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Abstract

Dengue fever infection is a global health concern. Early disease detection is

crucial for averting complications and fatality. Characteristic morphological

changes in lymphocytes can be observed on a peripheral blood smear (PBS) in

cases of dengue infection. In this research, we have developed automated com-

puter vision models for dengue detection on PBS images using two approaches:

wavelet scattering transform (WST)-based feature engineering and classifica-

tion and You Only Look Once (YOLO)-based deep transfer learning for object

detection. In the former, Morlet wavelet scattering features extracted from

lymphocytes were used as input for five shallow classifiers for image classifica-

tion. Among these, the support vector machine achieved the best results of

98.7% accuracy using 10-fold cross-validation. In the latter, computer vision-

enabled object detection was implemented using five YOLOv8 scaled variants.

Among these, YOLOv8s and YOLOv8l attained identical best mean accuracy

of 99.3% ± 1.4% across five independent experiments. Our results confirmed

the feasibility and excellent diagnostic accuracy for both WST- and YOLOv8-

enabled computer vision approaches for diagnosing dengue infection in PBS

images. This research incorporates deep machine learning along with AI tech-

nology to enhance understanding and capabilities in automated Dengue diag-

nosis. The significance of this research extends to the broader domain of

mosquito-borne illnesses. However, it is important to note that the findings are

limited to the dataset used by the researchers.
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1 | INTRODUCTION

Mosquito-borne illnesses caused by arboviruses are
important global public health concerns.1–3 In developing
countries, one of the most significant viral infections
spread by mosquitoes is dengue.4 Dengue is transmitted
to humans through the bites of infected female Aedes
aegypti mosquitoes. It has a high incidence of infection,
which has led to widespread epidemics and public health
crises.5 It has been reported that there are 390 million
dengue virus infections annually, of which 96 million
manifest clinically.6 An estimated 3.9 billion people
worldwide are at risk of contracting the dengue virus
infection,6 and the disease is endemic in more than
100 countries, with Asia accounting for over 70% of the
global disease burden.6

Dengue is a complex disease caused by distinct den-
gue virus serotypes that present with a broad spectrum of
clinical manifestations, ranging from mild debilitating
febrile illness like dengue fever to life-threatening dengue
hemorrhagic fever and dengue shock syndrome7 These
three conditions likely represent progressively severe
stages of a continuous dengue disease spectrum.7,8 It has
been estimated that 50–100 million cases of dengue fever,
500 000 cases of dengue hemorrhagic fever/dengue shock
syndrome, and more than 20 000 dengue-related deaths
occur annually.6 Most primary infections are caused by a
single dengue virus serotype, which leads to an enervat-
ing but nonfatal illness. Symptoms start 4–10 days after
infection and persist for 2–7 days. High temperature
(40�C or more), severe headache, eye pain, joint pain,
nausea, vomiting, swollen glands, and rash are typical
symptoms.6 While there is no definitive treatment against
the dengue virus, early and accurate diagnosis of dengue
fever is crucial for instituting heightened surveillance
and timeous supportive measures in the event of progres-
sion to severe dengue. Routine laboratory tests like com-
plete blood count and coagulation tests are commonly
used to detect and monitor for dengue-associated compli-
cations of thrombocytopenia and coagulopathy8 but are
non-specific. Similarly, abnormal results of serological
tests like hemagglutination inhibition and plaque reduc-
tion neutralization can provide some support to corrobo-
rate dengue infection but are not diagnostic.9 For a
definitive diagnosis of dengue infection, advanced
laboratory-based techniques are required to detect the
dengue virus, its viral ribonucleic acid, viral antigens, or
anti-dengue antibodies in the patient's blood.10 Reverse
transcriptase polymerase chain reaction10 is considered
the gold standard for confirming the presence of viral
ribonucleic acid in infected sera.8 Other confirmatory
tests use enzyme-linked immunosorbent assay methods
to either detect viral antigens like the non-structural

protein, NS1, or viral immunoglobin M and G antibodies
in sera. Both these techniques require sophisticated
equipment and skilled expertise,9,11 are expensive, and
cannot be readily deployed for high-volume real-time
detection.

Digitization of whole-slide pathological images has
facilitated the use of artificial intelligence-enabled tools
for medical diagnosis.12–14 In particular, computer vision-
based approaches have been harnessed for object detec-
tion, segmentation, and classification tasks involving dig-
itized medical images.12,15 Both machine learning and
deep learning approaches can be deployed in automated
digital pathology-based computer vision applications.16–18

Machine learning algorithms are trained using discrimi-
native features extracted from image datasets; once
trained, the algorithms can generalize and make predic-
tions on unseen new data. A subset of machine learning,
deep learning, uses convolutional neural networks (CNNs)
to construct higher-level representations of image data to
make their predictions.19 Due to the burgeoning interest
in and accelerated development of neural networks, deep
learning-based computer vision applications in medical
image classification, localization, and object detection
have garnered significant clinical traction for disease
diagnosis and prognostication.20,21 In repetitive and time-
intensive tasks like manual interpretation of medical
images, computer vision can potentially perform the
diagnostic classification automatically with higher accu-
racy and reproducibility than human readers, thereby
reducing the time burden on laboratory staff.22,23 More-
over, in disease outbreaks affecting large populations,
human analysis may become overwhelmed by the high
volume of samples that need to be processed and ana-
lyzed. In such scenarios, computer vision methods can
perform high-throughput analysis efficiently, effectively
freeing up time for healthcare workers to attend to the
important downstream treatment of appropriately diag-
nosed patients.23,24

1.1 | Background

The peripheral blood smear (PBS) is a method of manu-
ally staining a glass slide with a small amount of blood to
depict and preserve the morphological characteristics of
various blood components, including red blood cells,
white blood cells (which comprise neutrophils and lym-
phocytes), and platelets. A digital microscope can be used
to photograph the PBS to obtain digitized PBS images for
offline expert interpretation, archival, as well as, increas-
ingly, artificial intelligence-enabled analysis of differen-
tial morphological characteristics of blood cells in health
and in disease.25 In viral infections, lymphocyte counts
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are often elevated, and the cell may undergo morphologi-
cal changes. In dengue infection, abnormal lymphocytes
called atypical plasmacytoid lymphocytes are seen in the
blood, induced by an immune reaction to the dengue
virus.26,27 The atypical lymphocytes exhibit changes in
the size of the nucleus and cytoplasm, color, and shape25:
the nucleus becomes bigger and irregular; the cytoplasm
is more abundant and bluer27 (Figure 1). These altered
feature parameters can be exploited for developing tests
to detect the presence of dengue-infected blood cells.25

1.2 | Literature review

We were motivated to develop automated computer
vision diagnostic models for dengue diagnosis based on
the morphological features of lymphocytes on the PBS.
Several researchers have capitalized on disease-associated
altered blood cell morphology to develop PBS-based
machine-learning models for the detection of diseases.
Deb et al.28 studied geometric features like aspect ratio
and Fourier descriptors of normal and anemic red blood
cells and incorporated them into their model for detect-
ing anemia. Bashar et al.29 developed a support vector
machine (SVM)-based model that classified various
stages of malaria parasites on PBS images using textural
feature descriptors like the histogram of oriented gradi-
ents, gray-level co-occurrence matrix, and local binary
pattern, as well as color feature descriptors like StatMom,
and color histogram. Moshavash et al.30 used a gray-level
co-occurrence matrix and local binary pattern to extract
textural features from white blood cells to detect acute lym-
phoblastic leukemia cells automatically. Nikitaev et al.31

applied wavelet transform to the nuclei of white blood cells
to extract discriminative features for automated diagnosis
of acute leukemia. In their dengue diagnostic model,
Mayrose et al.32 first segmented lymphocyte nuclei on
PBS images using Otsu's global thresholding method, and
then applied local binary pattern and pre-trained Mobile-
NetV2 to extract discriminative textural and deep features,
respectively, from the lymphocyte nuclei. Informative
features were selected using the ReliefF (Relief Feature)
algorithm and then fed to a SVM classifier. Their model
attained excellent accuracy, sensitivity, and specificity of
95.74%, 98.14%, and 92.50%, respectively. Nawa et al.33

studied dengue-infected white blood cells on PBS that had
been specially stained with immunochemical streptavidin-
biotin peroxidase complex coloring. Image contrast was
enhanced by Gram-Schmidt orthogonalization, which
facilitated the segmentation of white blood cell images
using Otsu's thresholding technique. The image histo-
grams were used as features, which were input to SVM for
classification. The proposed model attained fair 83.94%
accuracy, 81.61% precision, 92.21% sensitivity, and 73.33%
specificity for dengue detection.

For developing our dengue detection model, we were
particularly interested in the wavelet scattering trans-
form, and You Only Look Once (YOLO) algorithms,
which exemplified handcrafted multilevel feature engi-
neering and pre-trained deep transfer learning approaches,
respectively. WST is a wavelet transform-based method
that extracts features in both time and frequency
domains.34,35 Compared with standard wavelet transforms,
wavelet image scattering constructs low-variance image
representations that are insensitive to time and frequency
deformations.36–38 An advantage of WST over CNN-based

FIGURE 1 Leishman stained 100� peripheral blood smear images of dengue-infected patients (left) and healthy subjects (right). In the

former, the lymphocyte appears larger with a bigger, irregular nucleus and abundant cytoplasm.
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methods is its use of fixed and preset wavelet filters,
which obviates the need for high-volume data samples to
train filter responses. Hence, WST is preferred for limited
training datasets.38 There is a paucity of studies on the
use of WST-based feature extraction in dengue diagnostic
models. In their glaucoma diagnostic model, Agboola
et al.39 stage-wise decomposed retinal fundus images by
inputting them into a wavelet scattering network con-
structed in MATLAB. They adopted a feature learning
algorithm called invariant scattering convolution network,
which facilitated the automatic learning of features. The
model attained F1 scores of 98% and 85% with SVM and
logistic regression, respectively, using random data split-
ting; and F1 scores of 89% and 83% with SVM and logistic
regression, respectively, using hospital-based splitting.

Razali et al.40 proposed a model for classifying benign
versus malignant breast masses and fatty versus fibro
glandular tissue on digital mammograms that employed
both handcrafted feature engineering and deep learning
approaches to train a relatively modest dataset of
112 mammogram images. The latter were input to gray-
level co-occurrence matrix and WST as well as CNN to
generate features. Different feature fusion combinations
of these were input to an ensemble k-nearest neighbors
(kNN) classifier. On 10-fold cross-validation (CV), their
model attained 98.0% and 99.3% accuracies for mass and
tissue classification, respectively. The authors concluded
that wavelet representation enhanced feature descriptors
for spatial-frequency analysis, which mitigated CNN
overfitting on their limited dataset, and contributed to
their excellent results.

YOLO algorithms have gained popularity for diverse
computer vision tasks like object identification, segmenta-
tion, pose estimation, tracking, and classification, owing to
their high detection accuracy and processing speed.41

Rocha et al.42 combined various YOLO versions―
YOLOv3, YOLOv4, Scaled-YOLOv4, and YOLOv5―-
with single shot multibox detector, EfficientNet, and faster
region-based CNN models for detection of malaria para-
sites in PBS images. On a 3065-image study dataset com-
posed of four public datasets, which encompassed labels of
healthy and infected blood cells, four species of malaria
parasites, four stages of the Plasmodium vivax life cycle,
and four stages of the infected cells' life cycle, their model
attained mean average precisions of 41.15%, 35.01%,
35.9%, and 63.30% for single shot multibox detector, Effi-
cientNet, faster region-based CNN, and YOLOv5, respec-
tively. In their cervical cancer cell detection model, Jia
et al.43 improved upon the YOLOv3 model by substitut-
ing the ResNet layer in the branch prediction with a
dense block, coupled with the S3pool algorithm. The
model attained a significant 50% reduction in optimized
network loss function value, a 3.03% increase in mean

average precision, and an improved 78.87% average
detection accuracy, which surpassed single shot multibox
detector, YOLOv3, and ResNet50 by 8.02%, 8.22%, and
4.83% respectively. Khandekar et al.44 developed a
YOLOv4-based object detection algorithm for detecting
blast cells on PBS images. These are abnormal white
blood cells associated with acute lymphoblastic leukemia.
A total of 108 and 10 661 images from two public datasets
were pre-processed and augmented before being used to
train the YOLOv4 network. On the smaller dataset, the
model attained overall mean average precision, recall,
and F1 score of 95.57%, 0.92%, and 0.92%, respectively,
and on the larger dataset, 98.57%, 0.96%, and 0.92%,
respectively.

In this unique research, researchers aimed to imple-
ment WST-based feature extraction and YOLOv8-enabled
object detection in parallel to characterize lymphocytes
in PBS images for the automated binary classification of
dengue infection versus normal. To our knowledge, there
has been no prior publication on the use of either of these
techniques for dengue detection from PBS images. This
work makes several significant contributions: (i) it uti-
lizes a unique dataset that is not publicly available; (ii) it
applies WST-based features for dengue detection; (iii) it
employs the latest version of YOLO, known as YOLOv8,
to automate the process of dengue detection. These con-
tributions collectively enhance our understanding and
capabilities in automated dengue diagnosis based on lym-
phocyte characteristics.

2 | METHODOLOGY

2.1 | Study dataset

The dataset comprised two classes of 163 “Dengue” and
151 “Normal” images digitized from peripheral blood
smears (PBSs) obtained from 29 and 30 patients with
and without active dengue infection, respectively. After
approval by the hospital ethics committee, study partici-
pants were identified from hospital discharge ICD codes
at Kasturba Hospital, Manipal, and PBSs retrieved from
the on-site hematology laboratory. The Leishman-stained
PBSs had been manually prepared on glass slides; from
each of these, a number of PBS images at various regions
of interest were acquired by oil immersion field photo-
graphy―a drop of liquid paraffin oil was spread onto
the glass slide prior to image capture―using an Olym-
pus DP25 digital microscope with 100� magnification
and 2560 � 1920 resolution. Specifically, the regions of
interest were focused on an area between the head and
tail of the PBS: unlike the body, which contained a large
number of red blood cells, this area had fewer red blood
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cells spread out more evenly, which offered better visuali-
zation of lymphocytes, the cells of interest.

2.2 | Machine learning with wavelet
scattering features

2.2.1 | Wavelet scattering transform

In this handcrafted machine learning approach, we com-
bined WST with downstream shallow classifiers. In our
model, we used Morlet wavelets, which are anisotropic,
sensitive to rotations and directions, and effective for
tracking feature-oriented segment and edge image infor-
mation.39 As a proof-of-concept, wavelet scattering net-
works based on Morlet wavelets-extracted features have
been proposed in computationally lightweight algorithms
for classifying images of numerical digits45 and gray-scale
textures.46 The WST function comprises three successive
stages: convolution, nonlinearity transform, and convolu-
tion averaging using complex wavelets, modulus opera-
tion, and scale function, respectively. Dilated mother
wavelets with different scaling levels can be used as
wavelet functions in the scattering transform. In our
model, we used the Morlet wavelet as the mother wave-
let. The data were first convolved with the scaling func-
tion to yield the zeroth-order scattering coefficients.47,48

S 0½ � ¼ i�φ ð1Þ

where i represents input data; φ, scaling function, and S
[0], zeroth-order scattering coefficients. The input data
were then subjected to wavelet transform using each
wavelet filter in the first filter bank, and the modulus of
each filtered output was calculated. These moduli were
averaged with the scaling filter to yield the first-order
scattering coefficients.47,48

S 1½ � ¼j i�ψj1 j �φ ð2Þ

where {ψj,k} represents the wavelet, and S [1], first-order
scattering coefficient. The wavelet filters encompassed
different scales and rotations with respect to the image,
which enabled a comprehensive analysis of the input
data. By iterating the above steps, the second-order scat-
tering coefficients were computed.47,48

S 2½ � ¼
�
�
� i�ψj1 j �ψj2 j �φ ð3Þ

where S [2] represents second-order scattering coeffi-
cients, they were then used to decompose the PBS image
(Figure 2).

2.2.2 | Implementing the wavelet scattering
network

The experiment was performed on a core i7 processor
and 64 GB RAM. WST was implemented in the MATLAB
programming environment using the Image Processing
Toolbox and Wavelet Toolbox. Complex-valued two-
dimensional Morlet filter banks were configured, corre-
sponding to the two scattering stages. The outcome of
wavelet image scattering was influenced by various
framework parameters: invariance scale, quality factor,
and number of rotations. The invariance scale determines
the spatial extent of the scaling filter in both the row and
column dimensions. The default setting is half the smal-
ler image dimension, which, in our case, was set to
960 (=0.5 � 1920). The quality factor is the number of
wavelet filters per octave in each filter bank. Minimizing
the quality factor is preferred since increasing it does not
enhance the discriminative ability of the feature space.49

In our model, one wavelet filter per octave was set in
each filter bank to minimize the computational work-
load. Each wavelet in each filter bank has an equally
spaced angle between 0 and π radians, and is rotated
clockwise for a varying number of rotations. In our exper-
iments, invariance scale and quality factor were fixed,
while the number of rotations varied from 1 to 6 per
wavelet in the first and second filter banks. The number
of generated feature sets ranged from 37 to 1057. Follow-
ing extraction, the wavelet scattering features were
normalized to a range of 0–1 and then stored as matrices
on Microsoft Excel: rows and columns of the spreadsheet
represented individual PBS images and features,
respectively.

2.2.3 | Classification algorithms

The researchers adopted five established classifiers com-
monly used in supervised learning were deployed: deci-
sion tree (DT), discriminant analysis, SVM, kNN, and
multilayer perceptron (MLP). DT follows a top-down
recursive approach based on the data class labels to build
a tree-like structure, where leaves represent outcome
labels and branches combinations of input features that
led to the outcomes.50,51 The discriminant analysis relies
on discriminant variables, which have been selected
based on prior knowledge to represent unique character-
istics expected to differ among the groups, to derive a set
of equations from input features to assign labels to the
samples.52 Linear discriminant analysis (LDA) was used
in our model. SVM uses data from binary classes to con-
struct a maximum margin hyperplane separating the two
classes for data classification and regression analysis.53 It
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works for datasets with separable and non-separable clas-
ses, the latter by using a kernel function to transform the
data to a higher-dimensional space to facilitate linear
hyperplane data separation.50,54 Cubic SVM, with the
cubic kernel, was utilized in our model. By assigning an
unknown instance to each class with reference to known
instances, kNN assigns the class to a feature vector based
on the majority class among its k nearest neighbors.50

In our model, fine-grained kNN was employed, which

enabled precise differentiation between classes by consid-
ering the closest neighbor only, that is, with k set to
1. MLP, with input, hidden, and output layers, learns
to distinguish between different classes through an initial
learning phase: the neural network compares the pre-
dicted output with the correct output and adjusts its
internal weights accordingly.55 Its effectiveness is influ-
enced by the structure, activation functions, and weight
updating. The selected factors determine the number of
input neurons, while the number of hidden neurons is
based on the training data.56,57 In this work, medium
MLP was used.

The above classifiers were applied to input matrixes,
which embodied PBS image data with corresponding
WST-based features, using MATLAB Classification Learner
Toolbox (Table 1). We adopted a 10-fold CV strategy for our
data, which would minimize model overfitting and, by
averaging accuracies across all folds, maximize the gener-
alizability of the results.

2.3 | Object detection with YOLOv8
architecture

2.3.1 | YOLOv8 architecture

We used YOLOv8, the latest version of the YOLO algorithm
by Ultralytics, which is available in five scaled variants:
YOLOv8n (nano), YOLOv8s (small), YOLOv8m (medium),
YOLOv8l (large), and YOLOv8x (extra-large).41 These
models differ in size and parameter count of their feature

FIGURE 2 Decomposition of a peripheral blood smear image using second-order wavelet scattering transform.

TABLE 1 Parameter specifications of model classifiers.

Classifier Model specifications

Decision tree Preset: fine tree; maximum number of splits:
100; split criterion: Gini's diversity index;
surrogate decision splits: off

Discriminant
analysis

Preset: linear discriminant; covariance
structure: full

Support vector
machine

Preset: cubic support vector machine; kernel
function: cubic; kernel scale: automatic;
box constraint level: 1; multiclass method:
one-vs.-one; standardize data: true

k-Nearest
neighbors

Preset: fine k-nearest neighbors; number of
neighbors: 1; distance metric: Euclidean;
distance weight: equal; standardize data:
true

Multilevel
perceptron

Preset: medium neural network; number of
fully connected layers: 1; first layer size:
25; activation: rectified linear unit;
iteration limit: 1000; regularization
strength (lambda): 0; standardized data:
yes
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extraction modules: YOLOv8x has the largest module size
and parameter count, and YOLOv8n is the smallest. Similar
to YOLOv5,58 the YOLOv8 architecture consists of a back-
bone, neck, and head (Figure 3). The backbone extracts
features from the input image using a series of convolu-
tional layers and then splits the generated feature map into
two parts using a cross-stage partial architecture: the first
encompasses the output of the convolution operations; the
second, the concatenated outputs of the current and pre-
vious portions. In so doing, the cross-stage partial architec-
ture improves learning ability and reduces computational
costs. Convolutional layers of the backbone include, among
others, a C2f module and a spatial pyramid pooling-fast
(SPPF) layer, which is an improved version of spatial

pyramid pooling. The C2f module integrates high-level
features with contextual information, enhancing detection
accuracy. The SPPF, the last layer of the backbone,
processes features at various scales (along with subsequent
convolution layers), which increases model inference
speed.59,60 In the neck, upper layers acquire more informa-
tion due to additional network layers, whereas lower layers
preserve location information due to fewer convolution
layers. In YOLOv8, the traditional YOLO neck architecture
is replaced with a novel C2f module that incorporates fea-
ture pyramid network (FPN) and path aggregation network
(PAN) architectures. FPN upsamples from top to bottom,
and PAN downsamples from bottom to top, which
increases the amount of feature information at the bottom

FIGURE 3 Block diagram of YOLOv8 (You Only Look Once version 8) model. Bbox loss, bounding box loss; BCE, binary cross entropy;

BN, batch normalization; C2f, C2f module; CIoU, complete intersection over union; Cls loss, classification loss; concat, concatenation;

Conv2d, two-dimensional convolution; ConvModule, convolution module; DFL, distribution focal loss; SiLU, sigmoid linear unit; SPPF,

spatial pyramid pooling-fast.

DSILVA ET AL. 7 of 15

 10981098, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/im

a.23020 by U
niversity O

f Southern Q
ueensland, W

iley O
nline L

ibrary on [28/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



and top of the feature map, respectively. By merging the
two feature outputs, which effectively integrated feature
layer information across multiple scales and network layers,
precise predictions were obtained for images of various
sizes.61 The YOLOv8 head is designed to be decoupled: two
distinct heads perform objectness, classification, and regres-
sion tasks separately in parallel. Each head processes fea-
ture maps generated by the backbone to infer the final
model output of bounding boxes and object class probabili-
ties. This enables each branch to concentrate on its specific
duty, which improves model accuracy.62

2.3.2 | Dataset pre-processing

Each image in the dataset was manually annotated using
the Labellmg Tool obtained from the GitHub repository.
Bounding boxes were drawn around objects of interest,
and image annotations were appended, which were saved
in YOLO format as text files. The dataset comprised
314 PBS images; accordingly, the training dataset had
251 (≈0.80 � 314) labels (Figure 4).

Following annotation, data augmentation was per-
formed to introduce data variability, thereby creating a
more diverse training dataset that would enhance the
robustness and generalizability of the model. Various
augmentation techniques63,64 were deployed, including
(1) blurring input image using a random-sized kernel:
maximum kernel size was set at the 3–7 range; and likeli-
hood that transform would be used, at 0.01; (2) blurring
input image using a median filter with random aperture
linear size: maximum aperture linear size was set at the
3–7 range; and likelihood that transform would be used,

at 0.01; (3) applying contrast limited adaptive histogram
equalization to input image: upper threshold value for
contrast limiting was set at 4; grid size for histogram
equalization, at (8, 8); and likelihood that transform
would be used, at 0.01; and (4) converting input RGB
image to gray-scale: likelihood that transform would be
used was set at 0.01.

2.3.3 | Object detection model
implementation

All five YOLOv8 models—YOLOv8n, YOLOv8s, YOLOv8m,
YOLOv8l, and YOLOv8x—were trained from scratch on the
study dataset, which was divided into training, validation,
and testing sets at a split ratio of 80:10:10. Of note, the train-
ing process was expedited by transfer learning, which facili-
tated model creation with relatively modest datasets. The
experiment was performed on a core i7 processor and 64 GB
RAM. YOLOv8 models were implemented using Tesla K80
GPU on Google Colaboratory. Model-specific YAML data
configuration files containing data parameters like a number
of classes, class names, and data paths were built to serve as
input for the YOLOv8 models. Stochastic gradient descent
(SGD) and Adam optimizers were used during training. The
training epoch number was set at 120, with eight images in
each batch; the input image size, at the default resolution of
640; and SGD and Adam optimizer learning rates, at 0.001
and 0.0001, respectively. After completing model training,
testing was conducted on previously unseen data.

3 | RESULTS

3.1 | Performance of machine learning
with wavelet scattering features

At the various feature matrix sizes, which increased with
the number of rotations (set at 1–6), all five classifiers
yielded good classification accuracies exceeding 90% with
a 10-fold CV (Table 2). Overall, the cubic SVM classifier
attained the best accuracy of 98.7% for the 314 � 481 fea-
ture matrix (4 rotations), with negligible rates of misclas-
sification (Figure 5) and excellent C-statistic of 0.9983 on
receiver operating characteristic analysis.

3.2 | Performance of object detection
using YOLOv8 algorithm

Performances of all five trained YOLOv8 variants were
evaluated during initial training and validation. Results
obtained on the validation dataset implied that training

FIGURE 4 Scatter plot of the heights versus widths of

bounding boxes. Every point corresponds to one of 251 manually

annotated labels in the training dataset (130 and 121 in the

“Dengue-infected” and “Normal” classes, respectively).
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TABLE 2 Performance of machine learning with wavelet scattering features for dengue detection stratified by classifier and feature

matrix size.

Performance (%)

Number of rotations*
(feature matrix) Fine DT LDA Cubic SVM Fine kNN Medium MLP

[1 1] (314 � 37) Sen 89.57;
Spe 93.37;
F1 91.53;
Acc 91.40

Sen 95.09;
Spe 99.33;
F1 97.17;
Acc 97.10

Sen 95.09;
Spe 98.67;
F1 96.87;
Acc 96.80

Sen 94.47;
Spe 96.68;
F1 95.64;
Acc 95.50

Sen 98.15;
Spe 97.35;
F1 97.85;
Acc 97.80

[2 2] (314 � 129) Sen 93.25;
Spe 92.71;
F1 93.25;
Acc 93.00

Sen 96.93;
Spe 98.01;
F1 97.52;
Acc 97.50

Sen 96.31;
Spe 98.67;
F1 97.50;
Acc 97.50

Sen 93.25;
Spe 98.67;
F1 95.89;
Acc 95.90

Sen 96.93;
Spe 97.35;
F1 97.22;
Acc 97.10

[3 3] (314 � 277) Sen 93.25;
Spe 96.02;
F1 94.70;
Acc 94.60

Sen 69.94;
Spe 72.84;
F1 71.68;
Acc 71.30

Sen 96.93;
Spe 99.33;
F1 98.13;
Acc 98.10

Sen 95.09;
Spe 98.01;
F1 96.57;
Acc 96.50

Sen 98.15;
Spe 96.02;
F1 97.25;
Acc 97.10

[4 4] (314 � 481) Sen 92.64;
Spe 95.36;
F1 94.08;
Acc 93.90

Sen 94.48;
Spe 96.69;
F1 95.65;
Acc 95.50

Sen 97.55;
Spe 100.00;
F1 98.76;
Acc 98.70

Sen 95.09;
Spe 99.34;
F1 97.18;
Acc 97.10

Sen 97.55;
Spe 96.69;
F1 97.25;
Acc 97.10

[5 5] (314 � 741) Sen 89.57;
Spe 91.39;
F1 90.68;
Acc 90.40

Sen 95.71;
Spe 98.01;
F1 96.89;
Acc 96.80

Sen 96.32;
Spe 99.34;
F1 97.82;
Acc 97.80

Sen 95.09;
Spe 100.00;
F1 97.48;
Acc 97.50

Sen 98.16;
Spe 97.35;
F1 97.86;
Acc 97.80

[6 6] (314 � 1957) Sen 93.87;
Spe 90.07;
F1 92.45;
Acc 92.00

Sen 95.09;
Spe 99.34;
F1 97.18;
Acc 97.10

Sen 96.32;
Spe 99.34;
F1 97.82;
Acc 97.80

Sen 93.87;
Spe 100.00;
F1 96.84;
Acc 96.80

Sen 97.55;
Spe 97.35;
F1 97.55;
Acc 97.50

Abbreviations: Acc, accuracy; F1, F1 score; Sen, sensitivity; Spe, specificity.

*Square parentheses indicate the number of rotations for each wavelet in each filter bank.

FIGURE 5 Confusion matrix of

cubic support vector machine classifier

for the 314 � 481 feature matrix.
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with Adam versus SGD optimizer led to better perfor-
mance for most models. Among these, the YOLOv8l
model with Adam optimizer attained the highest mean
average precision metric, mAP50-95, of 94.1%. For the
YOLOv8l model with Adam optimizer, with an increas-
ing number of epochs during both training and validation
phases, all loss parameters converged toward their mini-
mum values, and performance metrics toward their maxi-
mum values (Figure 6). Figure 7 depicts the identification
of normal versus dengue-infected lymphocytes by the
YOLOv8l model trained with Adam optimizer on sample
PBS images of the validation set.

Performance was further evaluated on the test set
through five independent experiments. With Adam opti-
mizer, both YOLOv8s and YOLOv8l models attained
identical best results: 99.3% accuracy, 100% recall, 98.6%
specificity, and 99.4% F1 score (Table 3), with very low
rates of misclassification. Figure 8 depicts the identifica-
tion of normal versus dengue-infected lymphocytes by
the YOLOv8s model trained with Adam optimizer on
sample PBS images of the test set.

4 | DISCUSSION

Dengue fever is a viral disease characterized by a wide
range of clinical presentations. With the digitization of
whole-slide pathological images, the field of digital

pathology has grown apace in recent years. The emer-
gence of machine learning tools promises fully auto-
mated diagnostic models that can enable rapid and
accurate analysis of images without human intervention.
In this study, we focused on two different approaches for
diagnosing dengue infection based on the classification of
lymphocytes on PBS images. In the first approach, lym-
phocytes were analyzed using WST, and machine learn-
ing classifiers were trained on the extracted wavelet
scattering features. Among five tested classifiers, SVM
attained the best performance, with 98.70% accuracy,
97.55% sensitivity, 100.00% specificity, and 98.76% F1
score on the robust 10-fold CV. In the second approach
involving transfer learning-enabled object detection with
YOLOv8 algorithms, the YOLOv8s and YOLOv8l models
with Adam optimizer outperformed other variants,
attaining identical excellent mean performance results
across multiple experiments: 99.3% ± 1.4% accuracy,
100.0% ± 0.0% recall, 98.6% ± 2.9% specificity, and 99.4%
± 1.3% F1 score.

The existing literature on automated dengue diagno-
sis primarily focuses on white blood cell, platelet count,
symptoms and biomarker analysis, or their combinations.
Tantikitti et al.65 used white blood cell count as a differ-
entiation feature to classify dengue viral infections using
DT methods. Their model attained only a modest 72.3%
accuracy. Hassan et al.66 used Raman spectroscopy to
detect the dengue virus in human sera. Applying a

FIGURE 6 Graph plots of the loss function and performance parameters with several training and validation epochs for the YOLOv8l

model with Adam optimizer. box_loss, bounding box loss; cls_loss, classification loss, dfl_loss, distribution focal loss; mAP50, mean average

precision at intersection over union threshold of 0.5; mAP50-95, mean average precision over intersection over union thresholds from 0.5 to

0.95; train, training phase; val, validation phase.
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FIGURE 7 Sample peripheral blood smear images of the validation dataset showing normal and dengue-infected lymphocytes identified

by the YOLOv8l model with Adam optimizer. The bounding box shows the label and confidence score of the detected object.

TABLE 3 Performance of YOLOv8 variants for dengue detection across five independent experiments on the test dataset stratified by

model and optimizer.

Model Optimizer Accuracy (%) Recall (%) Specificity (%) F1 score (%)

YOLOv8n Adam 98.1 ± 1.7 98.1 ± 2.6 98.6 ± 2.9 98.4 ± 1.4

YOLOv8n SGD 97.5 ± 2.6 97.9 ± 4.7 97.3 ± 3.6 97.7 ± 2.3

YOLOv8s Adam 99.3 ± 1.4 100.0 ± 0.0 98.6 ± 2.9 99.4 ± 1.3

YOLOv8s SGD 96.2 ± 2.6 95.1 ± 4.7 98.6 ± 2.9 96.8 ± 2.0

YOLOv8m Adam 98.7 ± 1.7 98.0 ± 2.6 100.0 ± 0.0 99.0 ± 1.3

YOLOv8m SGD 96.2 ± 1.4 95.7 ± 4.8 97.1 ± 3.9 96.6 ± 1.6

YOLOv8l Adam 99.3 ± 1.4 100.0 ± 0.0 98.6 ± 2.9 99.4 ± 1.3

YOLOv8l SGD 96.8 ± 3.1 96.2 ± 5.2 98.6 ± 2.9 97.4 ± 2.5

YOLOv8x Adam 98.1 ± 2.7 97.6 ± 5.3 98.6 ± 2.9 98.1 ± 2.7

YOLOv8x SGD 96.8 ± 5.4 95.7 ± 9.4 98.6 ± 2.9 97.0 ± 5.1

Note: Results are expressed as means ± standard deviations.
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pre-trained ResNet101 deep network on Raman spectro-
scopic data, their transfer learning model attained 96.0%
accuracy on test data for dengue infection diagnosis.
Mayrose et al.27 studied morphologic characteristics of
platelets and lymphocytes on PBS for dengue detection.
Using standard shallow SVM and DT classifiers, they
attained 93.62% accuracy. Incorporating feature extrac-
tion with MobileNetV2 and local binary pattern yielded
an accuracy of 95.74% with SVM. Falconi-Agapito et al.67

employed a random forest to diagnose dengue infection
based on peptide biomarkers. For a targeted specificity
>80%, their model attained sensitivities of 72.3% and
88.9%–89.1% for different sample combinations. Hoyos
et al.68 introduced a clinical decision-support system that
utilized a fuzzy cognitive map constructed from signs,
symptoms, and routine laboratory tests performed for
dengue diagnosis. Their model attained 89.4% accuracy.

To the best of our knowledge, no previous research
has explored the use of WST and the YOLOv8 algorithm
for diagnosing dengue based on lymphocyte features on
PBS. Of note, our model has outperformed the mentioned
published models (Table 4). Moreover, machine learning
using shallow classifiers has exhibited substantially good
results comparable to an object detection network like
YOLO. Currently, the models have been trained and

studied with datasets that have an ample quantity of
images after the augmentation process. However, we
strived to utilize most of the resources available to generate
meaningful insights to the best of our abilities. Importantly,
our PBS-based strategy lends itself to high-throughput
screening of laboratory digitized PBS readouts for dengue
detection in hospital and clinic settings.

In addition to the application of YOLO to PBS images
for object detection, this algorithm can be leveraged for
WSI scans. With regard to YOLO's remarkable ability
for multiple object detection, it can effectively identify
regions of interest in WSIs and thus aid in the automated
detection and diagnosis of various pathological condi-
tions. Another potential direction for the future scope of
YOLO lies in enabling remote access for pathologists
and clinicians by developing applications for Android
and iOS devices. This would give them the flexibility to
perform real-time diagnostics regardless of their location.
Additionally, other features could be incorporated to
further enhance the accessibility and collaborative poten-
tial of the YOLO algorithm. Furthermore, the perfor-
mance of both YOLO algorithms and WST can be
assessed by applying them to different datasets across
diverse scenarios and evaluating their applicability in
clinical settings. This would provide insights into the

FIGURE 8 Sample peripheral blood smear images of the test set showing normal and dengue-infected lymphocytes identified by the

YOLOv8s model with Adam optimizer. The bounding box shows the label and confidence score of the detected object.
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robustness of these methods and help validate their real-
world usability. Certainly, this research has laid the
groundwork for the next benchmark in the domain.
Efforts can be made to improve the accuracy and speed
of detection using these techniques. By reducing compu-
tational time, clinicians would be able to analyze patho-
logical images more quickly, leading to faster diagnosis
and treatment decisions.

5 | CONCLUSION

Dengue infection is a global health concern, and charac-
teristic morphological changes in lymphocytes can be seen
on PBS images in cases of dengue infection. In this study,
we employed two computer vision approaches to detect
and classify dengue-infected versus normal lymphocytes
from a unique dataset of PBS images. In the WST-based
machine learning approach, spatial-time wavelet scatter-
ing features were used as input for shallow classifiers. The
SVM classifier achieved an excellent 98.70% accuracy. In
the object detection approach using the latest version of
YOLO, YOLOv8s and YOLOv8l models demonstrated
excellent mean classification accuracy of 99.3% ± 1.4%
across five independent experiments. Furthermore, we
have also demonstrated the feasibility of training both
models on a relatively small prospective 314-image PBS
image dataset. In future works, we will extend the use of
WST- and YOLOv8-based computer vision methods with

ablation studies to other applications in the field of digital
pathology. This could include diverse clinical diagnostic
problems and image datasets and evaluate their efficacy in
various real-world clinical settings.
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TABLE 4 Comparison of the literature with our proposed methods for automated dengue detection.

Authors Methods Model input Best results (%)

Tantikitti et al. (2015)65 White blood cell count-based detection
using decision tree

264 peripheral blood smear images Accuracy 72.3
Sensitivity 71.2
Specificity 73.3

Hassan et al. (2021)66 Raman spectroscopy-based
classification using ResNet101

2000 Raman spectral images of sera Accuracy 96.0
Sensitivity 97.3
Specificity 94.5

Mayrose et al. (2022)27 Morphological and gray-level spatial
dependence matrix feature-based
classification using support vector
machine

94 peripheral blood smear images Accuracy 95.74
Sensitivity 98.15
Specificity 92.50

Falconi-Agapito et al. (2022)67 Peptide biomarker based-classification
using random forest

323 serum samples Sensitivity 89.1

Hoyos et al. (2022)68 Clinical decision-support systems based
on fuzzy cognitive maps

22 variables: symptoms, signs, lab
tests

Accuracy 89.4

Our wavelet scattering method Wavelet scattering transform-based
classification using support vector
machine

314 peripheral blood smear images Accuracy 98.70
Sensitivity 97.55
Specificity 100.0

Our object detection method Object detection using YOLOv8 314 peripheral blood smear images Accuracy 99.3
Sensitivity 100.0
Specificity 98.6
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