes [7]. Exposure and/or infection 
to RRV has been detected in >40 species of mosquitoes [1] 
and a range of multiple vertebrate hosts, including horses, mac
ropods, opossums, and humans [8, 9]. The abundance of 
RRV-infected mosquitoes has been shown to be linked to 
weather variables, such as rainfall, humidity, and temperature 
[10, 11]. In Australia, the state of Queensland has favorable 

weather conditions for mosquito breeding and thus disease 
transmission [12]. Moreover, health education of the at-risk 
population may also influence disease transmission [2], partic
ularly people’s vector protection behaviors that might reduce 
exposure to infected mosquitos in high-risk areas. Human be
havior is key in the dynamics of vector-borne disease spread [13].

During the 2020 coronavirus disease 2019 (COVID-19) lock
down in Australia, one of the largest RRV outbreaks occurred, 
with >1100 cases. The COVID-19 response in Brisbane, initiat
ed in March 2020, included public health orders on restriction 
on movement, gatherings, and business activities, which were 
implemented throughout Queensland, followed by closure of 
all nonessential businesses from April 2020. These public 
health orders were then lifted on 2 May 2020 [14, 15]. The re
striction of population movement provides a unique opportu
nity to study disease exposure in contexts where the timing and 
location of exposure are difficult to ascertain. For example, a 
significant proportion of the RRV cases reported in April 
2020 may have been involved exposure to RRV-infected mos
quitoes at the start of the lockdown, near residences or within 
lockdown areas. If RRV’s main host is nonurban wildlife, we 
would have expected fewer city cases or more periurban clus
ters due to movement restrictions.

The current research aimed to investigate risk factors for 
RRV exposure during the COVID-19 lockdown in Brisbane, 
Australia, contributing to a broader understanding of vector- 
borne disease and human behavior. By identifying potential 
locations visited by populations within RRV hot spots and 
quantifying the characteristics of such locations, this study 
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provides insights extending beyond RRV and Brisbane. To 
achieve the study aim, we carried out our investigations with 
3 objectives. First, we quantified the relationship between the 
weekly incidence of RRV notifications and temporally variant 
factors (rain, temperature, and time spent outdoors). Second, 
we investigated the association between the incidence of RRV 
notifications and environmental variables and population move
ment of known RRV geospatial clusters. Finally, we identified the 
locations frequented by the population from RRV clusters.

METHODS

This research uses an ecological spatiotemporal time-series 
study design to identify putative exposure sites for RRV infec
tions across councils of the Metro North and Metro South 
Public Health Unit during the COVID-19 social distancing pe
riod of January to July 2020 (details in the Supplementary 
materials).

RRV Data Source

We obtained and analyzed the 993 georeferenced RRV notifica
tion data from the Notifiable Conditions System (NOCS), re
ported during the period from 1 January to 31 July 2020; 
records were approved for release by NOCS on 20 July 2021.

The variables included in the query included notification 
date, onset date, age, sex, and address (details in the 
Supplementary materials). Population data at the mesh-block 
level (mesh blocks are the smallest geographic unit in 
Australia) was obtained from census data from the Australian 
Bureau of Statistics for 2016. The data were divided into 3 pe
riods: before lockdown (7 January to 22 March 2020, when 
RRV cases started but no movement restrictions were in place), 
lockdown (23 March to 2 May 2020, when movement restric
tions were in place), and after lockdown (3 May to 31 July 
2020, after movement restrictions were lifted), as the behavior 
of the community is expected to change due to the movement 
restriction across the 3 times period (Figure 1).

Environmental Data

We obtained environmental data affecting mosquito density 
from the Queensland government Long Paddock. This includ
ed rainfall per week (in millimeters) and average maximum 
temperature (in degrees Celsius) per week. We also included 
distance to water bodies, distance to green areas, and the foliage 
projective cover, which represents the percentage of vegetation 
cover (see the Supplementary materials).

Population Movement Data and Data Processing Steps

We retrieved third-party deidentified mobile phone data from 
the Output AI industry-partner company, which contained the 
longitude and latitude of each signal. We used this information 
to quantify changes in community mobility in response to 
COVID-19 social distancing restrictions We estimated people’s 

location by using mobile phone global positioning system 
(GPS) records (see the Supplementary materials).

To determine the movement of people living in the clusters, 
we created a network model of community mobility. We inves
tigated the movement patterns of people inhabiting the cluster 
area. We used the assumed household as the starting point, and 
only the people that were identified to have the highest number 
of points within RRV clusters were included in this analysis. All 
analyses were conducted at the mesh-block level.

We limited trajectory analyses to tracks <1000 m/h, to ex
clude car travel, focusing on higher-risk activities like walking 
or spending time outdoors, where exposure to mosquito bites is 
more likely. We analyzed the trajectory for each period using 
the adehabitat package [17] and estimated the mean distance 
travelled per day and the total time (minutes) spent in each 
green area and divided by the number of people who visited 
the area. In addition, we divided the day into 4 groups: morning 
(6–10 AM), day (10 AM to 4 PM), evening (4–7 PM), and night 
(7 PM to 6 AM). Then, using the adehabitat package, we estimat
ed the spatial kernel density across the diel cycle.

Spatiotemporal RRV Cluster Analyses

To analyze the clustering patterns of RRV notifications we used 
the Moran I statistic to assess spatial clustering and the local 
Moran I statistic as an indicator of spatial association of the 
RRV clusters in the study area. We used 999 permutations to 
estimate pseudo-P values and z values using GeoDa [18]. A z 
score is generated by the local Moran I statistic to determine 
the significance level of clusters. Surroundings with spatial clus
ters will be indicated by a high positive z score, and the presence 
of spatial outliers will be represented by a low negative z score. 
The geographic unit of analysis was the geographic center of the 
mesh block. We defined a community cluster as ≥2 cases asso
ciated within a 5-km radius and a time aggregation of a month 
(1 March to 31 May 2020).

Association Between RRV Notification Incidence and Temporal Variant

We calculated cross-correlation between weekly RRV notifica
tions and environmental covariates rainfall per week (in milli
meters) and average maximum temperature (in degrees 
Celsius) per week using the stats package in R software (version 
4) [19].

Association Between RRV Notification Incidence, Environmental Data, 
and Population Movement Network Measures

We explored the association between the number of RRV noti
fications, 3 environmental variables (green areas, distance to 
water bodies, and vegetation density), and network measures 
(centrality, betweenness and degree) using a generalized addi
tive model with Poisson family and log link function (see the 
Supplementary materials). We created buffers around each 
cluster based on the average distance people traveled in 
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different periods. This was done to include relevant informa
tion in our models, as clusters were dispersed and changed lo
cation over time. The buffer distances were 910, 740, and 880 m 
for the periods before, during, and after the lockdown respec
tively, reflecting the average daily distances covered.

The generalized additive model was built using the number of 
RRV cases in each mesh block in each period as our outcome 
variable. We included several time-varying penalized smooth 
functions of environmental and demographic covariates to ask 
how their associations with the log number of RRV cases varied 
across the 3 time periods (see the Supplementary materials).

Relation Between Population Movement Network Measures and 
Landscape

We calculated the average time spent in green areas by people 
per week during each period using the outputs from the trajec
tory analysis. We calculated cross-correlation between weekly 
RRV notifications and average weekly distance (in kilometers), 
and the average time spent walking outdoors per week.

Ethical Approval

This project (ID 71859 LNR/2021/QRBW/71859) received eth
ical approval from Royal Brisbane and Women’s Hospital 
(HREC 71859) on 15 March 2021, research ethics ratification 
from The University of Queensland (2021/HE000937) on 21 
April 2021, and Public Health Act authorization to request 
health information held (PHA 71859).

RESULTS

Seasonal and Demographic Trends in RRV Cases

We found that the peak in the incidence of RRV notification was 
in April and May for the study area, and the age distribution sug
gested higher exposure or susceptibility among certain age 
groups as cases follow a normal distribution (Supplementary 
Figure 1).

Impact of Lockdown on Population Movement and Exposure Risk

During lockdown, people traveled shorter distance, with a 
mean (SD) of 0.74 (0.74) km, based on 1052 unique devices. 

The mean (SD) distance travelled by people during the prelock
down period was 0.91 (0.8) km, comprising records from 736 
unique devices; in the postlockdown period, we estimated a 
mean (SD) distance of 0.88 (0.7) km, based on 1062 unique de
vices. We also mapped the movement density for the whole 
study period (Figure 2) and based on the time of the day to 
see differences between times, as mosquito bites are more likely 
to occur during the morning and the evenings for most mos
quito species (Supplementary Figure 2).

Identifying High-Risk Areas for Targeted Interventions

Spatial analysis identified 119 RRV clusters, or hot spots, for the 
whole study period, which represent the areas with high inci
dence of cases that are close to other areas with high incidence 
of RRV notifications (high-high), 424 mesh blocks that were 
identified as low-low or “cold spots.” We identified 2160 
mesh blocks classified as low-high and 653 classified as high- 
low (Figure 3). The overall Moran I statistic (from January to 
July) was .005, the estimated pseudo-P value was .025, and 
the z value was 1.8671.

Environmental and Network Influence on RRV Transmission

While in our cross-correlation analysis (Supplementary 
Figure 4), we can see a 5-week lag between weekly rainfall 
and the increase in RRV notifications, this was not statistically 
significant, nor was the association between average maximum 
temperature per week and RRV cases (Figure 4).

Our generalized additive model found support for time- 
varying nonlinear effects of environmental and network 
predictors, with particularly important effects of vegetation den
sity and betweenness (Figure 5). Vegetation density (Figure 5C) 
was estimated to have a strong positive linear effect before lock
down, but this effect was dampened toward a weaker nonlinear 
effect during lockdown and postlockdown periods. For betwe
enness, the model estimated a flat, unimportant function during 
the prelockdown period (Figure 5G). But this effect changed 
substantially during the lockdown period, when betweenness 
was estimated to be highly important predictor with an almost 

Figure 1. Diagram of the study period with dates of the prelockdown, lockdown, and postlockdown periods. Abbreviation: GPS, global positioning system.
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Figure 2. Kernel density of people’s movement.

e504 • JID 2025:231 (15 March) • Proboste et al

D
ow

nloaded from
 https://academ

ic.oup.com
/jid/article/231/3/e501/7906115 by guest on 26 June 2025



linear positive effect. The effect was then dampened back to
ward a weaker nonlinear function after lockdown. All other ef
fects were found to be unimportant, with the model regularizing 

them to flat functions (Figure 5). For information about the spa
tial correlation across time for the individual’s smooth effect, 
please refer to the Supplementary materials (Supplementary 
Figures 5 and 6).

We mapped the value of the network measures for each mesh 
block and each period (Figure 6). For the prelockdown period, 
the mesh blocks with the higher centrality measures were most
ly located in the north of our study area. In terms of centrality 
measures across the whole period, mesh blocks with main mo
torways and the mesh block of the airport had higher centrality 
measures. Only a small number of mesh blocks have high val
ues for betweenness and degree, indicating limited importance 
in terms of movement connectivity and flow and limited con
nectedness between mesh blocks.

Behavioral Changes and RRV Risk During Pandemic Lockdown

Lockdowns resulted in more time spent in green areas, poten
tially increasing exposure to mosquitos. The average amount of 
time people spent in green areas during the prelockdown peri
ods was 81.9 minutes (SD, 219 minutes), or 11.4 minutes per 
week; during lockdown the mean (SD) was 146 (797) minutes, 
or 20.5 minutes per week, and after lockdown it was 185 (682) 
minutes, or 22 minutes per week. We divided the total time (in 

Figure 3. Local Indicator of Spatial Association (LISA) cluster map for the accumulative Ross River virus reports across councils of the Metro North and Metro South public 
health units between 1 January and 31 July 2020.

Figure 4. Distribution of number of Ross River virus notifications per week, av
erage walk time, average walk distance per week, average rainfall per week, 
and average maximum temperature.
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minutes) spent in each green area and divided that by the num
ber of people who visited the area. We found that the mean time 
(SD) spent in green areas was 52.2 (184) minutes before lock
down, 55.5 (127) minutes during lockdown, and 81.5 (291) 
minutes after lockdown. We determined the most visited parks 
for each period (Supplementary materials). Summarizing the 
3 periods together, the most popular park visited was 7th 
Brigade Park, followed by White Hill Reserve (Supplementary 
Figure 3).

Cross-correlation Insights

Our cross-correlation results did not show a significant associ
ation between number of weekly RRV notifications and the dis
tance walked or time spent outdoors per week (Figure 4). While 
a higher number of notifications occurred in week 17, the aver
age walk distance remained similar between weeks 6 and 19. 
Similar patterns happened between the number of notifications 

per week and the average walk time spent in green areas, where 
the time spent outdoors slightly increased between weeks 16 
and 19. The lockdown started in week 12 and finished in 
week 17.

DISCUSSION

Our study leverages an unusual scenario: the 2020 RRV out
break coinciding with the initial COVID-19 lockdown in 
Brisbane. Our findings reveal several interesting associations. 
First, the RRV peak notifications occurred relatively late in 
2020. Second, our model estimated time-varying nonlinear ef
fects of key environmental and network predictors on rates of 
RRV, with network betweenness becoming a particularly im
portant predictor during the lockdown period. Finally, there 
was a noticeable rise in the time people spent outdoors in green 
areas during and after lockdown.

Figure 5. A–C, E, G, Plots of conditional smooth effects of the log number of Ross River virus cases predicted from a generalized additive model with the following re
sponding variables: distance to green areas (A), distance to water (B), vegetation density (C ), centrality (E), and betweenness (G). D, F, H, Comparison of smooth effects 
showing changes in expected functional relationships over time for vegetation density (D), centrality (F ), and betweenness (H ). All other predictors were held at 0 when 
calculating conditional effects of focal predictors.
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Figure 6. Centrality, betweenness, and degree measures for each period, before (A), during (B), and after (C ) lockdown. In purple are represented the mesh blocks that were 
identified as clusters for each period.
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These lockdown observations offer a unique backdrop for 
our future vector surveillance, a critical component of control
ling mosquito-borne disease. However, routine surveillance of
ten fails to monitor critical indicators adequately [20]. 
Predicting infected vector locations is challenging, especially 
in urban areas at the start of the season. The disease’s incuba
tion period allows exposure across various settings before infec
tion reports. Due to the COVID-19 lockdown in Brisbane, 
while stay-at-home orders restricted community movement, 
we expected less interaction with rural and wildlife areas, sug
gesting that people were exposed to the virus within the city. 
This supports the idea that RRV can be maintained and trans
mitted within the human population, potentially downplaying 
the role of wildlife in RRV transmission.

The 2020 RRV outbreak data, shows a peak in notifications 
between April and May, which contrasts with previous studies 
that typically report rising RRV notifications in February, peak
ing between March and April [21]. Seasonal drivers of RRV 
transmission include temperature, relative humidity, and rain
fall with variations between inland and coastal regions influ
enced by tidal variability [10, 11, 22]. For example, Hu at al 
[2] demonstrated that 85% of the variance in the RRV transmis
sion correlated with rainfall. Rainfall, along with mosquito den
sity, emerged as one of the strongest predictors for RRV 
transmission, with a lag of 1–2 months between rainfall and 
RRV incidence.

Our findings revealed a 5-week lag between peak rainfall and 
the subsequent rise in RRV notifications, suggesting that apart 
from weekly rainfall totals or average maximum temperature 
there may be additional factors influencing exposure to 
RRV-infected mosquitos in the areas with reported higher inci
dence of RRV notifications. Notably, low densities of mosqui
toes were reported before the 2020 outbreak [23]. However, 
unravelling the complexity of RRV outbreaks requires consid
ering region-specific and seasonal variations in key variables 
[24]. For instance, Brisbane in February 2020 (a month before 
COVID-19 lockdown was mandated), was affected by intense 
rainfall and flooding [16]. These unique events may have dis
rupted the usual link between rainfall and RRV.

Interestingly, despite the role of water bodies in mosquito 
breeding, no link was found between RRV notifications and 
proximity to water during the 2020 outbreak. This result di
verges from prior studies linking closer proximity to mosquito 
habitat with increased RRV notifications [25]. However, ento
mological evidence indicates that while Aedes mosquitoes stay 
within 500 m of their larval habitat, Culex mosquitoes can dis
perse up to 3 km [26, 27]. Although a positive relationship be
tween mosquito density and RRV notification has been 
observed in Brisbane [28], our study suggests that additional 
factors were at play.

Community behavior, especially mobility patterns, may have 
played an important role in the dynamics of RRV transmission 

during the 2020 outbreak over and above that of weather 
variability. Indeed, our findings reveal a significant cross- 
correlation between average time spent outdoors and the week
ly number of notifications, as well as between average walk 
distance and the RRV notifications. Interestingly, the peak of 
average outdoor time (as depicted in Figure 4) occurred 1 
week before the RRV notification peaks (at the transition be
tween the during lockdown and after lockdown). Considering 
the incubation period of RRV (7–9 days) [3], this temporal 
alignment suggests that outdoor exposure may have been a 
more relevant risk factor for RRV transmission during this spe
cific outbreak than the distance to water bodies or parks.

In terms of environmental variables, we found that areas 
with a higher vegetation cover were associated with higher rates 
of RRV cases in the prelockdown period. The positive linear as
sociation for the that period could be due to fewer RRV cases 
during this period, as the peak of notification coincided with 
the lockdown period. However, the relationship was estimated 
to be weaker and nonlinear during and after lockdown, unlike 
before lockdown. Previous studies indicated that a higher per
centage of vegetation cover can serve as refuge for mosquito 
and nonhuman vertebrate hosts, both of which play a role in 
maintaining the RRV in the sylvatic cycle [8].

These findings align with the notion that residing closer to 
potential mosquito habitat increases the risk of infection [25]. 
Indeed, a prior study linked certain vegetation, like wetlands 
and bushland, to RRV risk in Brisbane [29]. Brisbane’s exten
sive vegetation, including tree-lined streets and backyard 
greenery, is not all officially designated as green spaces. This in
cludes diverse areas from well-kept parks to sparsely vegetated 
zones. These green areas might support mosquito breeding 
sites or sustain RRV hosts. Our analysis revealed no correlation 
between the number of RRV cases and proximity to green ar
eas, when controlling for vegetation density and the remaining 
predictors. Interestingly, we observed that areas with dense 
vegetation reported fewer RRV cases during lockdown.

The lockdown’s impact on RRV cases and their link to veg
etation cover is likely due to behavioral changes. The nonlinear 
association between RRV rates and vegetation density was par
ticularly clear during lockdown, with a significant portion of 
Brisbane’s population at home. Moreover, our results show 
the importance of betweenness during lockdown, surpassing 
environmental conditions in that highly connected areas were 
associated with a higher incidence of RRV cases, indicating 
that population movement changes during lockdown were a 
determinant risk factor for the 2020 RRV outbreak.

Our results indicate a nuanced relationship between vegeta
tion cover and RRV incidence within clusters whereby vegeta
tion cover was positively associated with RRV incidence only 
up to about 50% coverage, after which this association dimin
ished. This finding underscores the complex interplay between 
environmental factors and disease transmission. After the 
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lockdown period, residents in RRV clusters likely ventured 
further into green spaces, where infected mosquitoes are found, 
once travel restrictions eased. This phenomenon can be attribut
ed to sociological behaviors occurring because of state-mandated 
public health orders during the COVID-19 pandemic, which 
deserve further investigation.

The role of human movement is a key factor in understand
ing the dynamic of vector-borne disease, however, it has been 
understudied [30]. While our findings indicate that the popula
tion from RRV clusters identified during lockdown had an 
increased average time spent in green areas, these results 
come with significant variability. This finding aligns with a 
Brisbane survey finding that approximately 36% of respondents 
increased their use of urban green spaces [31]. Despite various 
species testing virus positive, their transmission role is still un
clear [9]. It is possible that urban wildlife played a relevant role 
in the RRV outbreak. In Brisbane, rich in opossums and urban- 
rural macropods, both species have tested virus positive [28].

Given the limited travel during lockdown, local mosquitos 
were likely outbreak vectors. The main vector, Culex annulir
ostris, could have been widespread despite low numbers [23]. 
Indeed, recent evidence indicates human-mosquito contact 
alone might sustain virus transmission. This hypothesis is sup
ported by the discovery that humans had a moderate-to-high 
physiological competence with respect to RRV [9]. Urban wild
life likely initiated the 2020 RRV outbreak, which was then ac
celerated by subsequent mosquito-to-human transmission 
from infected individuals. Our findings highlight the need to 
include human mobility and outdoor time in future disease 
outbreak prediction.

Limitations must be carefully considered when interpreting 
the study results. During the prelockdown period for 
COVID-19, movement records were limited due to our focus 
on cluster areas. The clusters during this period were aggregat
ed in the north of the study area, and therefore the results can 
be biased. Mobile phone tracking data, used as a proxy for ac
tual RRV exposure, only provides general population move
ment insights. Furthermore, our study’s scope was restricted 
to a single outbreak during COVID-19 lockdowns, potentially 
limiting its applicability to past and future RRV outbreaks with
out movement restrictions.

Our study offers insights for enhancing mosquito surveil
lance for RRV exposure by focusing on areas where people 
spend significant outdoor time. We found a correlation be
tween these areas, especially those with high connectivity 
mesh blocks, and increased RRV notifications. Adapting proto
cols and mosquito control in these areas can improve RRV pre
vention and public health protection.

Supplementary Data

Supplementary materials are available at The Journal of 
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