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ABSTRACT: 
 
This paper relates to the reconstruction of digital images using their contour representations. The process involves determining the 
pixel intensity value which would exist at the intersections of a regular grid using the nodes of randomly spaced contour locations.  
The reconstruction of digital images from their contour maps may also be used as a tool for image compression. This reconstruction 
process may provide for more accurate results and improved visual details than existing compressed versions of the same image, 
while requiring similar memory space for storage and speed of transmission over digital links. 
For the class of images investigated in this work, the contour approach to image reconstruction and compression requires contour 
data to be filtered and eliminated from the reconstruction process. Statistical tests which validate the proposed process conclude this 
paper.  
 
 

1. INTRODUCTION 

An important area of digital image processing is the 
segmentation of an image into various regions to separate the 
objects from the background. Image segmentation can be 
categorised by three methods.  
 
The first method is based upon a technique called image 
thresholding (Russ, 2007), which uses predetermined grey 
levels as decision criteria to separate an image into different 
regions based on the grey levels of the pixels. The second 
method uses the discontinuities between grey levels regions to 
detect edges within an image (Baxes, 1994).  Edges play a very 
important role in the extraction of features (and their 
dimensions) for object recognition and identification in image 
analysis operations (Gonzalez and Wood, 2008). The final 
method relates to detecting edges so as to separate an image into 
several different regions by way of grouping pixels that have the 
same grey levels. 
 
Since edges play an important role in the recognition of objects 
within an image, contour description methods have been 
developed that completely describe an object based upon its 
contour. The most common methods are (a) a method based 
upon a coding scheme called chain codes, (b) the use of higher 
order polynomials to fit a smooth curve to an object’s contour, 
and (c) the use of Fourier transform and its coefficients to 
describe the coordinates of an object’s contour (Russ, 2007). 
 
Apart from image analysis operations, edges and contours have 
been used for image editing (Elder and Goldberg, 2001) and 
image compression applications. For instance, Elder and Zucker 
(1998) proposed a novel image compression scheme based on 
edge detection techniques where only edge and blur data rather 
than the entire image is sent over a digital link. This 
compression technique is especially appealing because edge 
density is linear in image size, so larger images will have higher 
compression ratios. The argument is that for natural images, 
most scenes are relatively smooth in areas between edges, while 
large discontinuities occur at edge locations. Thus, much of the 

 
information between edges may be redundant and subject to 
increased compression. The work of Elder and Zucker proposes 
two necessary quantities: the intensity at edge locations in the 
image and an estimate of the blur at those locations. Using these 
quantities, it is possible to reconstruct an image perceptually 
similar to the original.  
 
On the other hand, Vasilyev (1999) proposed a method for 
compressing astronomical images based on simultaneous edge 
detection of the image content with subsequent converting of 
the edges to a compact chained bit-flow. Vasilyev combined 
this approach with other compression schemes, for example, 
Huffman coding or arithmetic coding, thus providing for 
lossless compression schemes comparable to present 
compression protocols such as JPEG. 
 
The proposed reconstruction process uses image contour 
detection rather than edge detection. The definition of contour 
used in this work relates to the term used in cartography and 
surveying where a contour line joins points of equal elevation 
(height) above a given reference level (Smith et al. 2009).  
 
In this context, the pixel values stored in an image can be 
considered as the values of some variable z where each pixel 
can be assumed as an elevation value z at its x and y 
coordinates, thus defining a 3D shape (Weeks, 1996). This 
shape is often a complex 3D surface that can be represented by 
scattered contours nodes where each node (or vertex) of a given 
contour also corresponds to a position (x,y) having a constant 
colour intensity or elevation z.  
 
For the class of grey-scale images investigated in this work (i.e. 
human faces, landscapes and relatively small aerial images) this 
reference level and the contour intervals (or contour increments) 
are selected based on the dynamic range and/or on the image 
histograms. Image histograms provide a convenient, easy-to-
read graph of the concentration of pixels versus the pixel 
brightness in an image. Using this graph it is possible to discern 
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how much of the available dynamic range 
(Gonzalez and Woods, 2008). 
 
The dynamic range is represented by how 
the grey-scale are occupied. For instance, 
Figure 1-a fall between grey values 0 and 22
0 to 255) with none in the other region
relatively wide dynamic range of brightness
thus, in general, requiring a larger contour r
nodes) than an image with a narrow gre
(small dynamic range). 
 

2. GENERATING 3D DATA 

The process of generating 3D data po
comprises the step of assigning coordinate
the image. This is followed by interpolatin
find the coordinates of points in the path of 
same colour intensity value. 
 
For instance, Figure 1(a) shows the origina
(4002) whereas Figure 1(b) is the 
corresponding contour nodes using line se
example, the contour increments in Figure
between 0 and 220 grey-scale values or colo
bilinear interpolation was used to determin
(Watson, 1992). 
 

(a) 

                                                   (b) 
Figure 1. (a) The original image of Peter.tif
is a contour representation of (a) for contour
8 grey-scale values. 
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process. 
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the contour direction change only
of the line segment approach is car
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required to reconstruct an original 
 
Then, the angles of each pair of
compared. Where the directional a
the two lines segments are comb
segment representing their combi
(see Figure 2(b)). The end re
representation that can be signif
maintaining a high level of accurac
 

 
Figure 2. (a) A contour often con
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middle contour and interpolate and/or diffuse between the other 
two. However, this process may have the disadvantage of 
smoothing and/or distorting particular high frequency (sudden 
changes of brightness values within an image) information 
necessary for a more accurate reconstruction of the original 
image.  
 

3. ENCODING 3D DATA POINTS 

For easy extraction, processing and transmission over a digital 
link, the contours data was encoded and saved in an ASCII file 
(i.e. txt). This file contains a two-row matrix where each 
contour line defined in the matrix begins with a column that 
defines the value of the contour line and the number of (x,y) 
vertices in the contour line.  
 
The remaining columns contain the data for the (x,y) pairs.  The 
x, y values are stored to the first decimal place and separated by 
a point. In the coding shown below 120 is the grey-scale 
intensity of a selected contour and the contour line is formed by 
7 vertices. The x coordinate of the vertices are in the top row 
(i.e. 18.2 17.2...14.7) whereas the corresponding y coordinates 
are placed in the bottom row (i.e. 110 109...93.2) 
 
120   18.2 17.2 17 17.3 17.1 15.7 14.7 
 7      110 109 108 99.5 97 95 93.2 
 
Additional tests are presently being undertaken to ascertain the 
use of binary files (as compared to ASCII .txt file) as a way to 
further reduce memory requirements and speed of transmission 
of contour data.  
 

4. FROM 3D POINTS TO PIXELS 
 
In this gridding process contours nodes are projected or mapped 
on a uniformly spaced grid. Depending on the final resolution 
required, this grid may be selected so as to create pixels in x and 
y corresponding to the original input image. To determine the 
pixel brightness which would exist at the intersections of a 
regular grid using randomly spaced 3D node locations, several 
interpolators may be used depending on the application and 
accuracy requirements.  
 
There exist several interpolation schemes available for this task. 
Estimations of nearly all spatial interpolation methods can be 
represented as weighted averages of sampled data (De Jong and 
van der Meer, 2004). They all share the same general estimation 
formula as shown in equation 1: 
 

 
 

Where Ž is the estimated value of an attribute at the point of 
interest x0, z is the observed value at the sampled point xi, λi is 
the weight assigned to the sampled point, and n represents the 
number of sampled points used for the estimation (Webster and 
Oliver, 2001).   
 
In this work the interpolation process is an estimation process 
which determines the pixel brightness which would exist on the 
intersections of a regular grid using the randomly spaced nodes 
of contours. Several local interpolators may be used depending 
on the application and accuracy requirements. The method used 
in this work is referred to as cubic splines. A brief explanation 
follows. 
 

The splines consist of polynomials with each polynomial of 
degree n being local rather than global. The polynomials 
describe pieces of a line or surface (i.e. they are fitted to a small 
number of data points exactly) and are fitted together so that 
they join smoothly (Burrough and McDonnell, 1998; Webster 
and Oliver, 2001). The places where the pieces join are called 
knots. The choice of knots is arbitrary and may have an 
important impact on the estimation (Burrough and McDonnell, 
1998). For degree n = 1, 2, or 3, a spline is called linear, 
quadratic or cubic respectively.  
 
In the ensuing tests, cubic splines were selected as they are very 
useful for modeling arbitrary functions (Venables and Ripley, 
2002) and are used extensively in computer graphics for free 
form curves and surfaces representation (Akima, 1996). 
 

5. TESTS AND RESULTS 
 
Table 1 shows the results of a first test aimed at determining the 
degree of accuracy and memory storage requirements to be 
expected when reproducing a digital image from scattered 
contour nodes. The figures are based on the Peter.tif  (4002) in 
Figure 1(a). The R.M.S. (Spiegel and Stephens, 1999) is 
random standard error of the differences of grey-scale values 
between the original Peter.tif and the same image reconstructed 
using the nodes for contour increments ranging between 2 and 
8. 
 
The figures in Table 1 show a linear degradation of the R.M.S.  
as the contour interval is increased. The table also illustrates the 
amount of memory required to store the contour nodes needed 
for the reconstruction of Peter. As expected, as the contour 
interval increases, the memory requirement decreases at the 
expense of image quality.  
 
 

Contour 
increments 

Accuracy 
R.M.S. 

Memory 
required 

Maximum 
difference 

Minimum 
difference 

2 2.7 0.051 Mb 5 7 
4 6.3 0.042 Mb 17 27 
6 9.8 0.033 Mb 33 30 
8 19.4 0.021 Mb 39 42 

 
Table 1. Accuracy and memory requirements needed to 
reconstruct the original image of the Peter using contour 
increments between 2 and 8 grey-scale intensity values. 
 
By way of comparison, the .txt file needed to store the x and y 
coordinates of the nodes necessary to reproduce Peter (for 
contour increment of 6 grey-scale values) used approximately 
the same amount of memory of a JPEG compressed (0.029 Mb) 
version of the same image for a compression ratio of 7:1, while 
reproducing a more accurate image with improved visual details 
(see Figure 3).  
 
In Figure 3, the difference in visual quality between Peter 
reconstructed with contour data (Figure 3(c)) and the 
corresponding JPEG image (Figure 3(b)) is evident. Indeed, the 
blocking effects, typical of a lossy JPEG protocol, were almost 
completely eliminated. 
 
In addition, the maximum and minimum differences of pixel 
intensity values resulting from subtracting the JPEG version of 
Peter from the original Peter.tif were respectively -36 and +44 
grey-scale values with an R.M.S. equal to +/-35. By contrast, 
the contour approach produced maximum and minimum 

      (1) 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B3, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

417



differences equal to -33 and +30 respectivel
+/- 9.8 pixel grey-scale intensity values. 
 
 

(a) 

(b) 

Figure 3. (a) A JPEG version (section on
compression ratio of 7:1 and (b) the same 
using the contour nodes for a contour increm
 
The proposed compression process was furt
image of the lake (4002) and the aerial vie
Figure 4 and Figure 5 respectively. 
 
The maximum and minimum differences
values resulting from subtracting the JPEG v
from the original lake.tif were respectively
scale values with an R.M.S. equal to +/-3
contour approach produced maximum and m
equal to -35 and +37 respectively with an
pixel grey-scale intensity values. 
 
On the other hand, the maximum and mini
pixel intensity values resulting from sub
version of aerial.jpeg view from the original
respectively -35 and +47 grey-scale valu
equal to +/-35. By contrast, the contour 
maximum and minimum differences equ
respectively with an R.M.S. of +/- 7.8  pixel
values. 
 

 

ly with an R.M.S. of 
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Figure 5. The original ima

 

 
Figure 5. The original image 

 
 

Contour 
increments 

Accuracy 
R.M.S. 

Memor
require

2 3.7 0.172 M
4 7.3 0.076 M
6 10.6 0.064 M
8 20.5 0.043 M

 
Table 2. Accuracy and memo
reconstruct the original image of  l
between 2 and 8 grey-scale intensi
 

Contour 
increments 

Accuracy 
R.M.S. 

Memor
require

2 3.1 0.151 M
4 6.8 0.062 M
6 8.8 0.059 M
8 18.4 0.041 M

 
Table 3. Accuracy and memo
reconstruct the original image o
increments between 2 and 8 grey-s
 

 

age of lake.tif (4002). 

 

of  aerial view.tif (4002). 

ry 
d 

Maximum 
difference 

Minimum 
difference 

Mb 6 8 
Mb 23 29 
Mb 35 34 
Mb 39 46 

ory requirements needed to 
lake using contour increments 
ty values 

ry 
d 

Maximum 
difference 

Minimum 
difference 

Mb 7 8 
Mb 21 31 
Mb 37 33 
Mb 39 44 

ory requirements needed to 
of aerial view using contour 
scale intensity values. 
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6. COLOUR IMAGES 
 
When processing colour images, the same concepts above hold 
true. However, instead of a single grey-scale intensity value, 
colour digital images have pixels that are generally quantised 
using three components (i.e. Red, Green and Blue). In general, 
all image processing operations can be extended to process 
colour images simply by applying them to each colour 
component (Bovik, 2007). 
 
Each of the three RGB components are processed, encoded and 
reconstructed separately as if they were three different grey 
scale images (Duperet, 2002). The results of the three 
reconstructions are then merged or fused to recreate the original 
colour image. In terms of image quality (R.M.S.) memory 
requirements the results from the contouring approach, for the 
same classes of images (i.e. faces, landscapes and aerial views), 
were similar to those obtained from the grey-scale imagery 
described above. 
 

7. CONCLUSIONS 
 
• Generating contour nodes from digital images involves 

assigning coordinates values to pixels in the raster format, 
and interpolating between the pixels to find the coordinates 
of points in the path of a contour having the same grey-
scale intensity value. This enables the contour nodes to be 
found to sub-pixel accuracy if required. 
 

• The conversion of certain classes of digital images into 
contour maps may be used to compress and reconstruct 
images in pixel format that are more accurate and with 
improved visual details than JPEG compressed versions of 
the same image, while requiring similar memory space for 
storage and speed of transmission over digital links. 
 

• For the images investigated in this work, the contour 
approach to image compression requires contour data to be 
filtered and discriminated from the reconstruction process. 

 
• Spline interpolation was used to reconstruct digital images 

from the nodes of their contour representations. The 
process involves determining the pixel intensity value 
which would exist at the intersections of a regular grid 
using the nodes of randomly spaced contours.  

 
• Refinements to the proposed method are being undertaken 

to increase the accuracy achievable for a variety of scenes 
and dynamic ranges (including bi-tonal imagery).  

 
• More research is required to assess the accuracy of the 

compression process in the presence of added random 
noise, a variety of image scenes with various levels of 
details and/or video imagery.  

  
• Further tests are required to determine whether a binary 

coding of the contour data may have an impact on memory 
requirements. 
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