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Abstract
Electroencephalography (EEG) signals provide information about the brain activities, this study bridges neuroscience and

machine learning by introducing an astronomy-inspired feature extraction model. In this work, we developed a novel

feature extraction function, black-white hole pattern (BWHPat) which dynamically selects the most suitable pattern from

14 options. We developed BWHPat in a four-phase feature engineering model, involving multileveled feature extraction,

feature selection, classification, and cortex map generation. Textural and statistical features are extracted in the first phase,

while tunable q-factor wavelet transform (TQWT) aids in multileveled feature extraction. The second phase employs

iterative neighborhood component analysis (INCA) for feature selection, and the k-nearest neighbors (kNN) classifier is

applied for classification, yielding channel-specific results. A new cortex map generation model highlights the most active

channels using median and intersection functions. Our BWHPat-driven model consistently achieved over 99% classifi-

cation accuracy across three scenarios using the publicly available EEG pain dataset. Furthermore, a semantic cortex map

precisely identifies pain-affected brain regions. This study signifies the contribution to EEG signal classification and

neuroscience. The BWHPat pattern establishes a unique link between astronomy and feature extraction, enhancing the

understanding of brain activities.
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Introduction

Chronic neuropathic pain, a persistent affliction arising

from nervous system damage or dysfunction, manifests as a

consequence of abnormal neural processes (Sah et al.

2003). Neuropathic pain is often the result of another injury

or pathological condition (Cohen and Mao 2014; Szczudlik

et al. 2014). The chronicity of neuropathic pain, typically

defined as enduring for a duration exceeding three months,

imbues it with distinctive attributes that distinguish it from

other forms of pain (Kim et al. 2023; Scholz et al. 2019).

Notably, it primarily hinges on neural impairment rather

than actual tissue damage or irritation within the body

(Nishikawa and Nomoto 2017). This damage or dysfunc-

tion leads to impaired communication between nerve cells

or the production of abnormal signals in neurons (Camp-

bell and Meyer 2006). Etiological factors contributing to

neuropathic pain encompass a spectrum of possibilities,

including metabolic disorders like diabetic neuropathy,

traumatic injuries, multiple sclerosis, infections, and more

(Nudell et al. 2022; Sheldon et al. 2022). Furthermore, it is

noteworthy that chronic pain can also manifest within

neurological disorders whose etiology is not fully under-

stood (Bonanni et al. 2022).

Chronic neuropathic pain significantly impacts one’s

quality of life (Mussigmann et al. 2022; Shinu et al. 2022).

Unfortunately, conventional clinical drug therapies often

fall short of mitigating its symptoms (Fisher and Clarkson

2023). Fundamentally, treatment strategies focus on pin-

pointing the root cause of the pain while alleviating its

effects. Approaches encompass diverse methods including

medication, neurostimulation, physical therapy, and psy-

chotherapy, all aimed at curtailing and managing the pain

(Vorobeychik et al. 2011). These techniques generally aim

to improve the patient’s quality of life, but it’s important to

note that the treatment journey demands sustained com-

mitment and effort (Finnerup et al. 2018).

The diagnosis of clinical neuropathic pain necessitates a

comprehensive evaluation by a healthcare professional,

incorporating various diagnostic measures (Dansie and

Turk 2013). A typical protocol to establish this diagnosis

involves an in-depth patient history review, a thorough

physical examination, electromyography, and specific lab-

oratory tests (Lubec et al. 1999). Nevertheless, despite

these meticulous steps, achieving a definitive diagnosis

remains an intricate task. In this context, our objective is to

employ automated diagnostic techniques utilizing EEG

signals for chronic neuropathic pain. To fulfill this goal, we

have devised a novel machine-learning approach capable

of automatically classifying EEG signals obtained from

individuals afflicted with chronic neuropathic pain.

Literature review

The accurate diagnosis of pain type is paramount for tai-

loring effective treatment plans to patients (Finnerup et al.

2018). Nonetheless, precise pain diagnosis presents a for-

midable challenge. The literature presents numerous arti-

ficial intelligence-based approaches for pain classification,

typically categorized into behavior-based and neurophysi-

ology-based techniques (Cascella et al. 2023). In the lit-

erature, many AI-based methods have been proposed for

different disciplines (Aydın 2022; Aydın and Onbaşı 2023;
Özcelik and Altan 2023; Özçelik and Altan 2023). The

literature review for the pain classification is presented

below.

In a relevant investigation, Nezam et al. (Nezam et al.

2018) tackled the task of categorizing pain intensity into

five distinct levels using EEG signals. To achieve this, they

engaged in feature extraction within the alpha and delta

bands of the EEG signal. Subsequently, they employed a

sequential forward selection algorithm to identify the most

pertinent features, followed by classification utilizing

support vector machines (SVM). Their proposed method

yielded an approximate classification success rate of 62%.

It’s essential to highlight that a key limitation of this

research lies in the fact that pain induction was reliant on

external stimuli. In their study, Chen et al. (Chen et al.

2022) harnessed the power of convolutional neural net-

works (CNN) to discern pain-related patterns within EEG

signals. To this end, EEG data were meticulously acquired

from a cohort of 10 individuals grappling with chronic

back pain, followed by a rigorous classification task dis-

tinguishing between pain and no-pain states. This paper

thoughtfully partitioned the EEG signals into 5-s segments

with 4-s overlaps. Their proposed method yielded an

impressive 83% area under the curve (AUC) value. How-

ever, it’s prudent to acknowledge two salient limitations in

this research: firstly, the reliance on signal segmentation

with overlapping blocks, and secondly, the computational

demands, characterized by high complexity. Anderson

et al. (Anderson et al. 2021) examined EEG signals sourced

from individuals afflicted with spinal cord injuries,

employing the Higuchi fractal method for analysis. The

study employed two distinct datasets, and the extracted

features underwent classification via the Support Vector

Machine (SVM) technique. Impressively, the proposed

method achieved an accuracy rate of approximately 82%.

In a related effort, Zolezzi et al. (Zolezzi et al. 2023a)

conducted a comparative exploration of linear and non-

linear methods for classifying neuropathic pain. EEG sig-

nals, harvested from chronic neuropathic pain patients,

were segregated into three groups based on pain severity

and subjected to classification. The study partitioned
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signals into 1-min segments, with methodological out-

comes evaluated against a statistical analysis framework.

It’s essential to acknowledge a significant limitation: the

control group utilized a separate dataset, resulting in dif-

ferences in the recording system. Elsayed et al. (Elsayed

et al. 2020) ventured into pain level classification by

applying a cold pressor test stimulator to 30 volunteer

participants to elicit pain responses. EEG data were col-

lected during this process, and four pain intensity cate-

gories (no pain/low/moderate/high) were distinguished.

The classification phase employed Artificial Neural Net-

works (ANN), delivering a classification accuracy of

94.83%. Furthermore, the study unveiled a robust correla-

tion between the alpha frequency band and pain intensity.

However, it’s imperative to note a key limitation in this

study: the pain sensation was artificially induced via a

stimulator.

As noted in the existing literature, neurophysiological-

based pain classification methods predominantly rely on

EEG-based approaches. Nevertheless, it’s pertinent to

acknowledge that many of these investigations utilize

artificially induced pain through stimulators, with the EEG

signals stemming from experimental setups rather than real

patient scenarios.

Literature gap

Based on the literature review, the identified gaps in the

existing literature are as follows:

– While deep learning models dominate EEG signal

classification, they tend to be computationally

intensive.

– Dynamic pattern-based feature engineering models are

scarce.

– A paper exists on EEG pain classification (Zolezzi et al.

2023a), but it did not provide detailed structural

classification performance metrics.

– Most models primarily showcase their classification

performance, with only a few offering explainable

models that contribute to neuroscience.

Motivation and our model

The inspiration behind introducing the astronomy-based

pattern, BWHPat, in EEG signal classification stems from

the pursuit of innovative methodologies in the detection

and classification of brain disorders. The EEG signals are

complex and often exhibit subtle patterns and variations.

By drawing parallels between celestial phenomena and

neural activities, we aim to leverage the unique charac-

teristics of astronomical patterns to enhance feature

extraction and classification within the realms of neuro-

science and machine learning.

Astronomy, renowned for its ability to unravel intricate

patterns in the vast expanse of space, offers a novel per-

spective for comprehending the complex patterns inherent

in EEG signals. The introduction of BWHPat, modeled

after the probabilistic patterns associated with black holes,

serves as a bridge between the expansive patterns observed

in the cosmos and the intricate neural patterns found in the

human brain. This approach is driven by the belief that the

dynamic and probabilistic nature of astronomical patterns

can effectively address the intricacies and variations pre-

sent in EEG signals.

The motivation for proposing BWHPat lies in its

potential to provide a fresh and unconventional solution to

the challenges in EEG signal classification. By incorpo-

rating astronomy-inspired concepts such as probability

functions and dynamic graph generation, BWHPat aims to

capture the richness of EEG data in a manner that aligns

with the intricate patterns observed in celestial entities. The

introduction of this model indicates our effort in proposing

a novel feature extraction and classification techniques in

the neuroscience field.

The BWHPat is an adaptive and dynamic selection

model, allowing to respond effectively to the diverse pat-

terns present in EEG signals. The motivation is to develop

a robust and self-organizing features of BWHPat to achieve

high classification accuracy.

One of our primary motivations is to address the gaps

identified in the literature. The first gap highlights the

dominance of deep learning models in EEG signal classi-

fication. Due to their differing strategies, traditional feature

engineering models often struggle to achieve the same

classification performance as deep learning models. While

deep learning models employ dynamic weight detection

through backpropagation-like techniques, Hinton’s for-

ward-forward (FF) model, as discussed in (Hinton 2022),

offers a new approach. Hinton’s research indicates that this

model can be applied to feature engineering. As a result,

we’ve become particularly interested in self-organized

feature extraction models utilizing graphs. For our study,

we employed the shape representation of the black-white

hole. Through this shape, 14 patterns were formulated,

leading to the proposal of a statistical method for optimal

pattern selection. This strategy culminated in the concep-

tion of a self-organized dynamic pattern named BWHPat.

EEG pain classification is a fascinating research domain.

While a paper on EEG pain detection exists, it primarily

presents the dataset and outlines the statistical character-

istics of the EEG signals. Our objective in this research is

to present the classification outcomes of an EEG pain

detection model.
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Another crucial aim of this study is to produce

explainable results. We’ve constructed a semantic cortex

map based on the classification accuracy of the three

examined cases. Using this cortex map, we’ve been able to

provide interpretable insights regarding pain.

Our research introduces a novel feature engineering

framework that yields results across all channels. This

model comprises four phases: feature extraction, feature

selection, classification, and cortex map creation. During

the feature extraction phase, tools such as the tunable

q-factor wavelet transform (TQWT) (Selesnick 2011), the

proposed black-white hole pattern (BWHPat), and a sta-

tistical feature generator are utilized to derive multileveled

textural and statistical features. The feature selection phase

deploys iterative neighborhood component analysis

(INCA) (Tuncer et al. 2020a) to pinpoint the most infor-

mative features. For classification, the k-nearest neighbors

(kNN) (Peterson 2009) method is implemented to acquire

channel-wise outcomes. Based on these results, we gener-

ated a semantic cortex map.

Contributions and novelties

We introduce an innovative feature engineering model, and

the distinct aspects and contributions of this research are

outlined below:

Novelties:

– To the best of our knowledge, this paper presents the

first EEG pain classification model.

– We are the pioneer in introducing an astronomy-based

feature extraction model.

– We have elucidated chronic neuropathic pains using our

proposed cortex map generation method.

Contributions:

– We have developed a new feature engineering method-

ology characterized by its self-organized feature extrac-

tion. This approach stands as a trailblazer in its domain.

To substantiate the efficacy of our model, we intro-

duced a feature extraction function termed BWHPat.

Recognized as a self-organized feature extraction

function, BWHPat facilitated the generation of textural

features from the EEG signals we analyzed. Subse-

quently, we forged a novel feature engineering model

leveraging BWHPat, particularly for EEG pain signal

classification.

– To gauge the universal classification performance of

our proposed BWHPat model, we tested it across three

distinct cases. Remarkably, our model achieved classi-

fication accuracies exceeding 99% for all these scenar-

ios. This accomplishment underscores the potency of

our model in EEG signal classification, positioning it as

a formidable contender against deep learning models.

Thus, we offer a fresh alternative for signal classifica-

tion, enriching the machine-learning community.

– Drawing from the insights garnered through our

research, we crafted a semantic cortex map. This

generated map unveils information regarding the

brain’s response to pain stimuli, marking a significant

contribution to the realm of neuroscience.

Dataset

The study employed a dataset collected from 36 chronic

neuropathic pain patients (Zolezzi et al. 2023a, b). Their

study (Zolezzi et al. 2023a, b) used a different EEG dataset

to take control EEG signals, but their dataset has three

classes. Therefore, we have used the original dataset. The

demographics of the participants are as follows:

Gender Distribution: The patient pool consisted of 8

males and 28 females.

Age Distribution: The average age of the participants

was 44 with a standard deviation of ± 13.98.

Questionnaires:

Participants completed two primary questionnaires to

evaluate their pain levels and related conditions:

Pain Detect Questionnaire (PDQ): This tool is validated

for the Spanish language and helps determine the neuro-

pathic components of pain (Freynhagen et al. 2006).

Brief Pain Inventory (BPI): Also validated for Spanish,

this inventory primarily focuses on pain severity and its

interference with the patient’s daily life (Erdemoglu and

Koc 2013). Based on the BPI scores, patients were strati-

fied into three pain severity categories:

Low Pain: Scores ranging from 0 to 3.

Moderate Pain: Scores ranging from 4 to 6.

High Pain: Scores ranging from 7 to 10.

The EEG data encapsulates recordings from 22 distinct

channels, namely Fp1, Fp2, AFz, F7, F3, Fz, F4, F8, T7,

C3, Cz, C4, T8, CPz, P7, P3, Pz, P4, P8, POz, O1, and O2.

The reference points for these recordings were the ear-

lobes A1 and A2.

All EEG data was sampled at a frequency of 250 Hz,

ensuring a high-resolution capture of the brain’s electrical

activity.

This dataset, encompassing EEG recordings, served as

the foundation for our analyses and model evaluations in

this study.
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The proposed black-white hole pattern

In feature engineering, conventional feature extraction

functions have been employed as static patterns to generate

features. However, these static patterns are limited in their

ability to produce meaningful features from certain data

blocks. Therefore, there is a need for a dynamic feature

extractor to identify hidden patterns within the block. One

of our innovations is the proposed BWHPat. In this section,

our primary objective is to introduce a self-organized fea-

ture extraction function. While there are numerous graphs

we could employ for this purpose, we aimed to tap into a

popular research topic. Consequently, we utilized the shape

of the black-white hole, which is depicted in Fig. 1.

In this research, we developed a new pattern generator

using the design inspired by the black-white hole sketch.

We crafted a novel graph generator. For this modeling, we

utilized five groups to represent the black hole, its event

horizon, the singularity, the event horizon of the white

hole, and the white hole itself. As a result, we employed

two 5 9 5 matrices, two 3 9 3 matrices, and one 1 9 1

matrix. These matrices are illustrated in Fig. 2.

As depicted in Fig. 2, 69 values (calculated as

25 ? 9 ? 1 ? 9 ? 25) are required to execute this pattern

generator. Using the pattern generator, we introduced a

new self-organized feature extractor. We have outlined the

model in the following steps to elucidate our proposal more

clearly.

S1: Create overlapping blocks for modeling and the

length of each overlapping block is 69.

blðhÞ ¼ signal gþ h� 1ð Þ;
g 2 1; 2; . . .; lng� 68f g; h 2 1; 2; . . .; 69f g ð1Þ

Herein, bl means the block and lng defines the length of

the signal.

S2: Generate the matrix shown in Fig. 2 using the

overlapping block.

vb jð Þ ¼ bl jð Þ; j 2 1; 2; . . .; 25f g ð2Þ
veb qð Þ ¼ bl qþ 25ð Þ; q 2 1; 2; . . .; 9f g ð3Þ
C ¼ blð35Þ ð4Þ

vew qð Þ ¼ bl qþ 35ð Þ ð5Þ
vw jð Þ ¼ bl jþ 44ð Þ ð6Þ

Herein, vb defines the black hole vector, veb means the

event horizon of the black hole vector, C represents the

singularity value, vew is the event horizon of the white hole

vector and vw defines the white hole vector. Here, we have

generated the sub-blocks/vectors to generate matrices. The

vector-to-matrix conversion is given below.

b a; cð Þ ¼ vb jð Þ; a 2 1; 2; . . .; 5f g; b 2 1; 2; . . .; 5f g ð7Þ
w a; cð Þ ¼ vw jð Þ ð8Þ
eb z; nð Þ ¼ veb qð Þ; z 2 1; 2; 3f g; n 2 1; 2; 3f g ð9Þ
ew z; nð Þ ¼ vew qð Þ ð10Þ

where b defines the black hole, eb means the event

horizon of the black hole, ew is the event horizon of the

white hole and w defines the white hole matrices.

S3: Assign to values for feature extraction. (see Fig. 2).

S4: Create the probable 14 patterns. By using these 14

patterns, 14 distinct binary features have been generated.

The mathematical definitions of these binary feature

extraction methods are given below.

The first four patterns are individual patterns. We have

used four matrixes (b;w; eb; ew) to generate these binary

feature extraction functions. Moreover, we have used the

signum function as the main feature extraction function.

We have defined the first four binary feature extraction

functions below.

bf 1 rð Þ ¼ q br;Cbð Þ; r 2 f1; 2; . . .; 8g ð11Þ

bf 2 rð Þ ¼ qðwr;CwÞ ð12Þ

bf 3 rð Þ ¼ qðebr; cbÞ ð13Þ

bf 4 rð Þ ¼ qðewr; cwÞ ð14Þ

q br;Cbð Þ ¼ 0; br\Cb
1; br �Cb

�
ð15Þ

Herein, bf defines the binary features and qð:; :Þ function
is a signum function and we have utilized it as a main

kernel function to generate binary features.

Fig. 1 Graphical demonstration

of the black-white hole
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The 5th–8th patterns have been generated using the

singularity value.

bf 5 rð Þ ¼ q br;Cð Þ ð16Þ

bf 6 rð Þ ¼ qðwr;CÞ ð17Þ

bf 7 rð Þ ¼ qðebr;CÞ ð18Þ

bf 8 rð Þ ¼ qðewr;CÞ ð19Þ

The 9th pattern is created using the black hole and white

hole.

bf 9 rð Þ ¼ qðbr;wrÞ ð20Þ

The 10th pattern has been created using event horizons.

bf 10 rð Þ ¼ qðebr; ewrÞ ð21Þ

The 11th–14th patterns (bit groups) have been generated

using holes and event horizons.

bf 11 rð Þ ¼ qðbr; ebrÞ ð22Þ

bf 12 rð Þ ¼ qðwr; ewrÞ ð23Þ

bf 13 rð Þ ¼ qðbr; ewrÞ ð24Þ

bf 14 rð Þ ¼ qðwr; ebrÞ ð25Þ

In this step, we have defined the used 14 patterns.

However, there is the best suitable pattern selection prob-

lem. The solution to this problem is explained in Step 5

(see S5).

S5: Select the best pattern using the Euclidean distance-

based statistical moment. To implement this pattern

selection function, we have created groups. The generated

groups are shown below.

G1 ¼ b;G2 ¼ w;
G3 ¼ eb;G4 ¼ ew

ð26Þ

The first four groups (G) are the individual groups. The

remainder 10 groups are the combination-based groups and

these groups are defined below.

G5 ¼ - b;Cð Þ;G6 ¼ - w;Cð Þ;G7 ¼ -ðeb;CÞ;G8 ¼ -ðew;CÞ;
G9 ¼ - b;wð Þ;G10 ¼ - eb; ewð Þ;G11 ¼ - b; ebð Þ;G12 ¼ - w; ewð Þ;
G13 ¼ -ðb; ewÞ;G14 ¼ -ðw; ebÞ

ð27Þ

where, we have used concatenation function (-ð:; :Þ)
function to create these 10 groups. The used pattern

selection function is defined below.

Firstly, we have calculated the general feature of the

signal by using the below equation.

l signalð Þ ¼
Plng

t¼1 signalðtÞ
lng

ð28Þ

r signalð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPlng
t¼1 signal tð Þ � l signalð Þð Þ2

lng� 1

s
ð29Þ

Herein, lð:Þ function represents the average value cal-

culation function and rð:Þ implies the standard deviation

function. Herein, our objective is to compute the general

statistical attribute of the used input. By using the Eucli-

dean distance of the generated statistics, we have selected

the best feature pattern.

D eð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l signalð Þ � l Geð Þð Þ2 þ r signalð Þ � r Geð Þð Þ2

q
; e

2 f1; 2; . . .; 14g
ð30Þ

idt ¼ minðDÞ ð31Þ

BF ¼ bf idt ð32Þ

where D defines distances from the input signal and the

created groups, idt represents the index value of the min-

imum distance and BF means of the final binary features.

By using the selected binary features, we have generated

map values.

S6: Generate map value using the selected binary

features.

Fig. 2 The matrices and values used to propose BWHPat. *b: values

of the black hole, Cb: center of the black hole, eb: values of the event

horizon of the black hole, cb: center of the event horizon of the black

hole, C: singularity/center value, ew: values of the event horizon of

the white hole, cw: center of the event horizon of the white hole
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mval ¼
X8
z¼1

BFðzÞ � 28�z ð33Þ

Here, mval is the generated map value by using the

selected binary features.

S7: Repeat S1–S6 until the number of the blocks and

generate a map signal.

S8: Extract histogram of the map signal to generate

feature vector.

feat ¼ hðmapÞ ð34Þ

where feat is the feature vector with a length of 256 since

we have coded map signal (map) with eight bits and hð:Þ
represents the histogram extraction function.

The proposed BWHPat has defined the above eight steps

and this feature extractor is a self-organized feature

extraction function since this extractor selects the most

suitable pattern per the structure of the used data.

EEG classification model

Our main goal is to examine the classification capabilities

of the proposed BWHPat. To this end, we introduced a new

EEG classification model incorporating a hybrid and mul-

tileveled feature extraction method. This method integrates

TQWT (Selesnick 2011), statistical features, and the newly

proposed BWHPat. During the feature selection phase, we

employed INCA (Tuncer et al. 2020a), while kNN

(Peterson 2009) was responsible for classifying the selected

features for each channel. Using the classification out-

comes from these channels, we formulated a semantic

cortex map based on the achieved classification perfor-

mance and a novel intersection model.

The visual representation of our proposed model can be

seen in Fig. 3.

It can be noted from Fig. 3 that, the proposed feature

engineering model contains four phases, and these phases

are (i) feature extraction, (ii) feature selection, (iii) classi-

fication, and (iv) cortex map creation.

We generated features using both a statistical feature

generator and BWHPat-based feature extractor, resulting in

11 inputs (comprising the raw EEG signal and 10 wavelet

bands). The proposed hybrid feature extractor generates

270 features from each input, which includes 256 features

from the proposed BWHPat and an additional 14 features

extracted by the statistical feature generator. Consequently,

11 individual feature vectors (f ) are generated and con-

catenated, resulting in feature vector with a length of 2970

(equal to 270 9 11). Subsequently, the INCA feature

selector is used to select the most informative features from

the generated 2970 features. Finally, the kNN classifier is

employed to generate classifier-specific outcomes, with

kNN providing channel-specific results. Information fusion

techniques are then applied to obtain the optimal result.

To clarify the proposed model better, we have given

more details about its phases below. Moreover, we have

explained this model step-by-step.

Feature extraction

The initial phase of our proposed model centers on feature

extraction. We employed TQWT to derive wavelet bands

in this phase, thereby establishing a multileveled feature

extraction function (Selesnick 2011). We integrated two

feature extraction functions: (i) the introduced BWHPat

and (ii) a statistical feature extractor. While the statistical

feature extraction function yields statistical features, our

BWHPat is designed to produce textural features. Addi-

tionally, by harnessing wavelet bands, we extracted fea-

tures specific to frequency bands and generated space

domain features directly from the raw EEG signal. The

steps for the feature extraction function we introduced are

as follows:

Step 1: Generate the wavelet bands deploying TQWT.

W ¼ wðsignal; 1; 3; 9Þ ð35Þ

Herein, W defines the wavelet bands, wðÞ function

represents the TQWT transformation, and we have used 1,3

and 9 values as the q-factor, redundancy, and number of

levels, respectively. We have generated 10 (= number of

levels ? 1) wavelet bands using this wavelet transform.

The TQWT is chosen for frequency band extraction in

the EEG pain classification model due to its following

advantages. Firstly, wavelets perform well in multiresolu-

tion analysis as they can effectively capture both high and

low-frequency components in EEG signals (Adeli et al.

2003). This capacity is crucial for comprehending the

intricate dynamics of neural signals associated with pain

perception. Additionally, wavelets offer exceptional time–

frequency localization, enabling them to capture transient

changes in EEG signals over time. This feature distin-

guishes them from traditional Fourier transform-based

methods and renders them well-suited for analyzing non-

stationary signals commonly encountered in pain-related

brain activity. The wavelets can dynamically adjust their

resolution and bandwidth based on the signal’s character-

istics. This adaptability is essential when working with

EEG data, where neural signals exhibit considerable vari-

ability in terms of frequency and amplitude during different

pain-related events. Finally, wavelet-based approaches

provide an extensive set of features that can be extracted

from EEG signals, facilitating the capture of unique pat-

terns and characteristics associated with pain perception.
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Due to these advantages, we have chosen wavelets for

feature extraction in the BWHPat model.

Step 2: Extract the feature from the raw EEG signal and

generate wavelet bands by deploying the proposed

BWHPat and statistical feature extractor. The proposed

BWHPat extract 256 textural features and the used statis-

tical feature generator extracts 14 statistical features since

the statistical feature generator uses 14 statistical moments

and these moments are (1) Tsallis Entropy, (2) Shannon

Entropy, (3) Renyi Entropy, (4) Sure Entropy, (5) Log

Entropy, (6) Energy, (7) Higuchi, (8) Standard Deviation,

(9) Variance, (10) Range, (11) Mean, (12) Median, (13)

Minimum and (14) Maximum (Tuncer et al. 2020b). Using

the generated wavelet bands, raw EEG signal and the used

feature extraction functions, we have generated 11 feature

vectors, and the length of each feature vector is equal to

270 (= 256 ? 14).

f 1 ¼ - b signalð Þ; n signalð Þð Þ ð36Þ
f sþ1 ¼ - b Wsð Þ; n Wsð Þð Þ; s 2 f1; 2; . . .; 10g ð37Þ

where f defines the feature vector, bðÞ is the proposed

BWHPat feature extractor and nðÞ means the statistical

feature extraction function.

Step 3: Merge the generated feature vectors to generate

the ultimate feature vector.

X ¼ - f 1; f 2; . . .; f 11ð Þ ð38Þ

Herein, the ultimate feature vector is denoted using X;

and the length of this feature vector is equal to 2970

(= 270 9 11).

Step 4: Repeat Steps 1–3 until the number of the EEG

segments and create a feature matrix.

Feature selection

In the feature selection phase, we employed the Iterative

neighborhood component analysis (INCA) (Tuncer et al.

2020a). We aimed to extract the most informative features

from 2970 features. INCA is an enhanced iteration of the

NCA feature selector, integrating additional functionalities

for a more refined feature selection process (Goldberger

et al. 2004).

Fig. 3 Schematic diagram of the proposed model. ** w: Wavelet bands (these bands, which are wavelet coefficients, have been generated by the

TQWT, and they serve as wavelet filters). f: Individual feature vector
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It operates through an iterative mechanism, introducing

a structured process that includes the generation of loss

values. This iterative nature, coupled with the incorpora-

tion of a check-balance structure helps to distinguish INCA

from NCA. The check-balance structure entails evaluating

and balancing the contributions of various features,

ensuring a comprehensive assessment of the feature space.

This is particularly crucial for the INCA, as it employs a

loss value generation function to calculate the loss values

for all selected feature vectors. This process is crucial in

determining the optimal selected feature vector, as it sys-

tematically analyzes the impact and significance of each

feature within the dataset. Through this meticulous evalu-

ation, the INCA feature selector identifies and prioritizes

the most relevant features, contributing to the overall

effectiveness of the feature selection process.

One of the key strengths of INCA is its ability to nav-

igate through the feature space dynamically, adapting to

the evolving characteristics of the dataset. The iteration

process and the check-balance structure work synergisti-

cally to determine the optimal feature vector from the pool

of selected feature vectors. This optimization is guided by

the minimization of loss values, enhancing the selector’s

capability to identify the most discriminative features rel-

evant to the classification task.

Step 5: Generate the qualified indexes of the features by

deploying the NCA feature selector.

index ¼ N X; yð Þ ð39Þ

where index defines the qualified indices of the features,

N ð:; :Þ represents the NCA function and y means the actual

output.

Step 6: Select feature vectors iteratively and compute

the loss values of these feature vectors by deploying the

kNN classifier.

sftx�stvþ1 dm; ið Þ ¼ X dm; index ið Þð Þ; x 2 stv; stvþ 1; . . .; fnvf g;
i 2 1; 2; . . .; xf g; dm 2 f1; 2; . . .;NoEg

ð40Þ

loss x� stvþ 1ð Þ ¼ kNN sftx�stvþ1; y
� �

ð41Þ

Herein, sft defines the selected feature vector, stv

implies the start value of the iteration, fnv is the final value

of the iteration, loss means of the misclassification value

array and NoE represents the number of EEG signal.

Step 7: Choose the best feature vector according to the

computed loss values.

idx ¼ minðlossÞ ð42Þ

sfeat ¼ sftidxþstv�1 ð43Þ

where idx defines the index of the minimum misclassifi-

cation value and sfeat is the ultimately selected feature

vector.

Classification

During the classification phase, we utilized the kNN

(Peterson 2009) classifier to produce results. The kNN

classifier is among the most widely used distance-based

classifiers in literature. Furthermore, NCA can be viewed

as the feature selection counterpart of kNN. Consequently,

we combined INCA and kNN to achieve superior classi-

fication performance. The classification steps for the

introduced BWHPat are detailed below.

Step 8: Classify the selected feature vector by deploying

the kNN classifier and generate the outcome.

out ¼ kNN sfeat; yð Þ ð44Þ

Herein, out is the outcome of the used channel.

Step 9: Repeat Steps 1–8 until the number of channels

and compute the classification results of each channel.

Cortex map creation

The mathematical model used to produce interpretable re-

sults utilizing the cortex is presented in this phase. In this

stage, we obtained channel-wise outcomes to pinpoint the

active channels for the pain classification phase. The cortex

maps are based on the amplitudes or types (alpha, beta,

gamma, or theta) of the EEG signals. In this work, we

developed the cortex map utilizing classification results.

The step-by-step explanation of cortex map creation is

given below.

Step 10: Compute the classification accuracy for all

channels using the outcomes generated during the classi-

fication phase for all three cases used.

cactj ¼ u outj; y
� �

; j 2 1; 2; . . .; 24f g; t 2 1; 2; 3f g ð45Þ

Here, cac means of the classification accuracy and uðÞ is
the classification accuracy calculation function. We have

used three cases. Therefore, we have computed the clas-

sification accuracies for all cases.

Step 11: Calculate the median values of the classifica-

tion accuracies for all three cases used.

medvalðtÞ ¼ median cactð Þ ð46Þ

where medval defines the median value and we have

computed three median values in this step.

Step 12: Find the channels with classification accuracies

that are higher than median values and store these channels

as meaningful channels.

find cact;medvalð Þ ¼ mcht qð Þ ¼ j ^ q ¼ qþ 1; cactj [medvalðtÞ
skip; cactj �medvalðtÞ

�

ð47Þ

where findð:; :Þ represents the finding function and mcht is

the meaningful channel of the tth case.
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Step 13: Apply intersection operation to meaningful

channels to get ultimate/general meaningful channels for

pain detection.

umc ¼
\3
t¼1

mcht ð48Þ

Herein umc is the ultimate/general meaningful channel

for the pain classification using EEG signals.

Using the generated channels, we have presented inter-

pretable results in the field of neuroscience and identified

the most meaningful channels for addressing this problem.

Regarding the significance of the median and intersec-

tion functions in generating the cortex map, these functions

play a crucial role in streamlining the identification of

meaningful channels. The median values capture the cen-

tral tendency of classification accuracies across different

cases. Channels surpassing these median values provide a

refined selection based on consistent performance.

The intersection operation further refines this selection

by identifying channels that consistently exhibit meaning-

ful classification across all three cases. The resulting ulti-

mate/general meaningful channel (umc) represents a

consolidated set of channels that collectively contribute to

effective pain detection in EEG signals. This approach

enhances the interpretability of the cortex map, offering

insights into the specific brain regions affected by pain.

The 13 steps above have been defined in the proposed

EEG signal classification model.

Experimental results

In this section, the classification performances of the pro-

posed feature engineering model have been presented.

Experimental setting

A simple configured personal computer (PC) was used to

implement this model, and this PC has 32 GB main

memory, a 3.6 GHz intel processing unit, and a graphic

card with 240 tensor cores. MATLAB (2023a) program-

ming environment was used to implement the presented

BWHPat model. Moreover, we implemented this proposal

using CPU mode since our model is a lightweight EEG

signal classification model. The presented EEG signal

classification model used many methods and these methods

are (i) TQWT (Selesnick 2011), (ii) the recommended

BWHPat, (iii) statistical feature extractor (Tuncer et al.

2020b), (iv) INCA (Tuncer et al. 2020a), (v) kNN (Peter-

son 2009) and (vi) cortex map generator. To better define

the presented model, we have listed the parameters of the

used methods below.

TQWT:

– Q-factor (Q): 1, redundancy (r): 3, number of levels (J):

9.

BWHPat:

– The length of the used overlapping block: 69,

– Number of matrices: 5,

– Kernel: Signum,

– Number of patterns: 14,

– Pattern selection function: Euclidean distance-based

statistical moment,

– The length of the features: 256,

– Type of the features: textural.

Statistical feature extractor:

– 14 statistical moments (= 7 linear ? 7 nonlinear),

– Type of the features: statistical.

INCA:

– Solver of NCA: Stochastic gradient descent,

– A number of iterations of the NCA: Half of the number

of EEG signals.

– Classifier: kNN with tenfold CV,

– Range of iteration: from 50 to 500,

– The number of selected feature vectors generated: 451

(= 500–50 ? 1),

– Selection function: Feature vector with minimum

misclassification rate.

kNN:

– k: 1, distance: L1-norm, weight: none, standardize: true,

validation: tenfold CV.

Cortex map generation:

– Channel selection function: Median and accuracy-based

selection,

– Creating: Intersection-based creation.

By deploying the above parameters, the proposed

BWHPat-based EEG signal classification model has been

created.

Classification results

We evaluated our proposal using three generated cases,

which are defined below:

Case 1: This case utilized EEG signals with a duration

of 60 s. It consists of 109 low pain, 110 moderate pain, and

139 high pain EEG signals.

Case 2: The EEG signals used in this case are 30 s long.

The distribution of observations across pain levels is: 219

low pain, 220 moderate pain, and 279 high pain.
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Case 3: For this case, we used EEG signals of 15 s in

duration. Out of the 1438 EEG observations, 439 are cat-

egorized as low pain, 440 as moderate pain, and 559 as

high pain.

To assess the performance of our proposed model, we

relied on two performance evaluation metrics: (i) classifi-

cation accuracy and (ii) F1-score.

The mathematical definitions for these metrics are pro-

vided below (Powers 2020).

cac ¼ tnþ tp

tnþ tpþ fnþ fp
ð49Þ

F1 ¼ 2tp

2tpþ fnþ fp
ð50Þ

Herein, tn; tp; fn and fp are the number of true negatives,

true positives, false negatives and false positives respec-

tively, F1 defines the F1-score and F1-score is the har-

monic mean of the recall and precision.

By using the proposed model, the computed perfor-

mance metrics have been listed in Table 1.

Table 1 demonstrated that the proposed model attained

99.72%, 99.72% and 99.17% classification accuracies for

Case 1, Case 2 and Case 3 consecutively. The best results

have been attained using the AFz channel for Case 1 and

Case 3 and the A2 channel for Case 2. The confusion

matrices of the best results have also been illustrated in

Fig. 4.

Explainable results

In the fourth phase of our model, we developed a semantic

cortex map using a proposed median-based cortex map

generator. The active channels for the three cases are

illustrated in Fig. 5, based on the results of this intersection

and median-based algorithm.

As shown in Fig. 5, the channels AFz, C4, CPz, P7, and

A2 are the most distinguishable for chronic neuropathic

pain classification.

The channels AFz, C4, CPz, P7, and A2 represent

specific brain regions and functions relevant to the classi-

fication of chronic neuropathic pain based on EEG signals.

AFz, associated with cognitive functions and attention,

may reflect cognitive and attentional processes in pain

perception. C4, responsible for motor control and

somatosensory processing, can indicate changes in motor

responses or sensory processing related to chronic neuro-

pathic pain. CPz, involved in sensory integration and pro-

cessing, may indicate disruptions in sensory processing

linked to chronic neuropathic pain. P7, contributing to

sensory and cognitive functions, including spatial aware-

ness and attention, might reflect alterations in spatial per-

ception or attention related to chronic neuropathic pain.

A2, serving as a reference electrode, provides a stable ref-

erence point for EEG measurements during chronic neu-

ropathic pain classification. Hence, these channels

collectively play a pivotal role in chronic neuropathic pain

classification, suggesting their involvement in various pain-

related processes, sensory changes, and cognitive func-

tions. Analyzing activity of these channels offer valuable

insights into the neural mechanisms underlying chronic

neuropathic pain.

Discussions

Our work introduced a self-organized feature extraction

function known as BWHPat which is helps to extract subtle

patterns from the EEG signals. The histogram of the pro-

posed BWHPat for various lengths of patterns are shown in

Fig. 6.

Table 1 Results (%) of the presented BWHPat-based EEG pain

classification model

No Channel Case 1 (60 s) Case 2 (30 s) Case 3 (15 s)

Acc F1 Acc F1 Acc F1

1 Fp1 98.60 98.61 98.75 98.75 98.26 98.28

2 Fp2 98.04 97.99 98.89 98.88 98.68 98.67

3 AFz 99.72 99.73 99.58 99.59 99.17 99.19

4 F7 99.72 99.73 99.44 99.46 98.75 98.77

5 F3 98.04 98.09 99.03 99.02 98.89 98.91

6 Fz 98.32 98.33 97.91 97.96 98.19 98.24

7 F4 97.49 97.43 98.19 98.15 98.47 98.45

8 F8 98.60 98.61 98.89 98.92 98.96 98.97

9 T7 98.88 98.91 98.19 98.21 96.80 96.80

10 C3 97.77 97.82 97.91 97.93 98.05 98.06

11 Cz 98.60 98.60 98.75 98.73 98.12 98.13

12 C4 98.88 98.91 99.30 99.32 98.26 98.27

13 T8 98.32 98.33 97.91 97.95 97.98 97.99

14 CPz 99.44 99.46 99.30 99.32 98.33 98.33

15 P7 99.44 99.42 99.03 99.03 97.84 97.87

16 P3 99.16 99.18 98.89 98.88 98.54 98.55

17 Pz 98.88 98.88 98.47 98.47 99.17 99.17

18 P4 98.32 98.33 98.33 98.34 98.26 98.26

19 P8 98.60 98.53 97.77 97.79 97.71 97.72

20 POz 99.16 99.15 98.75 98.72 97.98 97.96

21 O1 99.16 99.18 98.75 98.78 97.71 97.73

22 O2 99.16 99.12 98.19 98.22 97.71 97.74

23 A1 99.16 99.18 98.47 98.46 98.47 98.46

24 A2 99.44 99.39 99.72 99.73 98.68 98.70

** Acc.: Accuracy, F1: F1-score, the highest results have been high-

lighted using bold-font face
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Figure 6 indicates the ability of the BWHPat model to

extract the minute features from the data. In Fig. 6, the

second pattern emerges as the most frequently employed,

underscoring the adaptability and effectiveness of BWHPat

in the complex landscape of EEG signal analysis.

The INCA selector was employed during feature selec-

tion phase. This selector was applied for all 24 channels of

our dataset. The count of features selected by the INCA

selector for each case is shown in Fig. 7.

We employed the INCA selector for all 24 channels of

our dataset. Figure 7 presents the count of features selected

for each case, highlighting a range of feature lengths

between 50 and 164. These results signify high classifica-

tion performances and also emphasizes the ability to obtain

high performance with few selected features.

(a) Case 1 (AFz Channel) (b) Case 2 (A2 Channel) (c) Case 3 (AFz Channel)
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Fig. 4 Confusion matrices of the best results of the cases. *1: low pain, 2: moderate pain, 3: high pain

Fig. 5 Schematic representation of most active channels used to

classify chronic neuropathic pain
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Moreover, we compared the classification performances

across the three cases. The classification accuracies of the

proposed BWHPat-based EEG signal classification model

for each case, along with their statistical illustrations, are

presented in Fig. 8.

Figure 8(a) indicate the computed classification accu-

racies of the developed model. Channel-wise analysis in

Fig. 8(b) indicate that the 3rd channel (AFz) is the best

performing one yielding an accuracy of 99.49% ± 0.29%

accuracy, while the 10th channel (C3) obtained a lower

accuracy of 97.91% ± 0.14%. The classification perfor-

mances in Fig. 8(c) further underscores the closely mat-

ched successes of Case 1, Case 2, and Case 3.

A semantic cortex map showcased in Fig. 5, offering a

visual narrative of the profound effects of chronic neuro-

pathic pains. The visual revelation emphasizes the frontal,

central, and parietal areas as primary targets, providing

critical insights into the neurological repercussions of

chronic pain.

In the neuroanatomy of pain perception, our study helps

to understand the peripheral pain signals through the spinal

cord to the somatosensory cortex. The interconnected brain

regions, including the somatosensory cortex, periaqueduc-

tal gray matter, amygdala, hypothalamus, ventral tegmental

area, and nucleus accumbens, unfold as central players in

the supraspinal pain processing saga. The researchers Yang

and Chang (Yang and Chang 2019) indicated that the

anterior-central nucleus accumbens and the posterior-cen-

tral ventral tegmental areas are the key players in chronic

pain perception.

Our EEG data analysis indicated perturbations in

channels AFz, C4, CPz, and P7, strategically aligning with

(a) Classification accuracies (b) Channel-wise accuracies

(c) Case-wise accuracies
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Fig. 8 Summary of classification accuracies obtained. a Classification accuracies, b Channel-wise accuracies, and c Case-wise accuracies
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regions crucial to pain processing within the parietal cor-

tex. This not only substantiates our findings but also

strengthens the argument for the effectiveness of our model

in capturing important features and classification of neu-

rological abnormalities.

Hence, BWHPat is a feature extraction function and also

EEG signal classification model.

Ablations

In this section, we present ablation results to highlight the

superior classification performance of the proposed

BWHPat-based model. For these results, we used the AFz

channels. Three distinct configurations were set up to

demonstrate the effectiveness of the introduced BWHPat.

These configurations are detailed below:

Item 1: This configuration employs the local binary

pattern (LBP) as our architecture’s primary feature

extraction function.

Item 2: Here, the proposed BWHPat serves as the main

feature extraction function.

Item 3: Both BWHPat and statistical feature extractors

are utilized for feature extraction.

Figure 9 shows that our proposed BWHPat outperforms

the LBP, with our feature extractor (BWHPat) achieving a

classification accuracy that is 5.21% higher than that of

LBP. By integrating our approach (BWHPat combined

with statistical features), we achieved a classification

accuracy of 99.17%. The results in Fig. 9 unequivocally

show that our chosen strategy offers the best combination.

Highlights

The findings and advantages of the proposed model are

given below.

Findings:

1. Efficiency of BWHPat feature extractor:

a. The proposed BWHPat function exhibits highly

effective self-organized feature extraction, adapt-

ing dynamically to data blocks and selecting

patterns tailored to the characteristics of the input.

b. Proposed BWHPat performed better than LBP,

achieving a classification accuracy of 5.21%

higher.

2. Robust performance and adaptability:

a. Integration of BWHPat with statistical features

results in a robust classification accuracy of

99.17%, emphasizing its adaptability and effec-

tiveness, particularly for the AFz channel in Case

3.

b. The model demonstrates versatility by achieving

optimal classification performance across different

cases, using fewer features (ranging from 50 to

164) for effective signal analysis.

3. Channel-wise analysis:

a. The channel-wise analysis identifies the 3rd chan-

nel (AFz) as the most efficient, attaining a mean

classification accuracy of 99.49% ± 0.29%, while

the 10th channel (C3) shows relatively lower

accuracy at 97.91% ± 0.14%.

b. Notably, the model maintains high classification

accuracies across all channels, highlighting its

consistency in performance.

4. Case-wise analysis:

a. Overall classification accuracies for Case 1, Case

2, and Case 3 are 98.79% ± 0.60%,

98.68% ± 0.56%, and 98.29% ± 0.57%, respec-

tively. Case 1 exhibits the best performance,

although performances across cases are closely

matched.

b. Specific channels (AFz, A2, and AFz) contribute to

the best classification accuracies for each case,

emphasizing the significance of channel selection

in achieving optimal results.

5. Semantic cortex map generation:

a. The generated semantic cortex map reveals that

chronic neuropathic pains predominantly impact

the frontal, central, and parietal lobes of the brain.

b. This visualization provides valuable insights into

the specific brain regions affected by chronic

neuropathic pains, contributing to a better under-

standing of the neurological implications.
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The advantages in two categories: (i) technical and (ii)

practical are given below.

Technical advantages:

– The BWHPat can self-organize and select the most

appropriate pattern from the data block.

– The model performed better than the traditional LBP in

terms of feature extraction.

– To the best of our knowledge, we are the first team to

propose an astronomy-related feature extraction

method. for the main contribution of this work is the

astronomy-driven feature extraction methodology for

neuroscience.

– Fusion of BWHPat with statistical features resulted in

high classification accuracy.

– The model effectively handles various features, ranging

from 50 to 164, to achieve optimal performance.

– The model’s design facilitates a channel-wise accuracy

analysis, helping to pinpoint the most and least efficient

channels.

– The semantic cortex map provides a comprehensive

view of the regions affected by chronic neuropathic

pains.

– The model’s integration of multiple methods (like

TQWT, statistical feature extractor, INCA, kNN, etc.)

provides a robust and comprehensive approach to EEG

signal classification.

Practical advantages:

– The reported high classification accuracy in the paper

has substantial implications for clinical and practical

applications. The generated cortex map, significantly

contributes to our understanding of pain-related brain

activity, opening avenues for practical implementation

and clinical relevance.

– The generated cortex map visually illustrates the

regions predominantly affected by chronic neuropathic

pains, specifically highlighting the frontal, central, and

parietal lobes. This information is invaluable in clinical

contexts as it allows for more precise localization of

pain-related brain activities. Clinicians can utilize this

data to target interventions to the specific areas of the

brain implicated in pain perception, potentially improv-

ing the precision of treatments.

– The high classification accuracy achieved by the

proposed model suggests its application as a diagnostic

tool in clinical settings. Accurate classification of EEG

signals related to neuropathic pain can aid healthcare

practitioners in effective diagnosis of pain. This can

help in early interventions and personalized treatment

plans tailored to the individual’s neural responses.

– The ability to generate a cortex map based on EEG

signals provides an objective and quantifiable measure

of pain-related brain activity. This can help to assess the

pain intensity objectively, reducing reliance on subjec-

tive self-reports. Healthcare providers can use the

generated cortex map to obtain an objective metric of

pain perception, facilitating more accurate pain

management.

– The high classification accuracy of the proposed model

suggests its potential application in monitoring the

efficacy of pain management strategies over time. By

observing changes in the cortex map patterns, clinicians

can assess the impact of therapeutic interventions and

make decisions to optimize treatment plans based on

observed neural responses. This contributes to a more

dynamic and personalized approach to pain

management.

– In addition to the clinical applications, this study

contributes to advancing our broader understanding of

pain-related brain activity. The observed perturbations

in specific channels aligning with regions implicated in

pain processing provide valuable insights for neurosci-

entific research. This knowledge contributes to the

ongoing discourse on the neural mechanisms underly-

ing chronic neuropathic pains.

The high classification accuracy and the generation of a

cortex map have practical implications in precise pain

localization, enhanced diagnostics, objective pain assess-

ment, treatment monitoring, and advancements in neuro-

scientific research. These findings pave the way for

improved clinical practices and a deeper understanding of

the neural correlates of chronic neuropathic pains.

Limitations and future works

This research used a publicly available dataset collected

from 36 participants. We applied the leave-one subject-out

(LOSO) cross-validation and attained about 51% classifi-

cation accuracy. We have tested this dataset using LOSO

CV and the classification accuracies of all channels and

confusion matrix of the best-resulted channel have been

illustrated in Fig. 10.

The LOSO CV results demonstrated that (see Fig. 10) a

bigger dataset can be collected and a healthy control group

can be added. Moreover, our future intention is to propose

more astronomy-related self-organized feature extraction

functions.

The limitations and future works are also discussed

below.

Limitations:

– The presented work was developed using a public

database consisting of 36 participants. The limited size

of the dataset might impact the generalizability of the

findings.
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– about the developed model yielded only 51% classifi-

cation accuracy with LOSO cross-validation strategy,

which demands the need for the huge dataset.

Future directions:

– Huge dataset with a control group helps to develop a

robust model.

– The clinical application of the model need to be

validated in real-world scenarios, considering factors

such as patient heterogeneity, different pain types,

noise, and comorbidities. Uncertainty quantification

technique may help to overcome the problem due to

noise in the model (Seoni et al. 2023).

– Further exploration into astronomy-related self-orga-

nized feature extraction functions can provide unique

insights and contribution to the neuroscience field.

– Combining EEG data with other neuroimaging modal-

ities or clinical parameters can offer a more compre-

hensive understanding of pain-related brain activity

(Salvi et al. 2023).

– Conducting longitudinal studies would help in captur-

ing the dynamic nature of neuropathic pain, enabling

the model to adapt to changes over time and providing

more accurate predictions.

Addressing these limitations and exploring these future

TQWT is chosen directions can contribute to the EEG-

based pain classification model in clinical settings and pave

the way for advancements in pain-related brain activity

research.

Conclusions

In our research, we have developed a novel self-organized

feature extraction function, BWHPat, tailored for EEG

signal classification related to neuropathic pain. The

incorporation of this function within our model, which also

integrates state-of-the-art techniques like TQWT, INCA,

kNN, and a distinctive cortex map generator, signifies a

comprehensive approach to EEG signal analysis.

From our empirical findings:

– The proposed BWHPat demonstrated a clear edge over

traditional methods such as LBP, with an improvement

of over 5.21% classification accuracy.

– Channels like AFz exhibited remarkable classification

accuracy, reaching up to 99.49% ± 0.29%.

– When examining different cases based on signal

lengths, our model consistently maintained high clas-

sification accuracies, with Case 1, Case 2, and Case 3

achieving 98.79% ± 0.60%, 98.68% ± 0.56%, and

98.29% ± 0.57%, respectively.

– The combined strategy of BWHPat and statistical

features reached impressive classification accuracies.

The best classification accuracies for Case 1, Case 2

and Case 3 were computed as 99.72%, 99.72% and

99.17% respectively.

Our generated semantic cortex map offers a new per-

spective on the effects of chronic neuropathic pain across

various brain regions. These numerical outcomes under-

score the model’s robust performance and its capability to

deliver consistently across different EEG signal durations.

(a) Channel-wise accuracy of Case 1 with 

LOSO CV

(b) Confusion matrix of the 6th channel 
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The proposed BWHPat-based model significantly

advances EEG analysis for neuropathic pain classification.

It combines high classification accuracy with rich infor-

mation, creating a reference point for future works in this

area.
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Aydın S, Onbaşı L (2023) Graph theoretical brain connectivity

measures to investigate neural correlates of music rhythms

associated with fear and anger Cognitive Neurodynamics:1–18

Bonanni R, Cariati I, Tancredi V, Iundusi R, Gasbarra E, Tarantino U

(2022) Chronic pain in musculoskeletal diseases: do you know

your enemy? J Clin Med 11:2609

Campbell JN, Meyer RA (2006) Mechanisms of neuropathic pain.

Neuron 52:77–92

Cascella M et al (2023) Artificial intelligence for automatic pain

assessment: research methods and perspectives. Pain Res Manag

2023:6018736

Chen D et al (2022) Scalp EEG-based pain detection using

convolutional neural network. IEEE Trans Neural Syst Rehabil

Eng 30:274–285

Cohen SP, Mao J (2014) Neuropathic pain: mechanisms and their

clinical implications. Bmj 348:f7656. https://doi.org/10.1136/

bmj.f7656

Dansie EJ, Turk DC (2013) Assessment of patients with chronic pain.

Br J Anaesth 111:19–25

Elsayed M, Sim KS, Tan SC (2020) A novel approach to objectively

quantify the subjective perception of pain through electroen-

cephalogram signal analysis. IEEE Access 8:199920–199930

Erdemoglu AK, Koc R (2013) Brief Pain Inventory score identifying

and discriminating neuropathic and nociceptive pain. Acta

Neurol Scand 128:351–358

Finnerup NB et al (2018) Neuropathic pain clinical trials: factors

associated with decreases in estimated drug efficacy. Pain

159:2339

Fisher R, Clarkson E (2023) Medication management of neuropathic

pain disorders. Dent Clin 68(1):121–131

Freynhagen R, Baron R, Gockel U, Tölle TR (2006) Pain DETECT: a

new screening questionnaire to identify neuropathic components

in patients with back pain. Curr Med Res Opin 22:1911–1920

Goldberger J, Hinton GE, Roweis S, Salakhutdinov RR (2004)

Neighbourhood components analysis. Adv Neural Inf Process

Syst 17:513–520

Hinton G (2022) The forward-forward algorithm: some preliminary

investigations. arXiv preprint arXiv:2212.13345

Kim HJ, Ban MG, Yoon KB, Yang YS, Kim SH (2023) Neuropathic

pain component and its association with time elapsed since pain

onset in patients with low back pain. Pain Pract 23(6):580–588
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