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A B S T R A C T

Predicting daily reference evapotranspiration (ETo) plays a significant role in numerous environmental and 
agricultural applications. It aids in optimizing agricultural practices, enhancing drought resilience, supporting 
environmental conservation efforts, and providing critical data for research. By leveraging advanced technolo-
gies and accurate modeling techniques, stakeholders can make informed decisions that promote sustainability 
and resilience in the face of changing climatic conditions. The main purpose of this investigation was to forecast 
the daily ETo trends at Melbourne and Sydney stations in Australia, where several cutting-edge machine learning 
methodologies were employed. The modeling approach encompassed the implementation of Neural Network 
(NN), Deep Learning (DL), Recurrent Neural Networks (RNN), RNN based Long Short-Term Memory (RNN- 
LSTM), and Convolutional Neural Network based LSTM (CNN-LSTM) to forecast daily ETo using historical 
meteorology data. During the model development stage, the optimal variables were determined successfully via 
heatmaps for precise assessment of ETo in both stations. The predictive models were built by incorporating both 
the training subset (80 %, covering the years 2009 to 2020) and the testing subset (20 %, ranging from 2021 to 
2024) independently to forecast ETo. The results confirmed that the RNN-LSTM attained higher prediction ac-
curacy as compared to NN, DL, RNN, and CNN-LSTM models. Conversely, based on the visual representations 
and assessments, one can grasp the significant resemblance between the forecasts of the RNN-LSTM model and 
the actual data. By combining RNNs with LSTM units, models can leverage the strengths of both approaches to 
improve their ability to process sequential data effectively. This integration allows for better capturing of both 
short-term and long-term dependencies in the input sequences. Upon careful evaluation, it became clear that the 
error values associated with the RNN-LSTM models were negligible at the designated stations during the testing 
phase, with an RMSE of 0.0011 mm for Melbourne, and 0.022 mm for Sydney, followed by RNN, DL, and NN 
respectively. The proposed modeling approach can be beneficial in monitoring and managing water and crop 
planning which relies on precise ETo predictions.

1. Introduction

Time series analysis employs a statistical approach to investigate 
regularly collected data points to uncover the underlying patterns and 

trends. Identifying patterns, forecasting future data points, and making 
informed decisions rely on temporal relationships among variables. The 
arrangement of time series data is happening chronologically to facili-
tate the examination of patterns such as trends, cycles, and seasonal 
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differences to predict upcoming occurrences (Kirchgässner et al., 2012). 
Time series forecasting is pivotal in various key areas of contemporary 
agriculture, such as scheduling irrigation, modeling crops, and man-
aging agricultural water (Richetti et al., 2023).

ETo plays a vital role in the hydrologic cycle as it interlinks the cycles 
of water (evaporation), energy (latent heat flux), and carbon (transpi-
ration-photosynthesis balance) (Fisher et al., 2017). ETo is the sum of 
water evaporation and transpiration from the Earth’s surface into the 
atmosphere. Hence, the transfer of water from the Earth’s surface to the 
atmosphere, involving evaporation from soil, water bodies, and vege-
tated canopies, as well as transpiration from plants, is known as ETo. The 
Earth’s biosphere, hydrosphere, and atmosphere rely on the ETo to 
maintain a stable water and energy equilibrium, particularly in areas 
with scarce water resources where it influences nearly the entirety of the 
surface water budget (Morillas et al., 2013; Oki and Kanae, 2006). The 
assumption of a hypothetical reference crop surface and the application 
of standardized conditions result in plant surface controlling effects, 
transforming evapotranspiration into a purely meteorological variable 
(Allen et al., 1998).

The prediction of the ETo rate becomes possible when one applies the 
principle of energy conservation and takes into consideration factors like 
net radiation, sensible heat, soil heat flux, latent heat flux, etc. Recent 
advancements in Machine Learning (ML) have opened an exciting op-
portunity to develop data-driven models of physical processes (Ali et al., 
2021; Ghimire et al., 2022; Huang, 2009; Lary et al., 2016; Schultz and 
Wieland, 1997). By accurately estimating ETo, these models have 
proven their predictive potential and ability to capture complex re-
lationships between input data and output. Different ML algorithms, 
including Multi-Layer Perceptron (MLP), Random Forest (RF), Artificial 
Neural Network, and Support Vector Machine (SVM) have been 

evaluated in terms of their efficacy in predicting daily ETo based on 
research findings (Fan et al., 2018; Ferreira et al., 2019; Schultz et al., 
2000; Sharafi et al., 2024; Talib et al., 2021). Deep Learning (DL) has 
already had a substantial influence on weather and hydrologic appli-
cations compared to other ML methods. The utilization of supervised 
methods dominates the field of learning and evapotranspiration, with 
prevalent techniques including Deep Neural Networks or DL, CNN, RNN, 
and LSTM methods (Chen et al., 2024; Granata and Di Nunno, 2021; 
Jung et al., 2022; Liu et al., 2024; Roy, 2021).

Using combined models with LSTM offers several advantages over 
using independent models. This integration can lead to more accurate 
predictions and a better understanding of the relationships between 
different types of data (Gelete and Yaseen, 2024). Additionally, com-
bined models can leverage the strengths of LSTM, such as its ability to 
capture long-term dependencies in sequential data, while also utilizing 
the strengths of other models to handle specific data types. This can 
result in improved performance and generalization capabilities. Overall, 
using combined models with LSTM can lead to more robust and effective 
machine learning models for a wide range of applications (Wang et al., 
2024). Therefore, in this study, three independent models (NN, DL, 
RNN) and two hybrid models (RNN-LSTM, CNN-LSTM) have been used 
to evaluate the accuracy and performance of the reference daily 
evapotranspiration forecast.

The main objective of this study is to investigate the accuracy of 
novel DL models in predicting daily ETo at two different stations in 
Australia, by harnessing the strengths of NN, DL, RNN, RNN-LSTM, and 
CNN-LSTM models. Up until this point, there have been no documented 
investigations concentrating on predicting the variations in ETo at these 
two stations using these approaches by analyzing the daily meteorology 
data. This research is focused on effectively forecasting the daily trends 

Fig. 1. Location map of Melbourne and Sydney in Australia.
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in ETo at two Australian locations, namely Melbourne and Sydney, 
utilizing NN, DL, RNN, RNN-LSTM, and CNN-LSTM models.

2. Materials and methods

2.1. Study area and dataset

The study focused on two important stations, Melbourne, and Sydney 
in Australia, for which daily datasets of input predictors and targets were 
acquired from the Bureau of Meteorology (BMA) during the years 2009 
to 2024. Fig. 1 shows the location of these two stations. The accurate 
prediction of daily reference evapotranspiration (ETo) is essential for 
effective irrigation scheduling, water resource management, and crop 
growth simulation in Melbourne and Sydney, as well as within the 
broader Australian agricultural context.

Melbourne is the capital city of the Australian state of Victoria and is 
located on the southeastern coast of Australia, specifically at the head of 
Port Phillip Bay. The city’s coordinates are approximately 37.8136◦ S 
and 144.9631◦ E. With a population exceeding 5 million individuals, the 
city encompasses an urbanized territory of approximately 9992 km2 and 
holds the distinction of being Australia’s second-most inhabited city. 
The urban area experiences a temperate coastal climate, characterized 
by balmy summers and brisk winters.

Situated on the southeastern coast of Australia, Sydney claims the 
title of both its largest and most populous city, overlooking the Tasman 
Sea. The city’s coordinates are approximately 33.8688◦ S, and 
151.2093◦ E. With a population exceeding 5 million individuals, the city 
encompasses an urbanized territory of approximately 12,368 km2. In 
Sydney, the weather is generally sunny with mild winters and warm 
summers.

Accurate prediction of ET₀ relies on various meteorological param-
eters, which can vary in importance depending on the model used. In 
this research, datasets from Melbourne and Sydney stations were used to 
evaluate the proposed models using four delay reference evapotranspi-
ration (ETt-4), rain, min/max temperature (Tmin/max), max/min humid-
ity (H min/max), mean wind speed (Mean Win), and solar radiation time 
series data with high and low variations. The heatmap based on the 
correlation of the between the input data and ETo is shown in Fig. 2.

Data preprocessing is an essential step in predicting and modeling 
ETo to ensure accurate results. For this purpose, missing or inconsistent 

values were first cleaned and filtered by filling with average value of the 
relevant input, which prevents the deviation of predictions to a large 
extent. In the next step, data normalization was done to scale the fea-
tures in the standard range, which helped to improve the performance of 
the predictive model. Then feature selection was performed to identify 
the most relevant variables (rainfall, temperature, humidity, reference 
evapotranspiration delay) that have a direct effect on ETo. Finally to 
create the model, the input datasets split into two sections: one 
comprising 80 % used for training (ranging from the years 2009 to 2020) 
and the other with 20 % designated for testing purposes (encompassing 
the timeline of 2021 to 2024) following (Cannas et al., 2006; Fijani et al., 
2019; Quilty and Adamowski, 2018). Moreover, the cross-validation or 
any random sampling technique cannot be adopted here as the time- 
series data by definition occur in a temporal order/sequence and this 
order or sequence must be preserved to retain the structure of the series 

Fig. 2. Heatmap based on the correlation between input parameters and ETo.

Table 1 
General information about the models.

Model Type of hyper-parameters Values

NN, DL, RNN, RNN-LSTM, 
CNN-LSTM

Network Type
Feed-forward 
propagation

Data Division
Train (80 %) Test (20 
%)

Number of Hidden layers 
(Neurons) 10–20
Epoch number 100
learning Function 0.001–0.007

Activation function
Relu, Tanh, Tan, 
Sigmoid

Training function Adam

Fig. 3. Graphical train and test.
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intact (Bergmeir and Benítez, 2012). Table 1 contains information on the 
layers and parameters employed in the models that were selected.

Fig. 3 shows the train-test split graphically whereas in Fig. 4, the 
statistical measures of daily evapotranspiration for the two stations 
chosen for this investigation are displayed.

This study makes use of a computing platform equipped with the 
Windows 11 operating system. In order to test and confirm the NN, DL, 
RNN, CNN-LSTM, and RNN-LSTM models put forth in this research, we 
conducted trials using the Mathematica 13.3 platform. The experiments 
are executed in an environment with a NVIDIA GeForce RTX 3050 GPU, 
an Intel Ryzen 7–6800 CPU, and 16GB RAM.

2.2. Neural Network (NN)

Neural Network (NN), a machine learning model, is categorized 
under artificial intelligence. The basis of NNs lies in simple mathemat-
ical models of the brain, making them a distinct machine learning al-
gorithm. Their usefulness extends to a diverse set of prediction tasks due 
to their capacity to comprehend intricate nonlinear connections be-
tween the response variable and its predictors (Elsner and Tsonis, 1992). 
In 1943, McCulloch and Pitt’s introduction of simplified neurons ignited 
the fascination with neural networks, resulting in the development of 
artificial neural networks to generalize mathematical models of bio-
logical nervous systems (Abraham. 2005). NNs can adapt to fluctuating 
data patterns and assimilate fresh information, thereby making them 
exceptionally suitable for dynamic forecasting environments and 
capable of effectively dealing with noisy or incomplete data in com-
parison to traditional models, leading to more dependable forecasts. The 
distinction between artificial neural networks (ANNs) and deep learning 
lies in their varying complexity and structure. Various essential parts are 
interconnected within neural networks to process information and build 
knowledge from datasets. Understanding these key components is vital 
for gaining insight into the operations of neural networks (Goyal and 
Parashar, 2018). Within a neural network, the first layer serves as the 
input layer and connects with neurons that are specific to distinct fea-
tures present in the dataset. Neurons play a crucial role as the primary 
elements in a neural network. Each individual neuron takes in various 
inputs, gives them specific weights, calculates the sum of all inputs, and 

processes it through an activation function to produce its final output. 
The strength of neural connections is determined by factors termed 
weights (Narayanan and Menneer, 2000). 

Z =
∑n

i=1
wixi + b (1) 

where wi are the weights, xi are the inputs, and b is the bias term.
The adjustment of connection weights between neurons during 

training is aimed at reducing prediction errors, and biases serve as 
additional parameters that aid in better data fitting by adjusting the 
activation function. Introducing activation functions into the model al-
lows for the exploration and learning of intricate patterns, adding a non- 
linear aspect. Fig. 5 shows the structure of neural network model 
inspired by the human brain’s biological function with different pa-
rameters. Table 2 shows the structural specifications along with pa-
rameters of NN.

2.3. Deep Learning (DL)

Categorized under supervised machine learning models, Deep 
Learning (DL) stands within the domain of artificial intelligence and 
possesses immense significance by effectively addressing a wide range of 
complex or seemingly impossible problems that conventional algorithms 
or human professionals encounter difficulties with. DL carries out the 
reception, processing, and generation of information similarly to bio-
logical neuronal networks (LeCun et al., 2015). DL algorithms are 
extensively utilized by industries involved in solving complex challenges 
like meteorology and climate change as they train machines through 
example-based learning (Abiodun et al., 2018). Generally, each neuron 
computes a weighted sum of its inputs, applies an activation function, 
and passes the result to the next layer. 

y = f(wx+ b) (2) 

f is the activation function (e.g., ReLU : f(x) = max(0, x), sigmoid :

f(x) = 1
1+e− x) that introduces non-linearity into the mode. These func-

tions determine whether a neuron should be activated or not, adding 
complexity to the model.

Fig. 4. Daily ETo of the two stations during 2009–2024.

Fig. 5. Neural Network model structure and human brain’s biological.

Table 2 
Hyper parameters of NN.

Parameter Value

Linear Layer 8
Dense Unit 1
Epochs 18
Learning Rate 0.01
Activation Function Tanh, Tan
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By automatically learning features from the data, DL algorithms 
eliminate the requirement for hand-engineered features. Traditional 
machine learning methods may struggle with handling large and com-
plex datasets, but DL algorithms are up to the task. The capability of 
deep learning models to detect and assimilate non-linear relationships in 
complex datasets makes them highly valuable for data analysis (Dong 
et al., 2021). A common DL model structure is depicted in Fig. 6. Table 3
shows the structural specifications and hyper parameters of DL.

2.4. Recurrent neural network (RNN) and long short-term memory 
(LSTM)

RNN is one of the most suitable DL models for time series or temporal 

data due to its memory component. This memory helps to remember the 
learning from the previous sequence and applies that knowledge to the 
next sequence in the input. As RNN is a cyclic network and the output at 
time sequence tn is used to predict the output at time sequence tn+1. In 
our real time experiment, the ETo data is a sequential data collected on a 
daily basis and hence RNN is a promising method for predicting the ETo 
values. The RNN works on the same principle with few changes in CNN. 
NN uses each unit in the network, but RNN uses the same weight for all 
the units in the same layer. The feedback loop in the architecture is 
another significant change. The output from the previous step is given as 
input to the current step. This helps the network to make improved 
predictions based on the previous output. The hidden state act as the 
memory of the RNN which uses different activation functions such as 
sigmoid, tanh etc. Although RNN is more suitable for sequential or time 
series data, it has two major limitations termed as vanishing gradient 
and exploding gradients (Ye et al., 2019).

Assume the weight in the first-time step is greater than 1. The 
weights in each network of a particular time step are given as input to 
the next time step and this is multiplied with the next input. This step 
gets repeated as many number of times as the number of time steps. This 
will cause the gradients to have a very high value and this is termed as 
exploding gradients. If the weight is less than 1, multiplying it with the 
input will result in gradients close to zero, which is termed as vanishing 
gradients. An RNN processes sequences of inputs by maintaining a 
hidden state that captures information from previous time steps. The 
basic equations governing an RNN can be expressed as follows. 

ht = f(whht− 1 +wxxt + b) (3) 

Where ht is the hidden state at time tt, f is a non-linear activation 
function (often tanh or ReLU), Wh is the weight matrix for the hidden 
state, Wx is the weight matrix for the input, xt is the input at time tt and b 
is the bias term.

In order to overcome the exploding gradients and vanishing gradi-
ents, a variant of RNN is proposed known as Long Short-Term Memory 
(LSTM). They achieve this through a gating mechanism that controls the 
flow of information. This memory cell is controlled by three gates 
(Sherstinsky and Alex, 2020). The input gate determines which new 
information to store in the memory cell from both the current input and 
previous hidden state. The Forget Gate determines which details will be 
eliminated from the previous memory cell state. The Output Gate de-
termines which information should be output from the present input, 
past hidden state, and memory cell. 

Fig. 6. Deep Learning model structure.

Table 3 
Hyper parameters of DL.

Hyper parameters Value

Linear Layer 12
Batch Normalization Layer 3
Softmax Layer 1
Dense Unit 1
Epochs 38
Learning Rate 0.01
Activation Function Tanh, Tan, Sigmoid

Fig. 7. The structure of recurrent neural network model and short-term memory with tanh, sigmoid activation layers.

M. Ali et al.                                                                                                                                                                                                                                      Ecological Informatics 85 (2025) 102995 

5 



ps = σ
(
Wp[hs− 1 ,xs ] + bp

)
(4) 

qs = σ
(
Wq[hs − 1,xs ] + bs

)
(5) 

At time s, the prior hidden state is denoted as hs− 1, while the weight 
matrix is represented by Wp and the input is denoted as xs; additionally, 
the bias vector is bp and the forget gate activation vector is simply 
referred to as p. 

h s = fs × tanh(vs) (6) 

RNN network is modified to include both long term memory and 
short-term memory (da Silva and de Moura Meneses, 2023). Fig. 7 shows 
the structure of this model in detail and Table 4 shows the structural 
specifications of RNN-LSTM.

Combining Recurrent Neural Networks (RNNs) with Long Short- 
Term Memory (LSTM) models offers several advantages, particularly 
in the realm of sequential data processing. LSTMs are specifically 
designed to address the limitations of standard RNNs, particularly their 
inability to retain information over long sequences due to the vanishing 
gradient problem. By incorporating memory cells and gating mecha-
nisms, LSTMs can effectively manage both long-term and short-term 
dependencies, making them superior for tasks where context from 
earlier inputs is crucial (Al-Selwi et al., 2024). Hence, combining RNNs 
with LSTM models significantly enhances the ability to process 
sequential data by improving memory retention, accuracy, gradient 
handling, versatility across applications, and managing complexity 
effectively.

2.5. Performance criteria

Evaluation of the effectiveness of modeling during the test stages 

includes the analysis of correlation coefficient (R), coefficient of deter-
mination (R2), and root mean square error (RMSE). These metrics not 
only enhance model validation and predictive accuracy but also play a 
crucial role in effective water management strategies, particularly in 
regions facing water challenges like Australia. By leveraging these sta-
tistical tools, stakeholders can make informed decisions that promote 
sustainability and resilience in agricultural practices. The correlation 
coefficient measures the strength and direction of a linear relationship 
between two variables and the spectrum spans from − 1 to 1, with 1 
denoting a perfect positive linear connection, 0 representing no linear 
connection, and − 1 representing a perfect negative linear connection 
(Schuurmann et al., 2008). The coefficient of determination represents 
the proportion of the total variation in the output variable that is 
accounted for by the fitted model. This coefficient lies within the in-
terval 0 ≤ R2 ≤ 1, and a zero R2 indicates that the predictive model does 
not explain the variance of the observed data set. A measure known as 
RMSE calculates the typical deviation between the predicted values 
from a statistical model and their corresponding actual values. In 
mathematical terms, the standard deviation of the residuals reflects the 
difference between the regression line and the data points whose value is 
from zero to infinity (Aptula et al., 2005). 

R =

∑N
i=1(EToi − ETo)

(
ETpi − ETp

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(EToi − ETo)
2
.
∑N

i=1
(
ETpi − ETp

)2
√ − 1 ≤ R ≤ 1 (7) 

R2 =

⎛

⎜
⎝

∑N
i=1

(
ETo,i − ETo

)(
ETp,i − ETp

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(
ETo,i − ETo

)2
.
∑N

i=1
(
ETp,i − ETp

)2
√

⎞

⎟
⎠

2

0 ≤ R2 ≤ 1 (8) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑N

i=1

(
ETpi − EToi

)2
√

0 ≤ RMSE ≤ ∞ (9) 

where, ETpi and EToi indicate the estimated and observed data, N refers 
to the number of data, and ETp and ETo are the average of the estimated 
and observed data.

The time series forecasting techniques are classified in two categories 
i.e., univariate, or multivariate, depending on the number of variables to 
be used. In this study assuming that the future values of the ETo time 
series depend on the past values of evapotranspiration and as well as 
precipitation, minimum and maximum temperature, minimum and 

Table 4 
Hyper parameters of RNN-LSTM.

Hyper parameters Value

Simple RNN Layer Units 32
LSTM Units 10
Dense Unit 1
Epochs 100
Learning Rate 0.01
Activation Function Sigmoid, Relu

Fig. 8. Boxplot of the ETo data for Melbourne city with statistical profile.
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maximum relative humidity, wind speed, and solar radiation. Therefore, 
the multivariate forecasting method for prediction of future ETo was 
used here as this method has some advantages over univariate time 
series forecasting method.

3. Result

Statistical and visual analysis were employed to evaluate the effec-
tiveness of DL, NN, RNN, CNN-LSTM, and RNN-LSTM models in pre-
dicting daily ETo.

Fig. 8 and Fig. 9 shows the distribution of the data collected from the 
two cities Sydney and Melbourne respectively from years 2009 to 2024. 
Each box with whiskers represents the distribution of ETo values in each 
year. The plot shows that there are outliers in training and test datasets 
collected from both the stations.

The performance measures such as the correlation coefficient (R), 
coefficient of determination (R2), and root mean square error (RMSE), 

Fig. 9. Box plot of the ETo data for Sydney city with statistical profile.

Table 5 
Performance criteria of the DL and NN models in the testing periods for two 
stations.

Cities Testing (ET)

Model R R2 RMSE (mm)

Melbourne 
Sydney

NN 0.9980 0.8720 0.71
DL 0.9990 0.9960 0.122
RNN 0.9998 0.9990 0.051
CNN-LSTM 0.9997 0.9995 0.0434
RNN-LSTM 0.9999 0.9999 0.0011
NN 0.9090 0.8262 1.026
DL 0.9920 0.9820 0.253
RNN 0.9999 0.9998 0.023
CNN-LSTM 0.9995 0.9980 0.074
RNN-LSTM 0.9999 0.9999 0.022

Fig. 10. Performance comparison of the models in terms of R, RSquared and RMSE for (a) Melbourne, and (b) Sydney.
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have been computed for the test periods and are listed in Table 5 and 
Fig. 10 shows the evaluation of the models graphically.

The RNN-LSTM method outperforms other models in terms of all 
three evaluation criteria for the cities of Melbourne and Sydney. Hence, 
exhibits a RMSE value in the range of 0.0253 < RMSE<0.0011, corre-
lation coefficient R in the range of 0.992 < R < 0.9999, and R2 value in 
the range of 0.982 < R2 < 0.9999 for both stations. It is also to be noted 
that CNN-LSTM appeared to be the 2nd best predictive model for 

Melbourne city whereas RNN achieved the 2nd ranking for Sydney 
based on R, R2, and RMSE value (Table 3 and Fig. 10). Moreover, the 
performance of these machine learning models is acceptable for both 
selected regions to predict daily ETo but overall, the RNN-LSTM 
appeared to be the most accurate model to predict daily ETo for both 
stations.

Fig. 10. shows the R, Rsquared (i.e., R2) and the RMSE of the pre-
diction models used in this experiment. The RMSE of the RNN-LSTM 

Fig. 11. Time series plot, and box plot of the observed and forecasted ETo of the models for Melbourne. The small circles are the daily ETo data in (a) whereas the 
vertical and horizontal lines in (b) stand for the five number summary (i.e., minimum, first quartile, median, third quartile, and maximum).
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model is close to zero and the correlation coefficient and the R squared is 
almost close to 1 for both Melbourne and Sydney stations. This confirms 
that RNN-LSTM outperforms other comparing models in both stations to 
predict daily ETo.

Fig. 11 and Fig. 12 shows the time series plot along with the box plot 
of the predicted ETo values generated by the machine learning models 
with respect to the actual ETo recorded on a particular day. Fig. 11a 
shows the time series plot of the predicted ETo of NN, DL, CNN-LSTM, 
RNN, RNN-LSTM respectively for Melbourne station. The box plot in 
Fig. 11b compares the distribution of the actual and predicted ETo using 
NN, DL, RNN, RNN-LSTM, and CNN-LSTM model in Melbourne station. 

The distribution of the predicted ETo of RNN-LSTM is much closer to the 
actual ETo value, following by CNN-LSTM, DL, RNN, and NN models 
respectively.

Fig. 12a shows the time series plot of the predicted ETo value of the 
NN, DL, CNN-LSTM, RNN, and RNN-LSTM models for the Sydney sta-
tion. Furthermore, Fig. 12b showcases a boxplot comparing the actual 
ETo distribution to the predicted ETo distribution from these models (i. 
e., NN, DL, RNN, RNN-LSTM, and CNN-LSTM). The distribution of the 
predicted ETo of RNN- LSTM are much closer to the actual ETo distri-
bution when compared to other models. Moreover, both the RNN and 
CNN-LSTM models have also an acceptable performance for predicting 

Fig. 12. Time series plot, and box plot of the observed and forecasted ETo of the models for Sydney. The small circles are the daily ETo data in (a) whereas the 
vertical and horizontal lines in (b) stands for the five number summary (i.e., minimum, first quartile, median, third quartile, and maximum).
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daily ETo in Sydney station.
Fig. 13 shows the scatter and residual plots of NN, DL, CNN-LSTM, 

RNN, and RNN-LSTM models for the city of Melbourne. According to 
this figure, NN and DL models with more dispersion and residual error 
( − 1 to 1.5) have poor performance. On the other hand, RNN, and CNN- 
LSTM models with less dispersion and residual error ( − 0.2 to 0.5) have 
performed better than NN and DL models. However, according to the 
Fig. 13 related to RNN-LSTM model, it can be seen that this model has 
performed better than other models with minimum dispersion and re-
sidual error ( − 0.01 to 0.01). Also, Fig. 14 shows the scatter and error 
residuals for the city of Sydney. It is visible that the RNN-LSTM model 
with less dispersion and residual error ( − 0.04 to 0.04) is the best 
performing model for predicting daily ETo. On the other hand, RNN 
model with residual error ( − 0.05 to 0.02), CNN-LSTM ( − 0.2 to 0.2), 
DL (− 0.8 to 0.4), and NN model ( − 1 to 1.5) had acceptable perfor-
mance, respectively.

4. Discussion

The research successfully attained precise daily predictions of ETo by 

employing the DL models incorporating complex layers. Utilizing 
various statistical indicators and graphical representations, it was 
evident that the RNN-LSTM exhibited superior performance compared 
to the benchmarking models when predicting ETo in Melbourne and 
Sydney stations. The inclusion of ensemble learning in the DL method-
ology leads to greater accuracy and decreased variability, ultimately 
reducing overfitting and enhancing model stability. Also, according to 
the correlations in the heat map, the meteorological parameters of 
minimum temperature, minimum relative humidity, and the amount of 
solar radiation have a greater effect on ETo than the rest of the inputs. 
The compatibility and accuracy of this study can be found from previous 
studies where the adoption of a DL model resulted in a notable upsurge 
(Babaeian et al., 2022; Chen et al., 2020; Zhang et al., 2023). However, 
the implementation of DL model along with complex layers incorpo-
rating meteorological parameters as inputs to predict ETo in Melbourne 
and Sydney stations has not yet fully explored.

Weekly predictions of ETo were researched by Karbasi et al. (2022)
using an Auto Encode Decoder Bidirectional Long Short-Term Memory 
(AED-BiLSTM) hybrid deep learning model. Also, they used Generalized 
Regression Neural Network (GRNN) and Extreme Gradient Boosting 

Fig. 13. Residual errors, and scatter plots of the observed and predicted ETo of the five models for Melbourne city in testing period. The colored shadows provide a 
smooth representation of the distribution of dataset showing the relative frequency.
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(XGBoost) machine learning models to evaluate the newly developed 
model. Compared to the GRNN and XGBoost models, the newly devel-
oped AED-BiLSTM model demonstrated a higher level of accuracy in 
predicting weekly ETo with an R value of 0.965 and an RMSE of 3.21 
mm/week. Ferreira and da Cunha (2020) investigated the use of two 
artificial neural network (ANN) and support vector machine (SVM) 
models to forecast future ETo values in a more advanced manner. The 
ANN and SVM models were built using a two-step process: first, iden-
tifying groups of weather stations with similar climatic features through 
K-means clustering, then incorporating past meteorological data into the 
models as input. The results showed that both models have an accept-
able performance (mm/dayRMSE = 0.6 and R2 = 0.81).

Chia et al. (2022) focused on long-term forecasting of monthly 
reference evapotranspiration (ET0) using deep neural network models. 
They compared different training strategies and approaches, especially 
evaluating one-dimensional convolutional neural networks (CNN-1D), 
short-term memory (LSTM) networks, and gated recurrent unit (GRU) 
networks at four stations in Peninsular Malaysia. The best-performing 
GRU models achieved an average mean absolute error (MAE) of 
0.182 mm/day, root mean square error (RMSE) of 0.260 mm/day, and a 

mean percentage error (MAPE) of 4.972 %, with a Kling-Gupta effi-
ciency (KGE) of 0.747.

Vaz et al. (2022) to estimate ETo explored various machine learning 
algorithms including Artificial Neural Networks (ANN), Long Short 
Term Memory (LSTM), Gated Recurrent Unit (GRU), Recurrent Neural 
Network (RNN), and hybrid neural network models such as LSTM-ANN, 
RNN-ANN, and GRU-ANN. The LSTM-ANN model with a determination 
coefficient of 0.967 and an error of 0.307 mm/day had a high perfor-
mance compared to other models. Saggi and Jain (2019) utilizing the 
Multilayer Perceptron (MLP), the daily ETo for Hoshiarpur and Patiala 
Districts in Punjab was computed. Compared to machine learning al-
gorithms like Random Forest (RF), Generalized Linear Models (GLM), 
and Gradient Boosting Machine (GBM), the MLP showcased better 
performance.

CNN-LSTM models are particularly effective for long-term pre-
dictions due to their ability to capture spatial features through the 
convolutional layers before processing temporal sequences with LSTM 
layers. This dual capability allows them to maintain high accuracy over 
extended forecasting horizons. In contrast, RNN-LSTM models may excel 
in scenarios requiring immediate temporal predictions but can struggle 

Fig. 14. Residual errors, and scatter plots of the observed and predicted evapotranspiration of the five models for Sydney city in testing period. The colored shadows 
provide a smooth representation of the distribution of dataset showing the relative frequency.
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with longer sequences due to issues like vanishing gradients, which 
LSTMs are designed to mitigate but may still face in certain configura-
tions. Overall, meta-heuristic-driven ML models have demonstrated 
their capacity to achieve notable successes and showcase immense po-
tential. Also, according to the conducted studies, studies in which LSTM 
models have been combined have provided more accurate predictions, 
and in this research, acceptable results were obtained by combining 
RNN and LSTM.

5. Summary and conclusion

Accurate predictions of nonlinear processes, particularly ETo which 
is influenced by rainfall, temperature, and sunshine, have been signifi-
cantly improved through the utilization of ML techniques. The funda-
mental aim of this research was to determine the effectiveness of five 
distinct ML techniques, namely DL, NN, RNN, CNN-LSTM and RNN- 
LSTM in forecasting daily ETo for prominent Australian urban cities 
Melbourne and Sydney. The evaluation of these constructed models 
involved considering the statistical indicators R, R2, and RMSE, in 
addition to analyzing the statistical graphs. By producing exceptional 
outcomes for two selected stations in predicting ETo, the RNN-LSTM 
model exemplified its dominance over the NN and other comparing 
models and substantiated its superiority.

One of the primary challenges in applying RNN-LSTM hybrid models 
is the effective initialization and optimization of the network parame-
ters. Poor initialization can lead to suboptimal learning outcomes, while 
the complexity of tuning hyperparameters can hinder the model’s 
overall accuracy. Despite LSTMs being designed to mitigate the van-
ishing gradient problem inherent in vanilla RNNs, they still face diffi-
culties in learning long-term dependencies effectively. The vanishing 
gradient issue can still arise during training, particularly with very deep 
networks or when dealing with long sequences, leading to challenges in 
capturing essential temporal patterns in transpiration data. In the pur-
suit of enhancing the organization of self-sufficient intelligent models, 
future investigations should prioritize incorporating DL and comple-
mentary hybrid techniques to forecast additional variables (e.g., cloud 
cover and Human Factors), while concurrently conducting assessments 
against them.
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