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Abstract This paper reports a new high-order control-volume discretisation for the

convection-diffusion equation in one and two dimensions. Diffusive fluxes at the faces

of a control volume and other terms embracing the unknown field variable are all ap-

proximated using one-dimensional integrated radial-basis-function networks; line integrals

involving these fluxes and other integrals are evaluated using a high-order numerical in-

tegration scheme. The accuracy of the proposed technique is investigated numerically

through the solution of several linear and nonlinear test problems, including a benchmark

thermally-driven cavity flow. High-order convergence solutions are obtained.

Key words: Control volumes; integrated radial basis function networks; convection-

diffusion equations

1 INTRODUCTION

Over the past 25 years, control-volume methods (CVMs)/finite-volume methods (FVMs)

have been very popular in the simulation of heat transfer and fluid flow problems (e.g.

[1,2]). The reasons for the popularity of CVMs are (i) their conservative nature, (ii)

their ability to handle domains with complex geometry, and (iii) their ability to generate

economical solutions. The CV formulation is based on the actual satisfaction of the

physical laws (i.e. the conservations of mass, momentum and energy) rather than on

the satisfaction of approximate discrete expressions controlled by means of mesh size.

Like finite-element methods (FEMs), CVMs also rely on the subdivision of the problem

domain into a set of subdomains called finite-volumes/control-volumes. Unlike FEMs,

the governing differential equation here is directly integrated over these volumes (i.e. the

weighting function is chosen to be unity in a control volume), where calculations required

embrace the approximation of diffusive fluxes at the surfaces of the control volume and the

evaluation of surface integrals involving these fluxes. These approximations have a strong

influence on the overall accuracy of a CV solution. Here, we refer to CVMs described in the
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book of Patankar [1] as a standard/classical CV scheme, in which numerical integration

is performed via the midpoint rule and gradients are approximated using linear shape

functions. In recent years, considerable effort has been put into the development of new

techniques that enhance the flux prediction (e.g. [3-8]).

Radial-basis-function networks (RBFNs) are considered as a powerful numerical tool for

the approximation of scattered data. The RBFN approximations are constructed using a

set of distinct points that can be randomly distributed rather than a set of elements that

are defined by a fixed typology. RBFNs have the universal approximation property (i.e.

they can represent any continuous function to a prescribed level of accuracy). A number

of RBFs such as the multiquadric and Gaussian basis functions exhibit an exponential

rate of convergence. As a result, RBFNs have found applications in many different fields

of industrial and academic interests. In computational mechanics, meshless RBFN collo-

cation methods, originally derived by Kansa [9], have received a great deal of attention

from both engineering and scientific research communities (e.g. [10-14] and references

therein). Very accurate solutions can be achieved using relatively small numbers of in-

terpolating points. However, conventional RBFN collocation methods still suffer from

the following problems: (i) mathematical theories for determining optimal values for the

network parameters such as the RBF width are still lacking and (ii) the interpolation

RBF matrices are generally ill-conditioned (i.e. the matrix condition number grows very

fast with increasing number of RBFs used). The latter limits the use of RBFNs to dis-

cretised systems with only a few hundreds of points. Local RBF approximation methods

(e.g. [12]) and multi-domain RBF methods (e.g. [11]) provide a good way to overcome

this problem. Recently, a numerical scheme, based on one-dimensional integrated RBFNs

(1D-IRBFNs), point collocation and Cartesian grids, for solving differential problems in

regular and irregular domains was reported in [15,16]. The use of integration to construct

the RBF approximations is expected to overcome the problem of reduced convergence

rate caused by differentiation, while the employment of 1D interpolation schemes in solv-
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ing 2D problems leads to a significant improvement in the matrix condition number and

computational effort. Numerical results showed that this RBF technique allows a much

larger number of nodes to be employed.

Apart from the above implementations, RBFNs are also introduced into conventional dis-

cretisation techniques such as FEMs and CVMs to represent the field variables. There

has been an increased level of interest in this type of application. For example, in the

context of CVMs, Moroney and Turner [6,7] and Orsini, Power and Morvan [8] replaced

linear/quadratic shape functions with RBFs to improve the accuracy of a flux approx-

imation. In addition, to make CV-RBF schemes more accurate, surface integrals were

evaluated using a high-order numerical integration scheme (i.e. Gaussian quadrature)

[6,7], or the RBF interpolation schemes were also constructed to satisfy the governing

equation at some auxiliary points on a cell stencil [8]. Numerical experiments showed

that CV-RBF methods can yield accurate solutions on a much coarser mesh than stan-

dard CV methods. They thus have the ability to reduce the computational effort required

for a given degree of accuracy. In [7], a comparison of CPU time between CV-RBF and

CV-FE methods was made, indicating the former is more efficient than the latter for a

given accuracy.

In this study, we present a CV technique incorporating 1D-IRBFNs for the diffusion-

convection equation in one and two dimensions. Like CV-RBF techniques [6,7], line

integrals embracing gradients are evaluated here using Gaussian quadrature. In the case

of Neumann boundary conditions, the present IRBFN interpolation scheme is constructed

to satisfy not only the field variable at every grid node, but also the boundary derivative

values. Numerical results show that (i) the matrix condition number is as low as that

yielded through standard CVMs and (ii) high-order convergence solutions are achieved.

The proposed technique will be referred to as the 1D-IRBFN CV method.

The remainder of the paper is organised as follows. A short review of the control-volume
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formulation is given in Section 2. In Section 3, we briefly present the 1D-IRBFN inter-

polation scheme. The proposed CVM is described in Section 4 through the solution of

linear and nonlinear test problems including a benchmark natural convection in a square

cavity. Section 5 concludes the paper.

2 CONTROL-VOLUME FORMULATION

A control-volume approach is well documented in the literature. Its fundamentals can be

found in the book of Patankar [1]. For the sake of completeness, a brief review of the

formulation is given below.

Consider the convection-diffusion equation defined as

∂

∂t
(ρφ) + ∇. (ρûφ) −∇. (κ∇φ) +R = 0, x̂ ∈ Ω, (1)

with a set of the initial and boundary conditions. In (1), φ is the field variable, t the time,

ρ the density, û the convection velocity vector, κ the diffusion coefficient, R the source

term, x̂ the position vector and Ω the domain of interest.

The above equation presents the conservation principle for φ over an infinitesimal control

volume (i.e. there is a balance between the rate of change of φ, the convective flux rate,

the diffusion flux rate, and the generation rate).

The control-volume approach subdivides the problem domain into a set of control volumes

in such a way that there is one control volume surrounding each nodal point. By directly

integrating (1) over a control volume V , the following equation is obtained

∫

V

(
∂

∂t
(ρφ) + ∇. (ρûφ) −∇. (κ∇φ) +R

)
dV = 0 (2)
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which possesses the conservative property for φ for a finite control volume.

Applying the Gauss divergence theorem to (2) results in

∂

∂t

∫

V

(ρφ)dV +

∫

S

(ρûφ) .n̂dS −

∫

S

(κ∇φ) .n̂dS +

∫

V

RdV = 0, (3)

where S is the boundaries of V , n̂ is the unit outward vector normal to S, and dS is a

differential element of S. The governing differential equation (1) is thus transformed into

a CV form (2)/(3). It is noted that no approximation is made at this stage. Attractive

features of the CV approach include (i) physical quantities such as mass, momentum, and

energy are conserved over every control volume and therefore over the whole computa-

tional domain, regardless of the number of nodal points used, (ii) a Neumann boundary

condition can be incorporated straightforwardly into the CV equation set because these

equations contain first derivative terms explicitly, and (iii) one only needs to use discrete

expressions representing the field variable and its first derivatives for the discretisation of

second-order differential equations.

From a mathematical point of view, equation (2) is equivalent to the weighted-residual

statement with the chosen weighting functions being unity in a control volume and zero

outside a control volume (the subdomain collocation method). However, the control-

volume approach is more physically meaningful than the weighted-residual approach.

3 ONE-DIMENSIONAL INTEGRATED RBFNS

This study is concerned with the numerical solution of the convection-diffusion equation

(second-order PDE). The basic idea of the integral RBF scheme [17,18] is to decompose

the highest-order derivatives of φ in a given differential equation (i.e. the second-order

ones here) into RBFs. Consider a univariate function φ(x). The present 1D-IRBFN
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scheme starts with

d2φ(x)

dx2
=

Nx∑

i=1

wiI
(2)
i (x), (4)

where {wi}
Nx

i=1 is the set of network weights and
{
I

(2)
i (x)

}Nx

i=1
is the set of RBFs. Expres-

sions for the first-order derivative and function itself are then obtained through integration

dφ(x)

dx
=

Nx∑

i=1

wiI
(1)
i (x) + c1, (5)

φ(x) =
Nx∑

i=1

wiI
(0)
i (x) + c1x+ c2, (6)

where I
(1)
i (x) =

∫
I

(2)
i (x)dx, I

(0)
i (x) =

∫
I

(1)
i (x)dx, and (c1, c2) are the constants of inte-

gration. It is noted that the superscript (.) is used to indicate the derivative order of φ

which the basis functions Ii(x) are associated with.

Evaluation of (4)-(6) at a set of collocation points {xi}
Nx

i=1 leads to

d̂2φ

dx2
= Î(2)α̂, (7)

d̂φ

dx
= Î(1)α̂, (8)

φ̂ = Î(0)α̂, (9)

where

Î(2) =




I
(2)
1 (x1), I

(2)
2 (x1), · · · , I

(2)
Nx

(x1), 0, 0

I
(2)
1 (x2), I

(2)
2 (x2), · · · , I

(2)
Nx

(x2), 0, 0

...
...

. . .
...

...
...

I
(2)
1 (xNx), I

(2)
2 (xNx), · · · , I

(2)
Nx

(xNx), 0, 0



,

Î(1) =




I
(1)
1 (x1), I

(1)
2 (x1), · · · , I

(1)
Nx

(x1), 1, 0

I
(1)
1 (x2), I

(1)
2 (x2), · · · , I

(1)
Nx

(x2), 1, 0

...
...

. . .
...

...
...

I
(1)
1 (xNx), I

(1)
2 (xNx), · · · , I

(1)
Nx

(xNx), 1, 0



,
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Î(0) =




I
(0)
1 (x1), I

(0)
2 (x1), · · · , I

(0)
Nx

(x1), x1, 1

I
(0)
1 (x2), I

(0)
2 (x2), · · · , I

(0)
Nx

(x2), x2, 1

...
...

. . .
...

...
...

I
(0)
1 (xNx), I

(0)
2 (xNx), · · · , I

(0)
Nx

(xNx), xNx , 1




;

α̂ = (w1, w2, · · · , wNx , c1, c2)
T ;

and

d̂kφ

dxk
=

(
dkφ1

dxk
,
dkφ2

dxk
, · · · ,

dkφNx

dxk

)T

, k = (1, 2),

φ̂ = (φ1, φ2, · · · , φNx)
T ,

in which dkφi/dx
k = dkφ(xi)/dx

k and φi = φ(xi) with i = (1, 2, · · · , Nx).

This use of integration to construct the RBF approximations is expected to avoid the

deterioration of accuracy caused by differentiation ([5,17,18]). Numerical studies, e.g.

[17,19,20], have shown that the integral collocation approach is more accurate than the

differential collocation approach. Recently, theoretical studies, e.g. [21], have confirmed

superior accuracy of integrated RBFNs over differentiated RBFNs.

4 THE PRESENT CV TECHNIQUE

This work is the first attempt to introduce 1D-IRBFNs into the control volume formulation

to represent the field variable. Only uniform rectangular grids are considered at this stage.

However, the present solution procedure can be extended to the case of non-uniform rect-

angular grids straightforwardly. Consider the convection-diffusion equation (1) defined on

a line segment in one dimension and a rectangular domain in two dimensions. A Cartesian

grid is placed on the computational domain. The approximations based on 1D-IRBFNs

for the field variable and its derivatives can be constructed at the global level or locally
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at the neighbouring points of a given control volume. Global approximation schemes are

known to be more accurate than local schemes, but require more computational effort to

construct. For problems, which do not require very dense discretisations for an accurate

simulation, the use of global schemes is a preferred option. In this study, we are inter-

ested in such problems and thus implement global approximation schemes. It is noted

that, for any level, 1D-IRBFNs possess some ”local” characteristics in comparison with

conventional RBF schemes. On a grid line, 1D-IRBFNs are employed to represent the

field variable and its derivatives. Associated with grid nodes are control volumes that do

not overlap each other. In this work, we implement the multiquadric (MQ) basis function

whose form is

I
(2)
i (x) =

√
(x− ci)2 + a2

i , (10)

where ci and ai are the MQ centre and width, respectively. The present MQ width is

simply chosen to be the grid size, and the set of centres {ci}
Nx

i=1 is the set of grid points

{xi}
Nx

i=1 itself. All boundary conditions are directly imposed on the IRBFN approxima-

tions, and the governing equations are forced to be satisfied locally over control volumes

by means of subregion collocation. The obtained set of algebraic equations exhibits exact

integral balances, regardless of the accuracy.

We seek the solution in terms of its nodal values. It is thus necessary to carry out

the conversion of the network-weight space into the physical space. A distinguishing

feature of 1D-IRBFNs is that their coefficient vector α̂ is larger owing to the presence of

integration constants. As a result, one can add additional equations to the conversion

system to represent “extra information” such as nodal derivative values. On a grid line,
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the conversion system can be formed as follows




φ̂

f̂


 =




I(0)

K


 α̂ = Cα̂, (11)

α̂ = C−1




φ̂

f̂


 , (12)

where f̂ = Kα̂ are additional equations whose number can be up to 2; φ̂, Î(0) and α̂ are

defined as before; and C the conversion matrix. It can be seen that (11) and (12) still allow

one to collocate the function φ at every node on the grid line including the two boundary

points. We will utilise f̂ for the purpose of implementing a Neumann boundary condition

and deriving a computational boundary condition for the vorticity in the solution of the

Navier-Stokes equation. In the case of two dimensions, the corresponding basis functions

are constructed as products of integrated RBFs in each direction. The present method is

described in detail through the solution of several 1D and 2D problems.

4.1 1D steady-state diffusion problem

Consider a 1D problem governed by

d

dx

(
dφ

dx

)
+ φ+ x = 0, 0 ≤ x ≤ 1, (13)

with two different cases of boundary conditions: (i) Dirichlet only, and (ii) Dirichlet and

Neumann conditions. The exact solution of this problem is

φe(x) =
sin(x)

sin(1)
− x. (14)

The problem domain is replaced with a set of uniform points. Each node xi is surrounded

by a control volume denoted by Ωi (Figure 1). For 2 ≤ i ≤ Nx − 1, Ωi is defined as
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[xi−1/2, xi+1/2]. For i = 1 and i = Nx, its control volume is taken to be [x1, xx1+1/2
] and

[xNx−1/2, xNx ], respectively (i.e. half of the interior control volume).

Integrating (13) over a control volume Ωi, one has

dφ

dx
(xi+1/2) −

dφ

dx
(xi−1/2) +

∫ xi+1/2

xi−1/2

φdx = −

∫ xi+1/2

xi−1/2

xdx. (15)

To study the convergence behaviour of the present technique, a number of uniform grids

with Nx = (9, 11, 13, · · · , 151) are employed.

Dirichlet boundary conditions only: For this case, f̂ and K in (11) and (12) are

simply set to null. Making use of (11)-(12) and (6)-(4), the values of φ, dφ/dx and d2φ/dx2

at an arbitrary point x can be computed in terms of the grid values of φ as

φ(x) =
[
I

(0)
1 (x), I

(0)
2 (x), · · · , I

(0)
Nx

(x), x, 1
]
Ĉ−1φ̂, (16)

dφ

dx
(x) =

[
I

(1)
1 (x), I

(1)
2 (x), · · · , I

(1)
Nx

(x), 1, 0
]
Ĉ−1φ̂, (17)

d2φ

dx2
(x) =

[
I

(2)
1 (x), I

(2)
2 (x), · · · , I

(2)
Nx

(x), 0, 0
]
Ĉ−1φ̂. (18)

The above expressions can be rewritten as

φ(x) =
Nx∑

i=1

ϕi(x)φi, (19)

dφ

dx
(x) =

Nx∑

i=1

dϕi

dx
(x)φi, (20)

d2φ

dx2
(x) =

Nx∑

i=1

d2ϕi

dx2
(x)φi, (21)

where ϕi(x) are the new basis functions in the physical space.

We use Gaussian quadrature to evaluate integrals in the CV equations. A system of

algebraic equations is generated using (15) with i = (2, 3, · · · , Nx − 1), from which one
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can find the values of φ at the interior grid points.

Dirichlet (x = 0) and Neumann (x = 1) conditions: For this case, the IRBFN

scheme is forced to satisfy a priori the Neumann boundary condition. In (11) and (12),

K is made up of the last row of I(1) and f̂ is simply dφNx/dx.

A function φ and its derivatives at x can be expressed as

φ(x) =
[
I

(0)
1 (x), I

(0)
2 (x), · · · , I

(0)
Nx

(x), x, 1
]
Ĉ−1




φ̂

dφNx

dx


 , (22)

dφ

dx
(x) =

[
I

(1)
1 (x), I

(1)
2 (x), · · · , I

(1)
Nx

(x), 1, 0
]
Ĉ−1




φ̂

dφNx

dx


 , (23)

d2φ

dx2
(x) =

[
I

(2)
1 (x), I

(2)
2 (x), · · · , I

(2)
Nx

(x), 0, 0
]
Ĉ−1




φ̂

dφNx

dx


 , (24)

or

φ(x) =
Nx∑

i=1

ϕi(x)φi + ϕNx+1(x)
dφNx

dx
, (25)

dφ

dx
(x) =

Nx∑

i=1

dϕi

dx
(x)φi +

dϕNx+1

dx
(x)

dφNx

dx
, (26)

d2φ

dx2
(x) =

Nx∑

i=1

d2ϕi

dx2
(x)φi +

d2ϕNx+1

dx2
(x)

dφNx

dx
. (27)

The notation overbar is used to indicate that extra information values are incorporated

into the IRBFN approximations. An attractive feature of (22)-(24)/(25)-(27) lies in the

fact that the approximate expression (22)/(25) representing φ satisfies the Neumann

boundary condition identically. In (25), φ1 and dφNx/dx are given, and the remain-

ing nodal values are determined by solving the equation set generated by (15) with

i = (2, 3, · · · , Nx).

12



Results concerning the discrete relative L2 norm of the solution φ, Ne, and the condition

number of the system matrix, condA, are presented in Figure 2. For the assessment

of accuracy of the present technique, we also include results obtained by the IRBFN

collocation and standard CV methods.

In terms of the matrix condition number, it can be seen that the growth in condA is at

a rate of about O(h−2.0) for the three techniques. In terms of accuracy, both IRBFN

methods outperforms CVM. At Nx = 151, the present CV method achieves an accuracy

better than that of standard CVMs by two orders of magnitude.

In the context of RBF methods, it is widely observed that collocation solutions to Dirichlet-

type boundary-value problems are generally more accurate than those to problems with

Neumann boundary conditions (e.g. [22]). This deterioration of accuracy also occurs here

as shown in Figure 2 (Legend “collocation IRBFN”). However, via a control-volume ap-

proach, conservative IRBFN solutions to both problems have similar degrees of accuracy.

It appears that subregion collocation is able to handle Neumann boundary conditions

better than point collocation.

4.2 2D steady-state diffusion problem

Consider the following diffusion equation

∂

∂x

(
∂φ

∂x

)
+

∂

∂y

(
∂φ

∂y

)
= 0, (28)

on a square domain 0 ≤ x, y ≤ π, subject to two different cases of boundary conditions

that will be described shortly. The exact solution for this problem is

φe(x, y) =
1

sinh(π)
sin(x) sinh(y), (29)
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whose variation is shown in Figure 3.

The problem domain is discretised using a uniform Cartesian grid. For each grid point

(xi, yj), one can construct a control volume Ωi,j with its interfaces Γi,j as shown in Figure

4. There is a full control volume for an interior node and only a half control volume for

a boundary node.

The CV equation of (28) takes the form

∫

Γi,j

(
∂φ

∂x
dy −

∂φ

∂y
dx

)
= 0, (30)

which involves first derivatives of φ only. Flux integrals over line segments of Γi,j are

evaluated using Gaussian quadrature that is more straightforward to implement than

analytical schemes.

Dirichlet boundary conditions only The solution φ is sought in the form

φ(x, y) =
Nx∑

i=1

Ny∑

j=1

ϕ
(x)
i (x)ϕ

(y)
j (y)φi,j, (31)

where the basis functions are products of integrated RBFs in each direction, the super-

script (x)/(y) indicates that the basis function is obtained from the integration process

with respect to the x/y variable, and φi,j = φ(xi, yj). Algebraic equations are generated

in the same manner as in the previous problem, where the values of i and j defining a

grid node and its associated control volume in (30) are taken from 2 to Nx − 1 and 2 to

Ny − 1, respectively.
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Dirichlet (x = 0 and x = π) and Neumann (y = 0 and y = π) conditions We

approximate the solution φ in the form

φ(x, y) =
Nx∑

i=1

ϕ
(x)
i (x)

(
Ny∑

j=1

ϕ
(y)
j (y)φ(xi, yj) + ϕ

(y)
Ny+1(y)

∂φ

∂y
(xi, y1) + ϕ

(y)
Ny+2(y)

∂φ

∂y
(xi, yNy)

)
.

(32)

In obtaining
{
ϕ

(y)
j

}Ny+2

j=1
, we make use of (11), where K consists of the first and last rows

of Î(1), and f̂ is made up of the two derivative values, ∂φ1/∂y and ∂φNy/∂y. The size

of the discretised system here is slightly larger than that in the previous case as (30) is

applied with i = (2, 3, · · · , Nx − 1) and j = (1, 2, · · · , Ny).

Computations for the two cases of boundary conditions are carried out using various

grids, 3 × 3, 5 × 5, · · · , 71 × 71. Figure 5 shows comparisons of the condition number

and accuracy of the conservative IRBFN and standard CV methods. Both techniques

have similar condition numbers, but the former yields much faster convergence than the

latter. At N = 5041 (N = NxNy), the present method produces a solution several orders

of magnitude more accurate than that by standard CVMs. It can be seen that standard

CVMs need a very fine grid in order to achieve accuracy that is comparable to the IRBFN-

CV method. Like in the case of 1D problems, conservative IRBFN solutions to Dirichlet

and Dirichlet-Neumann problems have similar degrees of accuracy.

4.3 1D unsteady diffusion problem

Consider the transient temperature distribution in a one dimensional slab governed by

∂φ

∂t
=

∂

∂x

(
∂φ

∂x

)
, (33)
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where 0 ≤ x ≤ 1 and 0 ≤ t ≤ tf , with the initial solution

φ(x, 0) =





2x if 0 ≤ x ≤ 0.5,

2(1 − x) if 0.5 ≤ x ≤ 1.


 , (34)

and Dirichlet boundary conditions

φ(0, t) = 0, (35)

φ(1, t) = 0. (36)

The analytical solution is given by [23]

φe(x, t) =
8

π2

∞∑

k=1

1

k2
sin

kπ

2
sin kπx exp(−(kπ)2t). (37)

Haberland and Lahrmann [24] used a centred finite-difference (FD) scheme to solve this

problem, where comparative investigations on recurrence formulae such as the Euler,

Crank-Nicolson (CN), Pure Implicit (PI) and Weighted time step (WI) schemes are con-

ducted. Their results with tf = 0.25, ∆t = 0.025 and ∆x = 0.05 are included here for

comparison purposes. It is noted that FD and CV formulations lead to the same discrete

expressions in many cases when orthogonal coordinates are employed. For example, to

this problem, the centred FD scheme is identical to the standard CV equation.

The spatial (0 ≤ x ≤ 1) and time (0 ≤ t ≤ tf ) domains are discretised here using Nx and

Nt uniform points, respectively. We seek an approximate solution in the form

φ(x, t) =
Nt∑

j=1

Nx∑

i=1

ϕ(x)(xi)ϕ
(t)(tj)φ(xi, tj), (38)

where the centres tjs are referred to as time levels and the grid size ∆t = tj − tj−1 is

considered as time step.
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The discretisation equation is derived by integrating (33) over the control volume from

xi−1/2 to xi+1/2 and the time interval from 0 to tj

∫ xi+1/2

xi−1/2

∫ tj

0

∂φ

∂t
dtdx =

∫ tj

0

∫ xi+1/2

xi−1/2

∂2φ

∂x2
dxdt. (39)

The above equation reduces to

∫ xi+1/2

xi−1/2

(φ(x, tj) − φ(x, 0)) dx =

∫ tj

0

(
∂φ

∂x
(xi+1/2, t) −

∂φ

∂x
(xi−1/2, t)

)
dt. (40)

Making use of (38), both LHS and RHS of (40) can be rewritten in terms of nodal variable

values φi,j = φ(xi, tj). Since the function φ is given at x = 0 and x = 1 (the boundary

conditions) and t = 0 (the initial solution), the unknown vector consists of the nodal

values of φ at (xi, tj) with i = (2, 3, · · · , Nx − 1) and j = (2, 3, · · · , Nt). To determine

this unknown vector, one needs to generate a set of (Nx − 2)(Nt − 1) algebraic equations.

This can be achieved by using (40) with i = (2, 3, · · · , Nx − 1) and j = (2, 3, · · · , Nt).

Unlike standard CVMs, the present technique employs global high-order approximations,

and information from all previous time levels are directly used to calculate the temporal

integral at the present time level. Solutions over the temporal domain is obtained at once

rather than by the usual way of step by step.

Using the same time step (∆t = 0.025) and a coarser spatial discretisation (∆x = 0.25),

results by conservative IRBFNs are much more accurate than those by FDMs (Table

1). The present maximum error is only 2.12%, while they are up to 14.47%, 30.76%

and 27.58% for FDM-CN, FDM-PI and FDM-WI, respectively. Furthermore, it appears

that the present errors do not accumulate in time. We also study the behaviour of mesh

convergence of the present technique. When refining a mesh, much greater accuracy is

achieved. The maximum error reduces to 0.81% for (Nx = 7, Nt = 21) and 0.10% for

(Nx = 9, Nt = 41). It can thus be seen that the IRBFN-CV method is able to produce a

very high degree of accuracy using a relatively coarse grid.
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4.4 Thermally-driven cavity flow problem

The 1D-IRBFN CV technique is applied to simulate natural convection in a square slot.

The flow is caused by density variations. However, under the Boussinesq approximation,

one still has the continuity equation for a constant density fluid and the viscous stress

can be evaluated as in the Navier-Stokes equation.

Consider a unit square cavity (0 ≤ x, y ≤ 1) that is stationary. The two side walls are

heated with T = 0.5 at x = 0 and T = −0.5 at x = 1, while the top and bottom walls are

insulated (∂T/∂y = 0 at y = 0 and y = 1).

The dimensionless governing equations for this type of flow can be written in terms of

stream function ψ, vorticity ω and temperature T as

∂T

∂t
+
√
RaPr

(
∂(uT )

∂x
+
∂(vT )

∂y

)
=
∂2T

∂x2
+
∂2T

∂y2
, (41)

−ω =
∂2ψ

∂x2
+
∂2ψ

∂y2
, (42)

∂ω

∂t
+

√
Ra

Pr

(
∂(uω)

∂x
+
∂(vω)

∂y
−
∂T

∂x

)
=
∂2ω

∂x2
+
∂2ω

∂y2
, (43)

where u and v are the two components of the velocity vector (u = ∂ψ/∂y and v =

−∂ψ/∂x), Ra is the Rayleigh number and Pr the Prandtl number.
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Integrating (41)-(43) over a control volume Ωi,j leads to the following equation set

∂

∂t

∫

Ωi,j

TdΩi,j +

∫

Ωi,j

√
RaPr

(
∂(uT )

∂x
+
∂(vT )

∂y

)
dΩi,j =

∫

Ωi,j

(
∂2T

∂x2
+
∂2T

∂y2

)
dΩi,j,

(44)

−

∫

Ωi,j

ωdΩi,j =

∫

Ωi,j

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
dΩi,j,

(45)

∂

∂t

∫

Ωi,j

ωdΩi,j +

∫

Ωi,j

√
Ra

Pr

(
∂(uω)

∂x
+
∂(vω)

∂y
−
∂T

∂x

)
dΩi,j =

∫

Ωi,j

(
∂2ω

∂x2
+
∂2ω

∂y2

)
dΩi,j.

(46)

A high-order scheme to approximate the time derivative term, which is described in

Section 4.3, can be applied here. However, for the present problem, we are only interested

in the steady state of the flow. Time derivative terms are used for the purpose of handling

a non-linear system of algebraic equations. As a result, low-order approximation schemes

are chosen and implemented for efficient purposes. In the evaluation of the first terms

of (44) and (46), we assume that T and ω are constant over the control volume Ωi,j and

linear over the time interval (tk−1, tk). The time derivative terms reduce to

∫

Ωi,j

∂T

∂t
dΩi,j =

∫
Ωi,j

Ti,j,kdΩi,j −
∫
Ωi,j

Ti,j,k−1dΩi,j

∆t
=
Ai,j

∆t
(Ti,j,k − Ti,j,k−1) (47)

∫

Ωi,j

∂ω

∂t
dΩi,j =

∫
Ωi,j

ωi,j,kdΩi,j −
∫
Ωi,j

ωi,j,k−1dΩi,j

∆t
=
Ai,j

∆t
(ωi,j,k − ωi,j,k−1) , (48)

where Ai,j is the area of the control volume Ωi,j.

We seek the solutions for ψ and ω in the following forms

ψ(x, y) =
Nx∑

i=1

Ny∑

j=1

ϕ
(x)
i (x)ϕ

(y)
j (y)ψi,j, (49)

ω(x, y) =
Nx∑

i=1

Ny∑

j=1

ϕ
(x)
i (x)ϕ

(y)
j (y)ωi,j, (50)
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and the solution for T as

T (x, y) =
Nx∑

i=1

ϕ
(x)
i (x)

(
Ny∑

j=1

ϕ
(y)
j (y)Ti,j + ϕ(y)

ny+1
(y)

∂Ti,1

∂y
+ ϕ(y)

ny+2
(y)

∂Ti,Ny

∂y

)
. (51)

Since (51) contains information about derivative boundary conditions, it is straightforward

to implement the boundary conditions for T in the solution of (44). The associated

unknown vector consists of the values of T at the interior nodes and at the boundary

nodes on the top and bottom walls. As a result, we use (44) with 2 ≤ i ≤ Nx − 1 and

1 ≤ j ≤ Ny to generate a set of algebraic equations for T .

The cavity is stationary, leading to ψ = 0 and ∂ψ/∂n = 0 on all the boundaries. We

take ψ = 0 as boundary conditions for ψ in solving (45) and use ∂ψ/∂n = 0 to derive

a computational boundary condition for ω in solving (46). On the walls, the vorticity

is computed as ω = −∂2ψ/∂n2 and one has to incorporate ∂ψ/∂n = 0 into ∂2ψ/∂n2.

Consider a lth horizontal grid line, the values of ω at the two extreme points can be

computed as

ωl,1 =
Nx∑

i=1

d2ϕ
(x)
i

dx2
(x1)ψl,i +

d2ϕ
(x)
Nx+1

dx2
(x1)

∂ψl,1

∂x
+
d2ϕ

(x)
Nx+2

dx2
(x1)

∂ψl,Nx

∂x
, (52)

ωl,Nx =
Nx∑

i=1

d2ϕ
(x)
i

dx2
(xNx)ψl,i +

d2ϕ
(x)
Nx+1

dx2
(xNx)

∂ψl,1

∂x
+
d2ϕ

(x)
Nx+2

dx2
(xNx)

∂ψl,Nx

∂x
. (53)

Because of ∂ψ/∂n = 0, (52) and (53) become

ωl,1 =
Nx∑

i=1

d2ϕ
(x)
i

dx2
(x1)ψl,i, (54)

ωl,Nx =
Nx∑

i=1

d2ϕ
(x)
i

dx2
(xNx)ψl,i. (55)

These treatments are limited to the case of flat boundaries. For curved boundaries, the

present approach is applicable if, for example, a Cartesian grid is generated in a way
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that the boundary points are also regular grid nodes. One is then able to apply the

proposed boundary approach in both coordinate directions at a boundary point to derive

a computational boundary for the vorticity. The reader is referred to [25] for how to

generate such a Cartesian grid.

Equations for ψ and ω are thus subject to Dirichlet boundary conditions and hence (45)

and (46) are employed with 2 ≤ i ≤ Nx − 1 and 2 ≤ j ≤ Ny − 1.

A time marching scheme is adopted to get the structure of a steady flow. The steady-state

solution is considered as the asymptotic time limit of the time-dependent equations. At

each time level, equations for T , ψ and ω are treated as separate systems. The diffusive

and convective terms are treated implicitly and explicitly, respectively. It can be seen

that the system matrices, which are generated from the RHS terms of (44)-(46), remain

unchanged during the iteration process. The solution procedure involves the following

steps

1. Guess the distributions of the temperature, stream function and vorticity

2. Solve (44) for T subject to Dirichlet and Neumann boundary conditions

3. Solve (45) for ψ subject to Dirichlet conditions

4. Compute the boundary values of ω using (54) and (55)

5. Solve (46) for ω subject to Dirichlet conditions

6. Check to see whether the solution has reached a steady state

7. If it is not satisfied, advance time step and repeat from step 2. Otherwise, stop the

computation and output the results.

A wide range of Ra, (103, 104, · · · , 107), is considered. We take the computed solution at

the lower and nearest value of Ra as the initial solution. For Ra = 103, we simply start

with the fluid at rest. It is known that the strengths of boundary layers are significantly

increased with increasing Ra. They become very stiff when Ra ≥ 106. Benchmark solu-

tions were reported in [26] for 103 ≤ Ra ≤ 106 using a finite difference technique and in
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[27] for Ra ≥ 106 using a pseudospectral technique. It is noted that there are relatively

few reports on the numerical simulation of the flow for Ra > 106.

Some important measures associated with this type of flow are

• Maximum horizontal velocity umax on the vertical mid-plane and its location;

• Maximum vertical velocity vmax on the horizontal mid-plane and its location;

• The average Nusselt number throughout the cavity, which is defined as

Nu =

∫ 1

0

Nu(x)dx, (56)

Nu(x) =

∫ 1

0

(uT −
∂T

∂x
)dy. (57)

Convergence behaviour: Simulations are carried out using 6 uniform grids, (21 ×

21, 31 × 31, · · · , 71 × 71). Time steps are used in the range of 5 × 10−6 to 1 × 10−3.

Smaller time steps are needed for higher Ra number and denser grids. No under-relaxation

is employed here. For brevity, we only present the results for flow of the highest value of

Ra, where one meets the most difficult case of convergence. Grid convergence is studied

both qualitatively and quantitatively. For the former, Figures 6, 8 and 7 display the

stream function, vorticity and temperature fields with the three grids, 31 × 31, 51 × 51

and 71 × 71. It can be seen that all fields especially for ψ and T converge very fast with

mesh refinement. In the case of ω whose variation is much more complex, a denser grid

(e.g. 51 × 51) is required to provide a feasible solution. For the latter, Table 2 shows a

fast rate of convergence achieved for vmax, umax and Nu using the last four grids.

Solution accuracy: The results at 71 × 71 for various Ra values are given in Table

3. It can be seen they are in very good agreement with the benchmark solutions. For

Ra = 106, the percentage errors are computed relative to the benchmark spectral results.
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It can be seen that the present results are closer to the benchmark spectral solutions than

the FD ones. It is noted that local RBF collocation techniques are also able to produce

accurate simulations for high values of the Rayleigh number as shown in recent work of

Kosec and Sarler [28].

5 CONCLUDING REMARKS

In this paper, 1D-IRBFNs are introduced into the CV formulation to represent the field

variable and its derivatives for the convection-diffusion equation. This use of RBFs leads

to a significant improvement in accuracy over the use of low-order shape functions such

as linear polynomials. The IRBFN approximations are constructed “locally”, i.e. the

discrete expressions at a point in a 2D grid involve only nodal points on the grid lines

passing through that point instead of the whole set of grid points. Derivative boundary

values are incorporated into the RBF approximations in an exact manner, hence Neumann

boundary conditions are satisfied identically in the CV form. Numerical results show that

(i) the matrix condition number grows as low as that produced by standard CVMs, making

this present formulation attractive in the context of RBF techniques, and (ii) high-order

convergence solutions are obtained, including those for natural convection in a square

slot. This study further demonstrates RBFs as a powerful new interpolation tool in the

discretisation of PDEs.
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Table 1: Unsteady problem, 0 ≤ x ≤ 1, 0 ≤ t ≤ 0.25: temperature at the centre of
the slab and its percentage error by the present method (Nx = 5 and Nt = 11) and
various finite difference methods (FDMs) (Nx = 21 and Nt = 11). Results by FDMs (CR:
Crank-Nicolson, PI: Pure implicit and WI: Weighted time step) are extracted from [24].

FDM
CN PI WT Present

t φ (%) φ (%) φ (%) φ (%) Analytic
0.025 0.5637 12.35 0.6888 7.09 0.6807 5.84 0.6295 2.12 0.6432
0.05 0.5440 9.69 0.5330 7.47 0.5286 6.58 0.4895 1.28 0.4959
0.075 0.3493 9.68 0.4226 9.27 0.4188 8.29 0.3798 1.80 0.3868
0.1 0.3313 9.66 0.3376 11.76 0.3341 10.58 0.2978 1.41 0.3021
0.125 0.2117 10.31 0.2705 14.58 0.2671 13.14 0.2324 1.54 0.2360
0.15 0.2038 10.50 0.2169 17.60 0.2137 15.86 0.1822 1.22 0.1844
0.175 0.1270 11.84 0.1740 20.74 0.1710 18.67 0.1423 1.26 0.1441
0.2 0.1262 12.10 0.1396 20.99 0.1369 21.57 0.1115 0.93 0.1126
0.225 0.0756 14.12 0.1120 27.33 0.1096 24.54 0.0869 1.17 0.0880
0.25 0.0787 14.47 0.0899 30.76 0.0877 27.58 0.0690 0.37 0.0687
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Table 2: Natural convection: Mesh convergence study for the flow of Ra = 107. “Benchmark*” refer to pseudo-spectral results in
[27].

Grid vmax error(%) x umax error(%) y Nu error(%)
41 × 41 620.62 11.24 0.0215 154.80 4.17 0.8763 17.1717 3.93
51 × 51 668.62 4.37 0.0232 152.29 2.48 0.8765 16.8714 2.11
61 × 61 692.61 0.94 0.0226 150.93 1.57 0.8770 16.7282 1.24
71 × 71 700.86 0.24 0.0220 150.24 1.10 0.8775 16.6506 0.77

Benchmark* 699.2 0.021 148.6 0.879 16.523
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Table 3: Natural convection: Comparison between the present solutions using 71 × 71 and benchmark solutions. “Benchmark” and
“Benchmark*” refer to finite-difference and pseudo-spectral results in [26] and [27], respectively.

Method Ra vmax error(%) x umax error(%) y Nu error(%)
Present 103 3.6974 0.01 0.1783 3.6494 0.01 0.8132 1.1178 0.02

Benchmark 103 3.697 0.178 3.649 0.813 1.118
Present 104 19.6279 0.06 0.1189 16.1834 0.03 0.8232 2.2448 0.08

Benchmark 104 19.617 0.119 16.178 0.823 2.243
Present 105 68.632 0.06 0.0659 34.746 0.05 0.8546 4.5219 0.06

Benchmark 105 68.59 0.066 34.73 0.855 4.519
Present 106 220.561 0.02 0.0377 64.923 0.14 0.8499 8.8333 0.09

Benchmark 106 219.36 0.0379 64.63 0.850 8.880
Benchmark* 106 220.6 0.038 64.83 0.850 8.825

Present 107 700.86 0.24 0.0220 150.24 1.10 0.8775 16.6506 0.77
Benchmark* 107 699.2 0.021 148.6 0.879 16.523
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ii− 1 i+ 1

i− 1/2 i+ 1/2

Ωi

Figure 1: A 1D discretisation scheme: Node i and its associated control volume. The
circles represent the nodes, and the vertical dash lines represent the faces of the control
volume.
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Figure 2: 1D problem, Nx = [9, 11, 13, · · · , 151]: Comparisons of the accuracy and condi-
tion number between the conservative IRBFN, collocation IRBFN and standard CV meth-
ods. For the case of Dirichlet conditions, their rates respectively are O(h2.98), O(h3.00)
and O(h2.00) for the accuracy Ne(φ), and O(h−2.02), O(h−2.04) and O(h−2.00) for the ma-
trix condition number condA. For the case of Dirichlet and Neumann conditions, they
are O(h3.00), O(h1.72) and O(h2.01) for Ne(φ), and O(h−1.98), O(h−1.99) and O(h−1.97) for
condA.
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Figure 3: 2D problem: Exact solution.
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Figure 4: A 2D discretisation scheme: Node (i, j) and its associated control volume Ωi,j.
Note that the dash lines represent the faces of the control volume.
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a) Dirichlet conditions only
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b) Dirichlet and Neumann conditions
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Figure 5: 2D problem, N = [9, 25, · · · , 5041]: Comparisons of the accuracy and condition
number between the conservative IRBFN and standard CV methods. For the case of
Dirichlet conditions, their rates respectively are O(h3.00) and O(h1.84) for the accuracy
Ne(u), and O(h−2.08) and O(h−2.06) for the matrix condition number condA. For the
case of Dirichlet and Neumann conditions, they are O(h3.09) and O(h1.98) for Ne(u), and
O(h−1.94) and O(h−1.96) for condA.
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31 × 31

51 × 51

71 × 71

Figure 6: Natural convection, Ra = 107: Mesh convergence for stream function. Each
plot contains 21 contour lines whose values vary linearly. For all grids used, the stream
function field seems feasible when compared with the benchmark spectral solution [26].
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Figure 7: Natural convection, Ra = 107: Mesh convergence for temperature. Each plot
contains 21 contour lines whose values vary linearly. For all grids used, the temperature
field looks feasible when compared with the benchmark spectral solution [26].
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Figure 8: Natural convection, Ra = 107: Mesh convergence for vorticity. Each plot con-
tains 21 contour lines whose values vary linearly. Unlike stream function and temperature,
the vorticity field only becomes feasible when a grid density is 51 × 51 or greater.
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