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A B S T R A C T

Clamped rectangular orthogonal 3D woven carbon composite beams under ballistic impact at a velocity range
⩽ ⩽− −v60 ms 190 ms1

0
1 were investigated in order to understand the damage mechanisms within the material

and the role of through-the-thickness (TTT) reinforcement. Experimental tests revealed three distinct categories
of beam response: (i) low velocity impacts ( < −v 110 ms0

1) which featured projectile rebound, with dominant
matrix cracking and localised fibre fracture, (ii) medium velocity impact ( ⩽ <− −v110 ms 148 ms1

0
1) which ex-

hibited a stretch-deformation dominated failure mechanism, and (iii) higher velocity impacts ( ⩾ −v 148 ms0
1)

which resulted in projectile penetration, combined with longitudinal fibre fracture at the centre of the sample.
Finite element (FE) simulations were conducted to understand the experimental outcomes, which showed suf-
ficient fidelity and captured the three distinct beam response regimes. The presence of the TTT-reinforcement
can suppress the inter-laminar matrix crack propagation and increase the material ballistic impact resistance for
low velocity impact and high velocity impact. However, for medium velocity impact, the in-plane fibre fracture
surface was found to be at the locations of TTT-reinforcement. This may suggest that the TTT-reinforcement
creates weak points for the stretch-deformation dominated failure mechanism. The verified FE simulations were
conducted to predict the multi-hit ballistic impact limit surfaces for the clamped circular 3D woven composite
plates, and for the equivalent laminate composite without the presence of the TTT reinforcement. The numerical
results suggested the presence of TTT reinforcement could improve the multi-hit ballistic resistance of the
composite plates for multi-hit scenarios where the initial impact is 50%–95% of the ballistic limit of the plates.

1. Introduction

The dynamic impact of foreign objects upon aircraft structures is of
great concern and is often a critical load case for design engineers to
consider. Common sources of impact events include bird strikes, hail
stones and runway debris. The first of these impact types is classified as
soft body impact, the last two are impact of solid ‘stiff’ projectiles.
During take-off and landing, aircrafts can receive impact events from
runway debris at velocities of up to approximately 250ms−1 [9,11].
Carbon fibre reinforced composite materials have been widely used in
aircraft structures owing to their high specific stiffness and strength as
well as low coefficient of thermal expansion. The impact of runway
debris can cause damage to the fibre reinforcement, the matrix and can
cause delamination damage within unidirectional (UD) laminate com-
posites.

Woven textile composites have seen extensive development in the

recent years due to their inherent protection against inter-laminar crack
propagation; and their ease of manufacturing of complex shapes [10].
In particular, nearly net-shape 3D woven composite textiles have gen-
erated much interest within industry. The 3D weaving process, not too
dissimilar to conventional loom-based textile weaving, has the potential
for low cost automation and high volume production. Research into 3D
woven composite materials undertaken over the past two decades has
revealed the advantages of 3D woven composites in comparison to UD-
laminate or 2D woven composites, see Mouritz et al. [10]. For example,
the inter-laminar fracture toughness values of 3D woven composites
have been reported in the literature up to values as high as 7000 J/m2,
with far less reductions of in-plane material properties as is common
with 2D woven structures [1]. For soft body impact, Turner et al. [13]
experimentally and numerically investigated the dynamic behaviours of
clamped orthogonal 3D woven carbon composite beams under metal
foam projectile soft impact at velocities up to 270ms−1. The results
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suggested that the 3D woven carbon composite beams had significantly
less in-plane damage and delamination damage compared to the
equivalent UD-laminate beams.

However, there is a distinct shortage of studies within the literature
regarding the comparison of the ballistic impact limit between 3D
woven and equivalent UD-laminate or 2D woven materials. Here, the
ballistic limit is defined as the velocity at which the predicted material
response changes from projectile rebound to projectile penetration.
Comparisons between 3D and 2D woven plates provided a range of
conclusions. An experimental study on the ballistic impact response of
clamped fibre reinforced composite plates recorded approximately a
14% increase in 3D woven carbon composites compared to 2D woven
carbon composites [15], although no mechanistic reasoning was pro-
vided. A different study, by impacting clamped samples with a 0.30
calibre fragment simulating projectile, recorded a 5% reduction in
ballistic limit for the orthogonal 3D woven composite in comparison
with a 2D plain weave carbon composite [16]. A numerical study has
been conducted by Ghosh and De [4] to identify how the through-the-
thickness (TTT) reinforcement in the orthogonal 3D woven composite
can influence the ballistic response of a composite plate. They gave a
detailed account on how the TTT-reinforcement can modify the local
response of the composite material, showing increased propagation of
damage along the direction of TTT reinforcement. However, the da-
mage and stress wave propagation within the material was only studied
in detail for the initial stages of the impact event and only at the lo-
cation within the immediate vicinity of the projectile strike position.
The work presented here attempts to characterise the global structural
response of the 3D woven composite beams and plates under high ve-
locity ballistic impact, focusing on projectile velocities close to the
ballistic limit of the composite plates. By explicitly modelling the geo-
metry of the TTT reinforcement, and by modelling the entire sample
during the impact event, it is possible to investigate the role of TTT
reinforcement during ballistic impact loading.

Aerospace structures may be subjected to multiple impact events.
For example, upon inspection of the reinforced carbon-carbon compo-
site plates from a single flight mission of the spaceship Discovery, a
total of 176 different impact damage sites were recorded. Even though
the structural integrity to withstand multiple impacts is critical in the
design of protective systems, the current literature generally shies away
from such investigations. One difficulty in conducting multi-hit impact
studies is the method of characterisation. A commonly performed
method of characterisation is the recording of damage within the plate.
This can be either through visual inspection, c-scan, energy absorption
within the material, or compression after impact (CAI) testing.
Karthikeyan et al. [6] proposed a new method in which multi-hit sin-
gular-point characterisation of materials is realised through a ballistic
limit interaction map between primary and secondary impact events. It
was proven to be a useful approach in determining the influence of
primary impacts on the response of a secondary impact for a wide range
of impact velocities. The initial impact causes damage within the plate
and modifies the response during a secondary impact event. A combi-
nation of the primary and secondary impacts results in either pene-
tration or rebound of the projectile. The shape of the boundary surface
between these two binary events is related to inherent material prop-
erties. The methodology has been employed for a numerical study of
the multi-hit damage characterisation of 304 stainless steel plates by
Russell [12]. In the present paper, the methodology will be used to
characterise the multi-hit behaviour of orthogonal 3D woven carbon
composite plates, alongside with that of the equivalent cross-ply lami-
nate plates for comparison.

The paper is organised as follows. In Sections 2 and 3, the de-
scription of the experimental protocol and the numerical modelling for
ballistic impact events is presented. In Section 4, the ballistic impact
upon clamped orthogonal 3D woven composite beam samples is pre-
sented based on both experiment and numerical modelling. The nu-
merical model is validated by the back-face deflection and damage

mechanisms from the experimental testing. Both experiment and nu-
merical results will be used to develop understanding on the role of the
TTT reinforcement during ballistic impact loading. In Section 5,
clamped circular orthogonal 3D woven carbon composite plates under
multi-hit ballistic impact is presented based on the verified numerical
simulations.

2. Experimental study

2.1. Material

An orthogonal 3D woven carbon fibre epoxy resin composite ma-
terial was manufactured using the method described by Turner et al.
[13], summarised as follows. The fibre reinforcement consisted of 7 μm
diameter AKSACA A-38 carbon fibre tows, with 6 K filaments for the
warp and weft tows, and 3 K filaments for the through-the-thickness
reinforcement tows. The reinforcement fabric had a binder-to-warp-
stack-ratio of 1:2 (i.e. each binder tow is separated by two vertical
stacks of warp tows). Gurit Prime 20LV epoxy resin, with a slow
hardener to resin ratio by weight of 26:100, was used to produce the
composite materials. Resin injection within a steel mould tool followed
the standard vacuum infusion methodology. The final cured areal
density of the composite material was 5210 gm−2. Cross sectional
microscopic images of the cured composite, such as the one presented
in Fig. 1(a), were used to measure the average values for dimensions of
the fibre architecture. Fig. 1(b) presents sketches of the fibre archi-
tecture. The material contained an alternating stack of 9 weft layers and
8 warp layers. Top and bottom tows were orientated along the weft
direction, and were the only tows with an induced crimp due to loca-
lised influence of the TTT-reinforcement. As shown in Fig. 1(a), the
induced crimp angle was 7° from the horizontal.

As shown in Fig. 1(b), the average width and thickness of warp tows
were 1.70mm and 0.177mm, respectively. Average width and thick-
ness of weft tow were 1.40mm and 0.230mm, respectively. Average
width and thickness of TTT-reinforcement were 0.5 mm and 0.1mm,
respectively. Spacing between TTT-reinforcement was 3.48mm. Total
fibre volume fraction for the cured composite was 0.55. The tow fibre
volume fractions, i.e. the ratio of the area of fibres into the area of the
tow, were 0.785, 0.692, and 0.795 for warp, weft, and TTT-reinforce-
ment tows, respectively. A co-ordinate system is defined in Fig. 1(b) and
utilised throughout this paper; the direction running parallel to the
warp tows is referred to as the x-direction, the direction running par-
allel to the weft tows as the y-direction, and the though-thickness di-
rection is referred to as the z-direction.

2.2. Quasi-static tension and compression coupon tests

Quasi-static (2 mm/min) uniaxial coupon tests were conducted on
the composite material using the procedure detailed by Turner et al.
[13]. Tensile experiments adopted EN ISO 527–4 methodology, using
dog bone shaped samples. Compression testing utilised ASTM D3410/B
test methods. A screw-driven Instron© 5581 test machine with a static
50 kN load cell was used for testing. An Instron© 2630 clip-on ex-
tensometer was used to measure the nominal axial strain; this was
confirmed by a single Stingray F-146B Firewire Camera video gauge
with Imentrum© post processing Video Gauge software. The nominal
stress was read directly from the load cell of the test rig. Tension and
compression tests for both warp and weft directions each had a
minimum of five repeats.

Tensile and compressive tests with±45° orientation were con-
ducted in such a way that the warp and weft tows laid at± 45° to the
loading axis. Samples orientated along warp tows, weft tows, or with
fibres at± 45° had a width of 12mm. Tensile tests had a length of
60mm, compressive tests had a gauge length of 12mm in order to
prevent global buckling.

Fig. 2(a) and (b) present the tensile and compressive stress-strain

P. Turner et al. Composite Structures 185 (2018) 483–495

484



curves of the 3D woven carbon composite material. The tensile Young’s
moduli were 44.4 GPa and 74.6 GPa for warp and weft directions, re-
spectively. Tensile and compressive testing along both the warp and
weft directions exhibited elastic-brittle fracture. Fracture of the sample
was predominately governed by the fracture of the in-plane fibre

reinforcement. For tensile and compressive samples orientated along
the y-direction (weft), fracture occurred at the locations of through-
thickness reinforcement. The fracture location was attributed to stress
concentrations due to the crimping of the longitudinal weft tows [14].
Tension and compression tests conducted with fibres orientated

Fig. 1. (a) Microscopic image of the composite cross-sec-
tion along the weft direction, with crimping of the weft
tows due to the presence of the TTT reinforcement. (b)
Sketch of 3D orthogonal woven carbon composites
showing through-the-thickness (TTT) reinforcement with
the binder-to-warp-stack ratio of 1:2, with the dimensions
as the average measurements of the cured composites. (For
interpretation of the colour legend in this figure, the reader
is referred to the web version of this article.)
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at± 45° show a more ductile, yet weaker response, as the tests are
governed by the relatively soft matrix material [14].

2.3. Experimental protocol for beam samples under ballistic impact

Experiments were conducted in order to determine the damage
modes presented during ballistic impact of beam samples, and for
ballistic impact numerical modelling validation. Fig. 3(a) presents a
sketch of the experimental set-up for ballistic impact upon orthogonal
3D woven composite beam samples. Samples of width w=40mm, and
length L=250mm were cut from fully cured composite panels. Beam
samples were chosen for validation to allow for the recording of the
transient back-face deflection of samples through-out the test. Four
holes for M6 bolts were drilled into the top and bottom of the samples,
and the beams were fixed into a steel sample fixture. The steel sample
fixture was bolted onto an aluminium alloy frame, housed within a
protective polycarbonate shield. Clamped beams had a free length
l0= 170mm. The stand-off between the front edge of the sample and
the gas gun was s=200mm. Stainless steel spherical projectiles of
diameter dp=12.7mm and mass mp=8.3 g were accelerated via a

pressurised gas gun. The gas gun utilised pressurised air up to a pres-
sure of 6.5 bar, or pressurised nitrogen (oxygen free) for pressures up to
45 bar. The pressurised gas filled a 3-litre diving cylinder. Pressure was
released via a fast-acting solenoid valve. The gas gun had a stainless-
steel barrel of length 3.5 m, bore diameter 13mm and thickness
1.5 mm. A series of holes were drilled into the muzzle end of the barrel
in order to allow for gas release. Two laser gates were set up at the
muzzle end of the barrel in order to measure the exit velocity of pro-
jectile. The velocity measured by the laser gates was confirmed with
high speed photography. Projectiles in the experiments were ac-
celerated to a velocity range ⩽ ⩽− −v60 ms 190 ms1

0
1 giving a projectile

kinetic energy range of ⩽ ⩽J15 J 149 Jk . This velocity range corre-
sponds to characteristic impact events from debris striking the under-
side of an aircraft during take-off and landing [7]. High-speed photo-
graphy was used to record the transient deformation and damage
mechanisms of beams during impact. The back-face is defined at the
surface of the sample distal to the projectile impact. The high-speed
camera model Phantom Mercury HS v12.1 with a global electronic
shutter, a frame rate of approximately 57,000 fps and an exposure time
of 10 μs was used. At a resolution of 304× 400, this gave an

Fig. 2. Quasi-static stress strain relationships for 3D woven carbon composite material for (a) tension and (b) compression.
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Fig. 3. (a) Sketch of experimental set up for ballistic impact of 3D woven composite beams, (b) Meshed geometry of 3D woven composite beam subjected to ballistic impact simulation.
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approximate pixel size on the front surface of beam samples of
0.35mm.

3. Finite element simulation

3.1. The finite element model

Three-dimensional (3D) finite element (FE) modelling was con-
ducted using the explicit solver of ABAQUS (Version 6.12). Each of the
17 layers of the composite material as well as the TTT reinforcement
were modelled separately using 4-noded doubly curved reduced in-
tegration shell elements (S4R in ABAQUS notation), with 5 integration
points through the thickness. Justification of the shell element choice is
primarily owing to the high in-plane length to thickness ratio of each
ply, relatively low impact velocities, and a rounded projectile geometry.
Further justification of the shell element choice being that at impact
velocities in the vicinity of the ballistic limit of CFRP composite beams/
plates, the dominant failure mechanism of the in-plane fibre archi-
tecture is expected to be that of tensile fracture [5]. The element size for
the FE model was approximately 800 μm, by which the converged re-
sults can be achieved according to numerical experiment. With this
element size, the beam impact samples were discretised into approxi-
mately 210,000 shell elements. A typical run time for a full impact
event was around 8 h. The ABAQUS orientation assignment control was
used to assign local fibre orientations for individual layers. The surface-
based cohesive contact interaction within ABAQUS was employed to
simulate the interaction between layers through the thickness of the
beams/plates, by which delamination under dynamic impact can be
simulated, as described in the Supplementary Data. The through-the-
thickness reinforcement was explicitly modelled, independently to the
in-plane fibre architecture, with geometric parameters again taken from
cross-sectional microscopic images. The translational and rotational
nodal degrees of freedom (DoF) of the through-the-thickness re-
inforcement were tied to the translational and rotational nodal DoF of
the in-plane fibre architecture via the tie constraint option within
ABAQUS. The stainless steel projectile was assumed to incur negligible
deformation throughout the penetration event, and was modelled as a
discrete rigid body (C3D8R in ABAQUS notation). The mass of the
projectile was assigned by the inertial assignment function within
ABAQUS, at the centre of the projectile. Penalty based contact method
with general contact option within ABAQUS was used to simulate the
interaction between the projectile and beams/plates.

3.2. Description of the constitutive model employed for FE simulations

The orthogonal 3D woven carbon composite was split into 17 layers
through the thickness, corresponding to the 9 weft and 8 warp tow
layers. A cohesive contact law was used to model the interface between
layers, which simulates the traction-separation behaviour between

them and allows the FE model to simulate delamination at these loca-
tions. The effective traction-separation behaviour followed that as
presented by Camanho and Davila [2]. The local coordinate system for
each layer and TTT-reinforcement is denoted by numbers, with 11 and
22 being longitudinal and transverse to the in-plane fibre direction,
respectively. Each layer and TTT-reinforcement were treated as an or-
thotropic material under plane stress condition, i.e. = = =σ σ σ 033 13 23 .
The in-plane stress-strain relation for the materials without damage is
given as

⎧
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where =σ i j( , 1,2)ij are in-plane stress components; ε11 and ε22 are the
direct strains in the 11 and 22 directions, respectively; γ12 is the en-
gineering shear strain; E11, E22, G12, ν12 and ν21 are Young’s modulus
along the two directions, in-plane shear modulus and the two Poisson’s
ratios with =ν E E ν( / )21 22 11 12, respectively.

For the warp layer, the weft layer, and the TTT-reinforcement, the
anisotropic damage model developed by Matzenmiller et al. [8] as well
as the damage initiation model for fibre reinforced composites devel-
oped by Hashin (1980) were employed in the simulation, which ac-
counts for the four damage modes, i.e. fibre rupture under tension, fibre
buckling and kinking under compression, matrix cracking under
transverse tension and shear, and matrix crushing under transverse
compression or shearing. Similar to the concept of yield surface in
plasticity theory, the damage locus could be defined in the space of
stress according to the Hashin damage initiation criteria. For a stress
state within the damage locus, the material is in undamaged state and
the stress-strain relation is described by Eq. (1). Damage initiates when
the critical stress state in the damage locus is attained or exceeded. Four
scalar damage variables, corresponding to the four damage modes, are
introduced to represent the effects of the damage modes. Post initiation
of damage, the response of the material is governed by
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Here, d ,f
t d ,f

c dm
t and dm

c are the damage variables for fibre damage under
tension and compression, matrix damage under tension and compres-
sion, respectively. ds is the shear damage variable, defined as

≡ − − − − −d d d d d1 (1 )(1 )(1 )(1 ).s f
t

f
c

m
t

m
c

(3)

Table 1
Material properties for warp layer and weft layer.

Orientation Warp Weft

Density (kg m−3) 1525 1530
E1 (GPa) 122.2 126.4

E2 (GPa) 3.5 3.5

G12 (GPa) 5.78 4.93
ν12 0.25 0.25
X T (MPa) 1590 1590

X C (MPa) 1280 1040

Y (MPa) 80 80

J l/f
t e (MPa) 12.41 12.00

J l/f
c e (MPa) 8.04 5.13

J l/m e (MPa) 6.5 6.5

Table 2
Material properties for TTT-reinforcement.

Property Value

Density (kgm−3) 1628
E1 (GPa) 146.8

E2 (GPa) 3.5

G12 (GPa) 14.37
ν12 0.25
X T (MPa) 2020

X C (MPa) 1610

Y (MPa) 80

J l/f
t e (MPa) 16.68

J l/f
c e (MPa) 10.60

J l/m e (MPa) 6.5
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It can be treated as a resultant damage variable, combining tension
and compression for both longitudinal and transverse directions. In the
undamaged state, the damage variables are set to zeros. During the
damage initiation and evolution, these damage variables increased

from zeros to a maximum value of unity controlled by the strain in the
material. The damaged elements were removed from the mesh when
one of the damage variables reaches unity.

The damage evolution law follows that proposed by Matzenmiller

Fig. 4. Time history of back-face deflection after
impact at the selected projectile initial velocities
( = −v 70 ms0 1, = −v 110 ms0 1, and = −v 190 ms0 1,
(a)), and the FE predicted and experimentally re-
corded transient deformation of the beam samples
during impact ((b) to (d)).
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et al. [8]. The damage will only develop when the stress state exceeds
the critical stress surface given by

〈 〉
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where 〈〉 represents the Macaulay bracket of value zero when its aug-
ment is negative. X T and X C denote the tensile and compressive
strength at damage initiation during loading along the fibre direction. Y
denotes the tensile and compressive strength along the transverse di-
rection.

The four independent damage variables, d ,f
t d ,f

c dm
t , and dm

c , increase
if the stress state lies beyond the critical space defined in Eqs. (4) to (7).
The damage variables are assumed to evolve in a way that the stress

decreases linearly with increasing strain once damage initiates. The
following relations are used to update the damage variables

⎜ ⎟

=
〈 〉−

〈 〉⎛
⎝

− ⎞
⎠

⩽d
ε X E

ε X E

( / )

/
1,f

t

J

l X
T

J

l X
T

2
11 11

11
2

11

f
t

e T

f
t

e T (8)

=
〈 〉−

〈 〉⎛
⎝

− ⎞
⎠

⩽d
ε X E

ε X E

( / )

/
1,f

c

J

l X
c

J

l X
c

2
11 11

11
2

11

f
c

e c

f
c

e c (9)

=
〈 〉 + −

〈 〉 + −
⩽

( )
d

ε ε Y E

ε ε Y E

( / )

/
1,m

t
J

l Y

J
l Y

2
22

2
12
2

22

22
2

12
2 2

22

m
e

m
e (10)

=
〈− 〉 + −

〈− 〉 + −
⩽

( )
d

ε ε Y E

ε ε Y E

( / )

/
1,m

c
J

l Y

J
l Y

2
22

2
12
2

22

22
2

12
2 2

22

m
e

m
e (11)

where le is a characteristic length scale which is the same as the length
across a finite element; Jf

t , J f
c and Jm are the tensile fibre fracture en-

ergy, compressive fibre fracture energy and the matrix fracture energy,
respectively. The material data employed in the numerical simulation

Fig. 5. Comparison between the experimentally observed and the numerically predicted damage mechanisms for a low velocity projectile impact event ( = −v 76 ms0 1). (a) front-face
damage distribution with contour showing predicted tensile fibre damage df

t , and (b) back-face damage distribution with contour showing predicted matrix tensile damage dm
t .
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are shown in Tables 1and 2 [13,14].
The strain-rate dependent response of the 3D woven carbon fibre

reinforced composite needs to be considered in order to get satisfactory
numerical predications [13]. A viscosity coefficient η, following Duvant
and Lions [3], is introduced to further update each of the four pre-
viously-defined damage variables df

t , d ,f
c dm

t and dm
c . The viscous damage

variables are defined as

= −d
η

d ḋ 1 ( ),i
v

t
i i

v

(12)

where ηt represents the relaxation time of the system, with di is the
previously defined inviscid damage variable, with i denoting one of the
four damage modes (I through IV for df

t , d ,f
c dm

t and dm
c , respectively).

The term di
v is used to compute the damaged stiffness matrix and is

updated by

=
+

+
++ +d t

η t
d

η
η t

d| Δ
Δ

|
Δ

| .i
v

t t i t t i
v

tΔ Δ0 0 0 (13)

This effectively slows down the rate of damage evolution, with an
increasing rate of deformation leading to increasing fracture energies. A
numerical calibration study led to the value =η 5 μs. It was assumed to
be identical for tension and compression for both longitudinal and
transverse damage modes in the simulations. In the following sections,
numerical simulations will be presented for ballistic impact of compo-
site beams and plates made of the 17 layer orthogonal 3D woven
composite material.

4. Orthogonal 3D woven carbon composite beams under ballistic
impact

Clamped orthogonal 3D woven carbon composite beams under
ballistic impact were investigated numerically and experimentally. The
experimental protocol has been detailed in Section 2.3. The FE

simulations were conducted for comparison and validation purposes.
Fig. 3(b) shows a sketch of the FE meshed geometry employed in the
ballistic impact simulations. The response of these 3D woven composite
beams exhibited three distinct mechanisms dependent on the velocity
of the projectile:

Low velocity < −v( 110 ms )0
1 - The beam deflects and the projectile is

rebounded. Damage incurred within the beam ranges from relatively
superficial surface fibre fracture and localised matrix cracking under
projectile location to extensive longitudinal fibre fracture and matrix
cracking along the centre of the beam.

Medium velocity ⩽ < −v(110 148 ms )0
1 – Kinetic energy of the pro-

jectile is high enough to cause failure of beam samples. The failure
mechanism is stretch dominated; the beam deflects significantly further
than the thickness of the beam and longitudinal fibre fracture occurs at
the centre line of the beam. This fracture position occurs at the location
of through-thickness reinforcement, as this is clearly the location of
stress concentrations within the material [14]. The through-thickness
reinforcement is revealed upon viewing of the fracture surface.

High velocity ⩾ −v( 148 ms )0
1 – Kinetic energy of the projectile is

high enough to penetrate through the sample. Projectile penetration
occurs before the beam can reach significant out-of-plane deflection.
Damage mechanisms are extensive fibre fracture and matrix cracking.
Damage of the TTT reinforcement occurred up to 20mm away from
projectile impact site. Specifically, the crowns of the through-thickness
reinforcement were damaged. Penetration was also coupled with
longitudinal fibre fracture across the centre-line of the sample, similar
to that as the medium velocity stretch-dominated damage mode.The
time history of the back face deflection after impact is shown in
Fig. 4(a) for the beam samples at selected impact velocities, i.e.,

= −v 76 ms ,0
1 = −v 110 ms0

1 and = −v 190 ms .0
1

The selected experimentally recorded and numerically predicted
montages after impact are shown in Fig. 4(b) through (d). In Fig. 4(a),

Fig. 6. Optical microscopic images of the cross-sectioned sample after impact by a projectile at = −v 76 ms0 1. The cross-section corresponds to the damage location highlighted in Fig. 5.
The predicted shear damage of the TTT reinforcement under the projectile is shown for comparison.
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the time instants at which projectile penetration occur are highlighted
with Points labelled ‘P’ on the graph and beam fracture with Points
labelled ‘F’. The agreement between the experimental results and the
numerical predictions are reasonably good with regards to failure me-
chanism as well as the maximum back-face deflection and time at which
it occurs. The accuracy of the prediction decreases as time progresses
due to complications arising from imperfect clamped boundary condi-
tions within the experimental test [13].

The FE simulations capture the three distinct beam response re-
gimes, which will be compared next with the detailed post-test optical
microscopic images of the beam samples. Fig. 5(a) and (b) present a
comparison between post-test surface optical microscopic images and
the numerical prediction at an impact velocity = −v 76 ms0

1 for the
front surface and back surface of the sample, respectively. For the front
surface, localised matrix cracking and fibre fracture of surface (weft)
tows were both observed and predicted by the numerical model. Small-
scale fibre fracture was observed and predicted underneath the pro-
jectile strike locations. The back surface demonstrated significant ma-
trix cracking across the entire width of the beam. This damage to the
matrix was significant enough to cause removal of transverse (weft)
tows from the sample via element deletion. As demonstrated by
Fig. 5(b), the numerical model predicts significant tensile matrix

damage incurred within the beam along the centre line of the back-
surface of the sample. Fig. 6 presents optical microscopic images of the
same sample cross-sectioned across the centre line of the beam. The
location of the cross-section is that as denoted by x-x in Fig. 5(a). It
shows the localised, sub-surface damage underneath the projectile lo-
cation. The damage includes transverse and inter-laminar matrix
cracking and damage to the through-thickness reinforcement under the
projectile strike location. Consistent with Turner et al. [14], inter-la-
minar matrix crack propagation is arrested by the presence of nearby
through-thickness reinforcement. Damage to the TTT-reinforcement is
observed and predicted underneath the projectile impact location. The
predicted and experimentally observed stretch-dominated failure me-
chanism, characterised by in-plane fibre fracture across the length of
the beam at the centre of the sample, is presented in Fig. 7 for a medium
velocity projectile = −v 110 ms .0

1 Brittle fracture reveals through-
thickness reinforcement at the fracture surface. The FE predicted con-
tour shows the shear damage variables, ds, with fully damaged elements
removed from the visualisation. The dominant stretch in-plane tensile
fibre fracture mechanism is coupled with localised matrix cracking
under the projectile location due to high contact stresses. The matrix
cracking is demonstrated on both post-experiment optical microscopic
images and the FE prediction. Fibre fracture of transverse surface tows

Fig. 7. Comparison between the experimentally observed and predicted damage mechanisms for a medium velocity projectile impact event ( = −v 110 ms0 1). Contour shows the predicted
value of shear damage variable, ds, with fully damaged elements removed from the visualisation.
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was predicted and observed approximately 2–4mm away from the
impact strike position.

The predicted and experimentally observed penetration damage
mechanisms for a high velocity impact = −v 190 ms0

1, characterised by
significant localised damage and projectile penetration, is presented in
Fig. 8. Longitudinal fibre fractures were both recorded and predicted
across the entire width of the 40mm samples. Tensile fracture of the
TTT reinforcement at areas remote from the projectile impact location
caused removal of TTT reinforcement crowns. This is shown by a
comparison between the post-test optical microscopic images and the
FE predicted longitudinal tensile fibre damage of the TTT reinforcement
presented in Fig. 8.

5. Clamped circular orthogonal 3D woven carbon composite
plates under multi-hit ballistic impact

Motivated by the recent investigations on metallic and fibre com-
posite plates under multi-hit ballistic impact [6], the FE model was

employed for the multi-hit simulations of 3D woven carbon composite
circular plates. A sketch of the meshed geometry of the multi-hit FE
simulation is presented in Fig. 9: the plate sample is hit twice at the
same location by two identical steel ball projectiles. The simulation
methodology employed by Russell [12] was adopted: whilst the first
projectile was imparted with a velocity VI at the beginning of the si-
mulation (primary impact), the second projectile was set further away
from the plate, and imparted with velocity VII (secondary impact). The
second projectile followed the same trajectory as the first. Contact be-
tween the two projectiles was removed using the “exclude surface pair”
option within ABAQUS, allowing the second projectile to pass through
the first in order to impact upon the plate. In order to limit the influence
from the reflecting stress waves within the plate due to the first impact,
an off-set of 100mm between the centre points of the two projectiles is
set along the z-direction. Effect of the projectile off-set is presented in
Supplementary Data. To verify the multi-hit simulation methodology
for carbon fibre composite plates, the simulation on the experimental
study reported by Kandan et al. [6] on the multi-hit of a 15-layer 0/90

Fig. 8. (a) and (b) Comparison between the experimentally observed and the numerically predicted damage mechanisms for a high velocity projectile impact event ( = −v 190 ms0 1).
Contour for the back-face at the location of TTT reinforcement shows tensile fibre damage with fully damage elements removed from the visualisation. (c) The numerically predicted and
the experimentally recorded cross-sectional images of the post-impact sample. Location of this cross-section is indicated in (a). Contour for the front face and section-view shows shear
damage, ds, with fully damaged elements removed from the visualisation.
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carbon fibre reinforced epoxy laminate composite plate is presented in
Supplementary Data. The comparison between FE predicted and ex-
perimentally recorded ballistic limit surfaces demonstrates that the FE
simulation can achieve reasonable accuracy.

5.1. Multi-hit ballistic limit surface

The two projectile velocities,VI andVII , can be used to define a point
in the two-dimensional (2D) space of a binary event that is either
projectile rebound or projectile penetration. The predicted multi-hit
ballistic limit surfaces for the 3D woven composite plates and the
equivalent cross-ply laminate composite without the presence of the
TTT reinforcement are shown in Fig. 10(a) under the coordinate system

−V V .I II The comparison of the multi-hit ballistic limit surfaces of the two
materials can be used to examine the effect of the TTT reinforcement.
Each individual double-hit impact event is recorded within the −V VI II

space as either a circle for plate survival or a cross for projectile pe-
netration. The points located on the multi-hit ballistic limit surfaces
were obtained via successive simulations that were conducted of in-
creasing projectile velocities until the points in ballistic limit surface
were obtained within an accuracy of 2.5ms−1. The presence of the
TTT-reinforcement caused an 8% increase in the predicted ballistic

limit VL for single-hit ballistic impact, i.e. an increase from
VL=152.5 ms−1 without TTT reinforcement to VL=165.0 ms−1 in-
clusive of TTT reinforcement. Fig. 10(b) presents the ballistic limit
surfaces for the two materials, normalised by the predicted ballistic
limit of each material VL. It is useful for demonstrating the difference
between the predicted behaviours of the materials, independent of
absolute ballistic limit. Dashed lines are included representing a linear
interaction and no interaction between the first and second impacts.
The effect of TTT reinforcement for improving multi-hit ballistic impact
resistance is significant when ⩽ ⩽V V0.5 / 0.95I L . For the 3D woven
composite, up to a primary impact velocity of approximately

=V V0.75I L, the reduction in ballistic limit for the secondary impact is
linearly reduced to 85% of that of un-impacted plates. Primary impacts
of velocities ⩾V V0.75I L demonstrate a sharp decrease in the predicted
secondary ballistic limit of the plate. This transition point corresponds
to the predicted projectile velocity at which causes fracture of the
longitudinal fibres throughout the entire thickness of the plate under
the projectile location.

5.2. Multi-hit damage mechanisms

Fig. 11(a) and (b) presents a comparison of the damage of composite

Fig. 9. Meshed geometry for multi-hit ballistic impact si-
mulations upon 3D woven composite circular plates.

Fig. 10. (a) FE predictions of the multi-hit ballistic limit surface of the 3D woven composite material and the equivalent UD-laminate. (b) Normalised multi-hit ballistic limit surface
prediction of the 3D woven composite material and the equivalent UD-laminate. Values are normalised against the predicted ballistic limit of each material, VL.
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plates with and without the presence of the TTT reinforcement for an
equi-velocity impact = = −V V 125 msI II

1, respectively. This event is
marked as Point A in Fig. 10(a). It is at this velocity that the UD-la-
minate plate was predicted to have been penetrated, and the 3D woven
material predicted to have caused projectile rebound. The primary
impact upon the 3D woven material induces concentrated damage
underneath the projectile strike location, extending more significantly
along the TTT reinforcement orientation. This damage is present
throughout the thickness of the plate. The predominant damage mode
was predicted to be tensile fracture of in-plane fibre architecture. This is
combined with compressive damage of the TTT reinforcement crowns
directly under the projectile strike position, and tensile damage of the
through-thickness component of the TTT reinforcement in the im-
mediate surrounding area. The secondary impact then causes a propa-
gation of the same damage, following the principal fibre directions,
creating a characteristic “cross-shaped” damage distribution. During
this stage, the TTT reinforcement is shown to prevent excessive de-
formation of the plate, resisting projectile penetration. In spite of in-
plane fibre fracture occurring throughout the thickness of the plate, the
projectile is rebounded.

The equivalent UD-laminate presents a differing damage distribu-
tion and penetration mechanism for multi-hit impacts. The primary
impact induces fibre fracture throughout the thickness of the plate. The
secondary impact causes the damage to propagate and the character-
istic cross-shaped damage mode becomes exaggerated. The cross-

shaped damage effectively splits the composite plate into four quad-
rants. Without the presence of the TTT reinforcement, bending of these
quadrants is unimpeded, allowing for projectile pass-through. After
projectile pass-through, the spring-back effect is demonstrated, with the
four quadrants returning to their original configuration. This spring-
back effect is demonstrative of the bending deformation of the plate.
The bending of the plate, and subsequent pass through of the projectile,
causes a reduction of damage underneath the projectile for the
equivalent UD-laminate case, this is demonstrated in the final image in
Fig. 11(b). This study focuses on the simulation of rigid-body pro-
jectiles. It is anticipated that the relative stiffness of the projectile in
comparison to that of the impacted sample would influence the extent
of damage progression and the multi-hit ballistic limit surface of the
material.

6. Concluding remarks

Ballistic impact experimental tests on clamped rectangular 3D
woven carbon composite beam samples were undertaken in order to
understand the damage mechanisms within the material and the role of
the through-the-thickness (TTT) reinforcement. The experimental study
revealed three distinct categories of beam response: (i) low velocity
impacts ( < −v 110 ms0

1) which demonstrated projectile rebound, with
increasing matrix cracking and localised fibre fracture, (ii) medium
velocity impact ( ⩽ <− −v110 ms 148 ms1

0
1) which exhibited a stretch-

Fig. 11. Isometric and cross-sectional views of predicted damage and deformed configuration of composite plates for an equi-velocity multi-hit event = = −V V 125 msI II 1 (Point A in
Fig. 10). (a) 3D woven composite, (b) Equivalent UD-laminate material. Contour shows predicted shear damage variable, d .s The white arrow on the surface of the plate is indicative of the
surface ply fibre orientation.
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deformation dominated failure mechanism, i.e. “ripping” through the
width of the beam at the centre of the sample due to longitudinal fibre
fracture, and (iii) higher velocity impacts ( ⩾ −v 148 ms0

1) which de-
monstrated projectile penetration, combined with longitudinal fibre
fracture at the centre of the sample. Detailed FE simulations were
conducted for interpretation and verification purposes, which were
shown to have sufficient fidelity in order to capture the characteristic
damage modes of the three response types. The interface between TTT
reinforcement and in-plane tows was simplified via the tie constraint
option within ABAQUS. The debonding and friction between TTT re-
inforcement and in-plane tows were not included. The following roles
of the TTT reinforcement have been identified through both experiment
and numerical simulations

(1) For both low velocity impact and high velocity impact, the inter-
laminar matrix crack propagation can be suppressed by the TTT-
reinforcement. The damage of the TTT-reinforcement underneath
the projectile suggests that the TTT-reinforcement can increase the
material ballistic impact resistance.

(2) For medium velocity impact, the in-plane fibre fracture surface was
found to be at the locations of TTT-reinforcement. This may suggest
that the TTT-reinforcement may create weak points for the stretch-
deformation dominated failure mechanism.

FE simulations were conducted to predict the multi-hit ballistic
impact limit surfaces for the clamped circular 3D woven composite
plates with and without the presence of the TTT reinforcement. The
finite element simulations were further validated by a comparison of
the multi-hit ballistic limit surface and of the damage modes exhibited
during clamped circular plate ballistic impact experiments as presented
by Kandan et al. [6]. With the presence of the TTT reinforcement, the
3D woven material was predicted to have a higher concentration of
damage under the projectile strike position during ballistic impact
loading of clamped circular plates. This is in keeping with the general
consensus within the literature for a reduction in the size of damage
area due to impact loading with the presence of TTT reinforcement, for
example Yen et al. [16]. The enhanced structural integrity of the plate
due to the TTT reinforcement was predicted to suppress the develop-
ment of damage remote from the projectile strike location, and to re-
duce bending deformation within the plate. This led to an 8% increase
in the predicted ballistic limit inclusive of TTT reinforcement for a
singular impact event. The TTT reinforcement was predicted to improve
the multi-hit impact performance of composite plates for multi-hit im-
pacts of relatively high primary impact velocity, i.e. the initial impact
being 50%–95% of the ballistic limit of the plate.
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