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ACCESS-S2 seasonal forecasts of rainfall and the SAM–rainfall 
relationship during the grain growing season in south-west Western 
Australia 
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ABSTRACT 

South-west Western Australia (SWWA) is home to a world class grains industry that is significantly 
affected by periods of drought. Previous research has shown a link between the Southern 
Annular Mode (SAM) and rainfall in SWWA, especially during winter months. Hence, the 
predictability of the SAM and its relationship to SWWA rainfall can potentially improve forecasts 
of SWWA drought, which would provide valuable information for farmers. In this paper, focusing 
on the 0-month lead time forecast, we assess the bias and skill of ACCESS-S2, the Australian 
Bureau of Meteorology’s current operational sub-seasonal to seasonal forecasting system, in 
simulating seasonal rainfall for SWWA during the growing season (May–October). We then 
analyse the relationship between the SAM and SWWA precipitation and how well this is captured 
in ACCESS-S2 as well as how well ACCESS-S2 forecasts the monthly SAM index. Finally, ACCESS- 
S2 rainfall forecasts and the simulation of SAM are assessed for a case study of extreme drought 
in 2010. Our results show that forecasts tend to have greater skill in the earlier part of the season 
(May–July). ACCESS-S2 captures the significant inverse SAM–rainfall relationship but underesti
mates its strength. The model also shows overall skill in forecasting the monthly SAM index and 
simulating the MSLP and 850-hPa wind anomaly patterns associated with positive and negative 
SAM phases. However, for the 2010 drought case study, ACCESS-S2 does not indicate strong 
likelihoods of the upcoming dry conditions, particularly for later in the growing season, despite 
predicting a positive (although weaker than observed) SAM index. Although ACCESS-S2 is shown 
to skillfully depict the SAM–SWWA rainfall relationship and generally forecast the SAM index 
well, the seasonal rainfall forecasts still show limited skill. Hence it is likely that model errors 
unrelated to the SAM are contributing to limited skill in seasonal rainfall forecasts for SWWA, as 
well as the generally low seasonal-timescale predictability for the region.  

Keywords: ACCESS-S2, agriculture, Bureau of Meteorology, model evaluation, rainfall, seasonal 
climate forecasting, Southern Annular Mode, south-west Western Australia, wheatbelt. 

1. Introduction 

Australia is home to a significant grains industry that accounts for 34% of the nation’s 
total gross agricultural value (see the Grains Research and Development Corporation at 
https://grdc.com.au/about/our-industry, accessed 29 August 2024), and one of the key 
production regions is located in south-west Western Australia (SWWA, location shown in  
Fig. 1a). Grain production in SWWA is a significant driver of Western Australia’s (WA’s) 
economy contributing A$2 billion–A$5 billion annually (Department of Primary 
Industries and Regional Development 2023). The SWWA grain-growing season runs 
from May to October and depends heavily on rainfall for productivity, hence, episodes 
of drought can be particularly detrimental to crop yield and result in major losses for 
farmers (Stephens and Lyons 1998; Roy et al. 2021; Bourne et al. 2023). SWWA has a 
Mediterranean-type climate characterised by hot, dry summers and cool, wet winters 
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with 80% of annual rainfall occurring during May–October 
(Wright 1974). The majority of rainfall over these months in 
SWWA has been attributed to frontal systems and cut off 
lows (Pook et al. 2012). 

The year 2010 was one of the driest years on record for 
SWWA, with some weather stations recording as little as 
39% of the long-term average for winter rainfall (Bureau of 
Meteorology 2010). Many growers suffered a significant 
decrease in grain production resulting in considerable finan
cial loss. This is illustrated in Fig. 1b (Department of Primary 
Industries and Regional Development 2018), which shows 
the substantial decrease in yield for WA farmers as a result 
of the 2010 drought. Inland areas to the east of the wheat 
growing region, commonly referred to as the wheatbelt, 
were most severely affected with some areas experiencing 
less than 30% of the 2006–2009 average yield. The dry 
conditions in SWWA were driven by a persistent region of 
anomalously high pressure, fewer than average cold fronts 
and a lack of westerly winds during the growing season 
(Bureau of Meteorology 2010; Ganter 2011). As well as 
being one of the driest years on record, 2010 coincided 
with what was at that time, the highest recorded positive 
Southern Annular Mode (SAM) index for the June–August 
average, based on the record of more than 50 years 
(Blunden et al. 2011; Cai et al. 2011; Feng et al. 2015). 

The SAM is a natural mode of climate variability that can 
significantly influence rainfall in the southern hemisphere 
(Thompson and Wallace 2000; Cai et al. 2011; Ho et al. 
2012; Philip and Yu 2021). It represents the north–south 
movement of the westerly wind belt in the middle to higher 
latitudes in the southern hemisphere (Thompson and 
Wallace 2000). During the positive phase of the SAM, anom
alously high pressure tends to dominate the mid-latitudes 
while anomalously low pressure dominates the high lati
tudes, and the westerly wind belt tends to shift southward. 
During the negative phase, this pattern is reversed. 

Several studies have explored the link between the SAM 
and SWWA winter rainfall variability. Feng et al. (2010) 
used reanalysis and observations from 1948 to 2007 to 
investigate the influence of the SAM on SWWA rainfall. 
Their results suggested that the previously established 
inverse relationship between SAM and SWWA rainfall dete
riorated once the year 1964, which was an extremely wet 
year, was removed from the dataset. However, this was 
refuted by Cai et al. (2011), who investigated the influence 
of SAM on SWWA winter rainfall (June–August) using 
satellite-era data for 1979–2010. Their results showed a 
significant relationship between SAM and SWWA rainfall. 
Specifically, when the SAM was positive, the number of 
synoptic systems that drove the rainfall was reduced in the 
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Fig. 1. (a) Map showing Western Australia’s wheatbelt in brown, as defined by the ‘cropping’ category ( Department of Agriculture 2019), and 
(b) map showing the impact of the 2010 drought on grain production in SWWA with reference to the 2006–2009 average ( Department of 
Primary Industries and Regional Development 2018).   
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region, having shifted poleward, and SWWA rainfall was 
lower (Cai et al. 2011). Similarly, Hendon et al. (2007) 
investigated the influence of the SAM on daily rainfall vari
ability across Australia and demonstrated that a positive 
SAM was associated with a poleward shift in the rain- 
bearing westerlies across southern Australia, resulting in a 
reduction in winter rainfall in SWWA. Their results showed 
that the SAM explains 10–15% of the variability in SWWA 
weekly rainfall during winter. In a systematic review of the 
literature, McKay et al. (2023) evaluated observational stud
ies from 1979 onwards to summarise and identify knowl
edge gaps in how changes in weather systems and large- 
scale climate drivers are linked to rainfall changes in 
the southern hemisphere. They found common threads in 
the reviewed literature, which showed that the impacts of 
the SAM on southern hemisphere rainfall are season- 
dependent, with the most robust relationship evident in win
ter, when a positive SAM is associated with reduced winter 
rainfall (refer to fig. 4 of McKay et al. 2023). Their literature 
review provides further support for the link between the 
positive phase of the SAM and reduced SWWA rainfall 
reported by Hendon et al. (2007) and Cai et al. (2011). 

Accurate and reliable seasonal forecasts of SWWA rainfall 
can provide valuable information to growers upon which key 
management decisions are based, such as when to sow crops 
and how much fertiliser to apply and when (Born et al. 
2021). Being equipped with this information can allow farm
ers to maximise profits in high-rainfall seasons and save costs 
when conditions are dry (Parton et al. 2019). The observed 
link between SAM and SWWA rainfall suggests that accurate 
forecasts of SAM could serve as a valuable indicator for 
predicting rainfall patterns in the SWWA region. 

The Australian Bureau of Meteorology (hereafter the 
Bureau) provides operational forecasts of key climate driv
ers, including the phase of the El Niño–Southern Oscillation 
(ENSO), Indian Ocean Dipole (IOD) and the SAM, as well as 
sub-seasonal and seasonal forecasts of Australian climate 
(http://www.bom.gov.au/climate/ahead/). The first system 
in operation was the Predictive Ocean Atmosphere Model 
for Australia (POAMA; Alves et al. 2003; Charles et al. 
2015), followed by the Australian Community Climate and 
Earth-System Simulator – Seasonal system (ACCESS-S1;  
Hudson et al. 2017), and continuing with ACCESS-S2 
(Wedd et al. 2022). ACCESS-S2 became operational in 
October 2021 and is based on the UK Met Office Global 
Seasonal forecast system version 5 using the Global Coupled 
model configuration 2 (GloSea5-GC2; MacLachlan et al. 
2015). It has been upgraded from ACCESS-S1 to include a 
new Bureau-developed weakly coupled data assimilation 
system to provide initial conditions for atmosphere, ocean, 
land and ice fields. Additionally, the hindcast configuration 
has been updated and the time period extended to 38 years 
as opposed to 23 years in ACCESS-S1 (Wedd et al. 2022). 

Previous work evaluated the Bureau’s forecasting systems 
in the simulation and prediction of the SAM and its 

relationship to Australian sub-seasonal climate in POAMA 
and ACCESS-S. In POAMA, Marshall et al. (2012) found that 
improved winter and spring rainfall forecasts were linked to 
skilful prediction of the SAM index and the accurate simula
tion of SAM-associated climate anomalies over Australia. 
Additionally, impacts from ENSO on the SAM–rainfall rela
tionship were only evident during spring and summer and 
only in the northern part of Australia (Marshall et al. 2012).  
Wedd et al. (2022) assessed the forecast performance of 
ACCESS-S2 in comparison to ACCESS-S1. The results 
showed some improvement in ACCESS-S2 for seasonal rain
fall forecasts during the growing season in SWWA (refer to 
their fig. 24, middle panel). Increased skill was most promi
nent during the first part of the season (May–July). The 
authors indicated that this could be due to the improved 
soil moisture initialisation in ACCESS-S2 (Wedd et al. 2022). 
The prediction of the SAM at sub-seasonal and seasonal 
time-scales was similar for ACCESS-S1 and ACCESS-S2; 
however, some improvements were identified in seasonal 
mean SAM forecasts with ACCESS-S2 initialised in 
May–August (Wedd et al. 2022). 

In our recent study, ACCESS-S1 seasonal rainfall forecasts 
were evaluated over the grain-growing season in SWWA (Firth 
et al. 2023). Forecasts of 3- and 6-months duration were 
assessed at 0- and 1-month lead-times. Limitations in the mod
el’s ability to accurately predict rainfall for these extended 
forecast periods were identified. It was shown that ACCESS- 
S1 had a tendency to forecast close to average conditions 
during both extreme wet and dry years. Building on Firth 
et al. (2023), the aim of this study is to evaluate the skill of 
ACCESS-S2 in forecasting seasonal rainfall over the growing 
season in SWWA, and in particular in association with the SAM. 
As there was limited skill for seasonal forecasts of 6-months 
duration (Firth et al. 2023), this study focuses on forecasts of 
3-months duration. The skill of these seasonal forecasts is 
assessed using several forecast verification measures, and a 
probabilistic approach is adopted by evaluating above- 
median forecasts (a key forecast product for Bureau services: 
http://www.bom.gov.au/climate/ahead/). Additionally, the 
relationship between the SAM and SWWA rainfall and its 
simulation in ACCESS-S2 is explored, including a case study 
of 2010, one of the driest years on record for SWWA. 

2. Methods 

2.1. Data 

2.1.1. ACCESS-S2 hindcasts 
The ACCESS-S2 forecast system includes a coupled 

atmosphere–ocean–land surface model, which is based on 
the UK Met Office’s global coupled model seasonal forecast 
system, GloSea5-GC2 (MacLachlan et al. 2015). It comprises 
the Unified Model (UM; Williams et al. 2015; Walters et al. 
2017) for the atmosphere, the Joint UK Land Environment 
Simulator (JULES; Best et al. 2011; Walters et al. 2017), the 
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Nucleus for European Modelling of the Ocean (NEMO;  
Madec et al. 2008; Megann et al. 2014), and the Los 
Alamos sea ice model (CICE; Hunke and Lipscomb 2008). 
ACCESS-S2 has a horizontal resolution of ~60 km (N216) 
with 85 vertical levels in the atmosphere, four soil levels in 
the land surface model, and an ocean model resolution of 
0.25° with 75 vertical levels. 

The ACCESS-S2 forecasts are evaluated based on a set of 
retrospective forecasts known as hindcasts. The initial con
ditions for the hindcasts come from the reanalysis produced 
from the Bureau’s new data assimilation system (Wedd et al. 
2022). The ACCESS-S2 hindcasts are available for the period 
1981–2018 and have a seasonal hindcast integration length 
of 279 days. The ensemble configuration takes a time-lagged 
approach so that the number of ensemble members is depen
dent on the start date of the hindcast. The present study uses 
a time-lagged 21-member ensemble comprising three 
ensemble members, each initialised on the 1st of the 
month and 6 consecutive days prior (note: in the text 
above, the nominal start date of the 1st of the month refers 
to the full time-lagged ensemble). Creation of a time-lagged 
ensemble is common practice in seasonal prediction to 
increase ensemble size and better capture uncertainties. 
For example, the Bureau’s real-time forecast products utilise 
a time-lagged ensemble by combining 9 successive days of 
forecasts for the seasonal timescale (11 members are run 
every day, thus this approach builds a 99-member ensemble;  
Hudson et al. 2017; Wedd et al. 2022). 

2.1.2. AGCD gridded rainfall observations 
To assess ACCESS-S2 rainfall, the ACCESS-S2 seasonal 

forecasts were compared to observed seasonal rainfall cal
culated from monthly 5-km gridded observations from the 
Australian Gridded Climate Data (AGCD; Evans et al. 2020). 
This dataset is an interpolation of direct surface measure
ments recorded from a network of weather stations across 
Australia. The number of stations recording data varies in 
time and by variable, and precipitation is interpolated from 
5000–7000 stations across Australia (Evans et al. 2020). The 
AGCD dataset is commonly used for model evaluation pur
poses for studies focusing on Australia (e.g. Lim et al. 2021;  
Zhao et al. 2021; Shao et al. 2022; Firth et al. 2023). The 
AGCD precipitation data for 1981–2018 were re-gridded to 
the 60-km ACCESS-S2 grid using the first-order conservative 
remapping tool, remapcon, from Climate Data Operators 
(https://code.mpimet.mpg.de/projects/cdo/), to enable 
comparison of the ACCESS-S2 forecasts with observed pre
cipitation. A land fraction of 0.3 was used as the threshold to 
determine the land–sea mask. 

2.1.3. ERA5 reanalysis 
To evaluate the relationship between the SAM and 

SWWA rainfall, the European Centre for Medium-Range 
Weather Forecasts (ECMWF) Reanalysis (ver. 5, ERA5;  

Hersbach et al. 2020) was used as a surrogate truth for the 
SAM index, mean sea level pressure (MSLP) and 850-hPa 
wind. The ERA5 is the fifth-generation reanalysis produced 
by the Copernicus Climate Change Service (C3S) at ECMWF, 
replacing and improving upon the previous ERA-Interim 
reanalysis (Dee et al. 2011). It has a horizontal resolution 
of ~30 km and there are 137 vertical levels from the surface 
up to 0.01 hPa. Reanalyses are commonly used as surrogate 
truth for model evaluations of the SAM (e.g. Meneghini et al. 
2007; Zhang et al. 2018; Ibebuchi 2021). The MSLP and 
850-hPa wind data were extracted directly from the ERA5 
for 1981–2018, and monthly SAM index values were 
derived according to Marshall et al. (2012). 

2.2. Analysis 

2.2.1. Model bias and forecast skill 
The initial analysis involved evaluating the rainfall fore

casts in ACCESS-S2 for 1981–2018 and focused on four 
seasonal forecasts of 3 months duration during the grain- 
growing season: May–July (MJJ), June–August (JJA), 
July–September (JAS) and August–October (ASO). All fore
casts have a 0-month lead-time (e.g. for evaluation of MJJ, 
the nominal start-date of the lagged ensemble was 1 May). 
The overall rainfall bias in ACCESS-S2 was initially assessed 
by computing the percentage difference between the model 
and the AGCD observed precipitation for each seasonal 
forecast. The model’s performance for predicting above or 
below-median rainfall was then evaluated for each season 
by computing four categorical statistics commonly used for 
verifying dichotomous (yes or no) forecasts (Wilks 2011). 
The Bureau routinely issues forecasts of probabilities above 
median and this dichotomous approach is consistent with 
other ACCESS-S1 or ACCESS-S2 forecast model evaluations 
(e.g. Hudson et al. 2017). To populate the required contin
gency table (Table 1), the probability forecast is first con
verted to a category forecast. If the forecast probability of 
above-median rainfall is greater (less) than 50%, then it is 
categorised as a ‘yes’ (‘no’) event in the contingency table 
(Hudson et al. 2017). To determine the outcome of a fore
cast, the ensemble is compared against the model’s climato
logical median, whereas the observed median is used to 
determine the observed outcome (this is standard practice 
for seasonal prediction). 

Table 1. Contingency table.        

Observed 

Yes No Total   

Forecast Yes Hits False alarms Forecast yes  

No Misses Correct 
negatives 

Forecast no  

Total Observed yes Observed no Total   
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The contingency table shows the frequency of ‘yes’ and 
‘no’ forecasts and occurrences and are described as:  

• hit – event forecast to occur and did occur;   
• miss – event forecast not to occur but did occur;   
• false alarm – event forecast to occur but did not occur; and  
• correct negative – event forecast not to occur and did not 

occur. 

Accuracy (fraction correct), bias score (frequency bias), prob
ability of detection (hit rate) and false alarm ratio were then 
calculated, using the following equations, for 1981–2018: 

Accuracy = hits + correct negatives
total

(1)  

The accuracy score (Eqn 1) measures the proportion of fore
casts that were correct, i.e. how often ACCESS-S2 correctly 
forecast an above-median rainfall event, as well as correctly 
not forecasting an above-median rainfall event when one did 
not occur. 

Bias = hits + false alarms
hits + misses

(2)  

The bias score (Eqn 2) gives an indication of whether the model 
has a tendency to under-forecast (bias < 1) or over-forecast 
(bias > 1) events by measuring the ratio of the frequency of 
forecast events to the frequency of observed events. 

Probability of detection (POD) = hits
hits + misses

(3) 

False alarm ratio (FAR) = false alarms
hits + false alarms

(4)  

The POD (Eqn 3) measures the fraction of observed above- 
median rainfall events that were correctly forecast (hits) and 
the FAR (Eqn 4) indicates the fraction of above-median rainfall 
event forecasts that were false alarms. The two metrics are 
intended to be used in conjunction with each other. 

2.2.2. SAM–rainfall analysis 
The first step was to explore the relationship between the 

SAM from ERA5 and observed SWWA precipitation from 
AGCD. To first establish the relationship from best-available 
observations or reanalysis, no interpolation of ERA5 or AGCD 
was carried out, i.e. both datasets were kept on their native 
resolutions. Because the SAM has a typical decorrelation time 
of ~1–2 weeks (Hendon et al. 2007), the SAM analysis focused 
on monthly rather than seasonal timescales. The analysis 
involved computing the Pearson correlation coefficient for 
the relationship between AGCD SWWA monthly precipitation 
anomalies and the monthly ERA5 SAM index for the period 
available from the ACCESS-S2 hindcasts (1981–2018). The 
correlation was assessed at each grid point individually, and 

significance of the correlation was determined using a two- 
sided P-value (refer to https://docs.scipy.org/doc/scipy/ 
reference/generated/scipy.stats.pearsonr.html for more 
details). This relationship was then examined in ACCESS-S2 
for 0-month lead forecasts to assess how well the model simu
lates the SAM–rainfall relationship. For this analysis, all the 
ensembles for each year were included for the correlation 
analysis rather than the ensemble mean. 

To assess ACCESS-S2’s forecast skill of the SAM, the 
monthly SAM index from ERA5 was compared with simulated 
ensemble mean, minimum and maximum monthly SAM from 
ACCESS-S2 for the respective months of the growing season 
(for 1981–2018). The assessment was carried out for 0-month 
lead forecasts of May–October (nominally initialised on the 1st 
of each month). The Pearson correlation and significance of 
the correlation between ERA5 and ACCESS-S2 ensemble mean 
SAM was computed for each month analysed. To further 
explore how well ACCESS-S2 captures the SAM signal, com
posites of MSLP and 850-hPa wind anomalies for positive and 
negative monthly SAM during the growing season were com
pared between ERA5 and the model. Throughout the study, a 
positive SAM event is associated with SAM index values 
greater than 1 and a negative SAM event is associated with a 
SAM index less than −1 (Marshall et al. 2012). We note that 
variations in ENSO have been shown to only influence the 
SAM–rainfall signal in northern parts of Australia and only 
during spring and summer (Marshall et al. 2012). In our study 
the effects of ENSO have not been removed since we focus on 
May–October rainfall in SWWA. 

2.2.3. 2010 case study analysis 
The year 2010 was selected as a case study due to the 

extreme drought during the growing season and the associ
ated highly positive SAM. Initially, the 2010 seasonal rain
fall anomalies were compared between observations 
(AGCD) and ACCESS-S2. Anomalies for the ACCESS-S2 
hindcasts were calculated by first computing the climatol
ogy (1981–2018) from the ensemble mean hindcasts for 
each start date, and the climatology was then subtracted 
from the ensemble mean for each start date to produce the 
forecast anomalies. In doing so, a first-order linear correc
tion for model bias or drift is made (Stockdale 1997). The 
anomalies are expressed as a percentage difference from 
normal rather than the absolute difference to allow for a 
more accurate comparison. The probability of above-median 
rainfall seasonal forecasts was then evaluated in ACCESS-S2. 
Subsequently, ACCESS-S2 skill in forecasting the monthly 
SAM index in 2010 at 0-month lead time was assessed, with 
a time series comparing observed (reanalysis) SAM from 
ERA5 with the forecast SAM for each month of the growing 
season at 0-month lead time. 

To identify differences in individual ensemble members 
and test whether members that simulated dry conditions 
were associated with positive SAM, the ensembles for the 
2010 rainfall forecast were ranked based on their domain 
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sum of monthly rainfall for each month at 0-month lead 
time. Composites of the top and bottom tercile rainfall 
anomalies were then plotted with the corresponding mean 
SAM index and this analysis was then repeated for MSLP and 
850-hPa wind anomalies. The observed (reanalysis) monthly 
MSLP and 850-hPa wind anomalies were also compared 
with ACCESS-S2 monthly ensemble mean MSLP and 
850-hPa wind anomalies. 

3. Results and discussion 

3.1. ACCESS-S2 precipitation bias and forecast skill 

The initial analysis focused on evaluating the overall precipita
tion bias and forecast skill for SWWA rainfall in ACCESS-S2.  
Fig. 2 shows the observed average precipitation and bias 

(ACCESS-S2 minus observations, expressed as a percentage) 
for the four seasonal forecasts over the growing season for 
1981–2018. A pronounced gradient is evident in observed rain
fall, with notably higher rainfall along the south-west coast. For 
all seasonal forecasts, this part of the region has a strong nega
tive bias that is most pronounced in the south-west corner. The 
bias becomes slightly positive inland from the coast, and mini
mal in the north-east of the region. This is very similar to 
our previous work, Firth et al. (2023), which evaluated 
ACCESS-S1 SWWA seasonal rainfall forecasts for July– 
September and May–October. While biases inland were minimal 
in ACCESS-S1, the higher rainfall observed in the south-west 
corner was not captured by the model (Firth et al. 2023). 

Fig. 3 shows the skill assessment for ACCESS-S2 for sea
sonal forecasts of above-median rainfall (refer to methods). 
Results show that ACCESS-S2 generally made correct fore
casts for all seasons more than 50% of the time across most 
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of the region (note that accuracies greater than 50% are 
better than a climatological forecast) (Fig. 3a). The MJJ 
forecast is the most skilful, with ACCESS-S2 achieving 
greater than 80% correct forecasts for a large proportion 
of the inland region. The ASO forecast is the weakest, with 
only ~50% of correct forecasts across most of the region and 
less than 50% across the north-east. Similarly, the bias is 
generally smallest earlier in the growing season (MJJ and 
JJA) with a slight tendency to over-forecast above-median 
rainfall (Fig. 3b). Later in the season (JAS and ASO), the bias 
is slightly increased inland and there is more of a tendency 
to under-forecast above-median rainfall. 

Figure 3c and 3d show the POD and FAR respectively for 
above-median rainfall events in ACCESS-S2. For ACCESS-S2 
seasonal forecasts over the grain growing season, the signal 
in the two metrics is almost opposite to each other. Early in the 
season there is a higher hit rate (higher POD) and lower 
number of false alarms (lower FAR), and this is reversed later 
in the season. These results are also indicative of a more skilful 
rainfall forecast in the earlier part of the growing season. 

In summary, the four metrics assessed here indicate that 
ACCESS-S2 generally performs better for above-median 
forecasts of SWWA growing-season rainfall earlier in the 
season, particularly for MJJ. When evaluating improve
ments in ACCESS-S2 compared with ACCESS-S1, Wedd 
et al. (2022) found that seasonal rainfall forecast perform
ance was most improved in SWWA for the MJJ season. This 

was attributed to improvements in soil moisture initialisa
tion based on a sensitivity analysis conducted by Zhao et al. 
(2017). Their research showed that, although the impacts of 
soil moisture are most pronounced for surface temperature 
forecasts, there is also an influence on precipitation forecast 
skill through complex processes that involve surface eva
poration and interactions with boundary layer processes 
(Zhao et al. 2017). 

3.2. SAM–rainfall analysis 

We first focus on the SAM and SWWA rainfall relationship 
from best available re-analysis and observations. This is 
illustrated in Fig. 4 (top row), showing an inverse relation
ship in the south-west corner for all months, although for 
October this relationship is only evident across a very small 
area. For June and July, the inverse relationship is evident 
across most of the region and is significant in the south-west 
coast and partly inland for July. These results show a signif
icant inverse relationship between SWWA rainfall and the 
SAM only across a very small part of the region and only for 
2 months of the growing season. These findings corroborate 
previous findings of a positive SAM during winter resulting 
in reduced rainfall for SWWA (Hendon et al. 2007; Cai et al. 
2011). Furthermore, these results also emphasise the sea
sonality of the relationship between the SAM and SWWA 
rainfall, showing that it is most pronounced during the 

Fig. 3. Skill assessment of ACCESS-S2 for above-median seasonal rainfall forecasts for four seasons (0-month lead forecasts) within the growing 
season (1981–2018): (a) accuracy, (b) bias score, (c) probability of detection and (d) false alarm ratio.    
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winter months (e.g. Cai and Cowan 2006; McKay et al. 
2023). Thus, the influence of a skilful simulation and pre
diction of the SAM on the accuracy of SWWA rainfall fore
casts throughout the growing season may be limited to 
rainfall forecasts in winter only. The inverse relationship 
between the SAM and SWWA rainfall is also captured in 
ACCESS-S2, but the relationship is weaker in the model 
(Fig. 4, bottom row). This weaker than observed relation
ship has also been seen between the SAM and south-eastern 
Australian rainfall (Lim et al. 2016). It is also present in free- 
running present-day climate simulations using the same 
coupled model as used in ACCESS-S2, but there are some 
indications of a stronger, improved relationship in winter 
(JJA) in more recent model configurations (Li et al. 2023, 
their fig. 16). Reasons for the weaker than observed rela
tionship are not clear. 

A significant inverse relationship in the south-west corner 
is shown for all months in ACCESS-S2 compared to only June 
and July in ERA5 and AGCD (Fig. 4, top row). ACCESS-S2 
also shows a significant positive relationship across the east 

of the region in September and October that is not evident in 
ERA5 and AGCD. Rainfall forecasts may be improved earlier 
in the season due to the relationship between SAM and 
precipitation being stronger for these months. 

Figures 5 and 6 compare the composites of MSLP and 
850-hPa wind anomalies between ERA5 and ACCESS-S2 for 
positive and negative SAM events respectively. During posi
tive SAM events, ERA5 shows the expected pattern of anom
alously high pressure across southern Australia and the 
associated westerly wind belt further south is evident 
(Fig. 5, top panel). The positive MSLP anomaly is most 
pronounced during July and August. During negative SAM 
years, the ERA5 composites show what would be expected 
with anomalously low pressure across southern Australia 
and a shift of the westerly winds further north (Fig. 6, 
bottom panel). The low MSLP anomaly over Australia is 
most prominent in June and August. The ACCESS-S2 com
posites show that the model broadly captures these patterns 
well for both the positive and negative SAM phases and for 
all months during the growing season. However, there are 
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some notable differences (Fig. 5 and 6 bottom panels). During 
positive SAM events, although ACCESS-S2 simulates a region 
of anomalously high pressure to the south-west of Australia, 
it is underestimated compared to what was observed for May, 
July and August. It is also underestimated west of Australia 
and over SWWA in October. Additionally, the anomalous 
easterly winds across large parts of Australia during 
August–October in ERA5 are weaker and more zonal in 
ACCESS-S2, particularly for September and October. The 
anomalously westerly winds observed across Australia for 
June are also notably underestimated by ACCESS-S2 
(Fig. 5). For the negative SAM events, ACCESS-S2 overesti
mates the negative MSLP anomaly (i.e. more negative) to the 
south-west of Australia in May, July, September and October 
(Fig. 6); for June and August, it is underestimated. For July, 
the positive MSLP anomaly south of Australia is further south 
in the model. It should also be noted that the sample size for 
ERA5 in this analysis is mostly less than 10, therefore some 
discrepancies between the model and observations (ERA5) 
may be attributed to this limitation in the methodology and 
thus caution is given to overinterpreting these results. 

The next step focused on assessing the ability of 
ACCESS-S2 to predict the monthly SAM (verified against 
ERA5). This is illustrated in Fig. 7, which shows the 
1981–2018 time series of the SAM index for months within 
the growing season for the ACCESS-S2 ensemble mean, 
minimum and maximum (0-month lead forecasts), and for 
ERA5. The correlation coefficient (r) and P-value are shown 
for each month. A significant positive correlation between 
the ACCESS-S2 ensemble mean SAM and ERA5 SAM was 
identified for all months of the growing season apart from 
June, suggesting that ACCESS-S2 generally performs well in 
forecasting the monthly SAM index (Fig. 7). The spread of 
the ensemble is quite large but the ERA5 SAM is consistently 
within the ensemble range for most months and years. 
However, the ERA5 SAM falls out of the ensemble range 
simulated by ACCESS-S2 during some of the more extreme 
positive or negative events (e.g. May 1989 and July 1995). 

3.3. 2010 case study – a very dry year and a strong 
positive SAM 

The observed seasonal precipitation anomaly for 2010 was 
well below average for all seasons across the majority of 
SWWA and particularly during the ASO season (Fig. 8a top 
panel). By comparison, the ACCESS-S2 ensemble mean anom
aly (Fig. 8a, bottom panel) failed to capture the observed 
well-below average seasonal precipitation anomaly, with all 
seasons predicted to have close to average rainfall. The MJJ 
forecast is the closest to what was observed with a dry signal 
throughout the region, but it is only slightly drier than aver
age. Fig. 8b shows ACCESS-S2’s probability of above-median 
rainfall for each season in 2010. An accurate forecast would 
suggest a very low probability of above-median rainfall; 
however, only for the MJJ forecast is the probability below 

50% for most of the region. The JJA forecast also shows some 
skill for the SWWA corner. These results are consistent with 
our previous work focusing on ACCESS-S1, which showed 
that during extreme wet or dry years, ACCESS-S1 tends to 
forecast close to average conditions (Firth et al. 2023), show
ing that ACCESS-S2 is also limited in skill in predicting 
extreme rainfall during growing seasons in SWWA. It is 
noted that the forecast of above-median rainfall and negative 
anomalies over the north-west in MJJ (Fig. 8b) is likely due to 
this region receiving very low annual rainfall during the 
growing season so that a few rainfall events can result in 
the mean value being higher than the median. As a result, an 
above-median value (e.g. 0.1 mm) can be less than the mean 
and therefore present as a negative anomaly. 

The time series of the ERA5 SAM index and ACCESS-S2 
ensemble mean, minimum and maximum SAM index for the 
year 2010 was assessed to see how well ACCESS-S2 captured 
the monthly SAM index during the very dry year (Fig. 9). 
Note that the ACCESS-S2 forecasts are 0-lead forecasts for 
each month. The ensemble mean forecast of the SAM index 
is positive, as observed, for each respective month, and 
around or above the threshold of one for all months except 
May. However, the magnitude of the observed SAM is 
underestimated by the ensemble mean in most months 
(except August and September), and in general the forecast 
spread is large. This large spread is also evident across other 
years (Fig. 7) and indicates the need for a large ensemble to 
obtain the signal. Similarly large spread was seen in 
ACCESS-S1 forecasts of the SAM (D. Hudson, pers. comm., 
12 July 2024) and is seen in NCEP forecasts of the SAM 
(https://www.cpc.ncep.noaa.gov/products/precip/CWlink/ 
daily_ao_index/aao/aao_index_ensm.shtml). 

The findings from the analysis of SAM in ACCESS-S2 for 
2010 somewhat contrast with what was identified in the 
evaluation of the precipitation forecasts: while the precipi
tation forecasts performed better earlier in the season 
(Fig. 8), forecasts of the SAM appears to be improved later 
in the season (Fig. 9) (although we note that the rainfall 
verification is for a seasonal average, whereas the SAM 
verification is for periods of a month). 

We next stratified the respective monthly rainfall fore
casts from the ensemble members into terciles for each 
0-lead monthly forecast and computed the related SAM 
index for the stratification. The aim is to examine whether 
the ensemble members that forecast dryer conditions were 
the ones associated with stronger positive SAM values. The 
bottom tercile of ensemble members (for a given target 
month at 0-month lead), forecast dry conditions across all 
of the region for May–August and along the south-west for 
September and October, although the anomalies were nota
bly smaller for the last 2 months of the season (Fig. 10, top 
panel). The top tercile was characterised by mostly wetter 
conditions, other than July, and the magnitude of the posi
tive rainfall anomalies was generally smaller in comparison 
to the magnitude of the negative rainfall anomalies for the 
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bottom tercile, with the exception of September and October 
when this was reversed (Fig. 10, bottom panel). All the 
mean SAM values were positive for both the top and bottom 
terciles. However, for some months (July and October), the 
mean SAM index was larger for the top tercile compared to 
the bottom rainfall tercile. This indicates that the SAM was 
not driving the rainfall response in these months. 
Additionally, the standard deviation of the SAM index in 

each sample is relatively large and often greater than the 
mean SAM (e.g. in May), suggesting a large spread across 
ensemble members in terms of whether the SAM was driving 
the rainfall response or not. 

Fig. 11 (top panel) shows anomalously high MSLP for all 
months (except May) and anticyclonic flow across SWWA, 
which is characteristic of the positive SAM phase that 
occurred and conducive to the observed dry conditions. In 

–3

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

–2

–1

0

1

2

3 May (r = 0.66, P < 0.001)

–3

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

–2

–1

0

1

2

3 Jun (r = 0.29, P = 0.074)

–3

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

–2

–1

0

1

2

3 Jul (r = 0.74, P < 0.001)

–3

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

–2

–1

0

1

2

3 Aug (r = 0.56, P < 0.001)

–3

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

–2

–1

0

1

2

3 Sep (r = 0.57, P < 0.001)

–3

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

ERA5
ACC2 min.
ACC2 max.
ACC2 mean

–2

–1

0

1

2

3 Oct (r = 0.67, P < 0.001)

ERA5 and ACC2 SAM time series and correlation for May–Oct

S
A

M
 in

d
ex

Fig. 7. Time series showing ERA5 and the ACCESS-S2 ensemble minimum, maximum and mean SAM index for each month of the growing 
season (May–October, indicated in the respective rows), 1981–2018. The ACCESS-S2 forecasts are all 0-month lead forecasts verifying in the 
month shown in each panel. The correlation coefficient (r) and P-value are shown for each month.   

www.publish.csiro.au/es                                                     Journal of Southern Hemisphere Earth Systems Science 74 (2024) ES24004 

11 

https://www.publish.csiro.au/es


June and July, the anomaly patterns were more zonally 
symmetric compared to the other months (Fig. 11, top 
panel), indicative of a higher SAM index (Fig. 9). In May 

and September, the observed anomaly pattern over the 
southern part of the domain was more meridional than in 
other months, which corresponds to the local minima in the 
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SAM index (Fig. 9). The pattern of higher-than-normal sea- 
level pressure and anticyclonic anomalies over, and south- 
west of, SSWA was broadly captured by the ACCESS-S2 
ensemble mean in each month. However, ACCESS-S2 also 

simulated anomalously high pressure across SWWA for May, 
where anomalously low pressure occurred in ERA5. The 
higher forecast skill for the 2010 MJJ season (compared to 
other seasons, Fig. 8) may be attributed to ACCESS-S2 
incorrectly forecasting anomalously high MSLP across 
SWWA in May, thus producing a drier forecast that was 
more consistent with observations. ACCESS-S2 also forecast 
a weaker high-pressure anomaly than observed across 
SWWA for the months of June, July, September and 
October. During August, ACCESS-S2 underestimated the 
high pressure anomaly to the south-west of Australia and 
incorrectly forecasted a high pressure anomaly over south- 
eastern Australia. 

The MSLP and 850-hPa wind anomaly composite plots 
for the top and bottom ensemble rainfall terciles from 
ACCESS-S2 show mixed results (Fig. 12). For July, 
September and October, the top tercile plots show a stronger 
positive MSLP anomaly than the bottom tercile plots, and a 
stronger SAM index in July and October (as mentioned 
previously), which is contrary to what one would expect 
for the wetter tercile of ensemble members. 

In summary, for this case study, the seasonal ACCESS-S2 
rainfall forecasts are more accurate earlier in the growing 
season, e.g. forecasts for MJJ where the probabilistic fore
casts provide some indication of the increased chance of dry 
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conditions, although this signal is not particularly strong. In 
contrast, forecasts for the ASO season do not provide any 
indication of the upcoming dry conditions (Fig. 8). These 
results are somewhat aligned with the skill analysis across 
all years, which show a degradation in performance metrics 
as the growing season progresses (Fig. 3). The SAM was a 
key driver of the dry conditions in SWWA in 2010, being 
strongly positive. The 0-month lead ensemble mean fore
casts of the SAM during the growing season predicted the 
positive SAM, albeit weaker than observed. However, while 
analysis of the forecast ensemble showed some indication of 
the SAM driving the rainfall response in some months, this 
was not evident in all months and there was a large spread 
in the results. This suggests that other possible deficiencies 
in the model are contributing to limitations in SWWA sea
sonal rainfall forecast skill in this case, rather than its simu
lation and prediction of the SAM and its relationship to 
SWWA rainfall. 

4 Conclusion 

We evaluated the Bureau’s latest seasonal forecasting system 
ACCESS-S2 for rainfall forecasts in SWWA during the grow
ing season. This included assessing the mean bias for all 
years and a case study of a very dry year. Given the link 
between the SAM and SWWA rainfall, we also evaluated the 
SAM–rainfall relationship in SWWA and how accurately this 
was captured in ACCESS-S2 as well as how well the model 
forecasts the SAM. Our results show an overall dry bias 
along the coast of SWWA for seasonal rainfall forecasts in 
SWWA and that seasonal forecasts earlier in the season tend 
to score higher for each of the verification metrics compared 
to later in the season, particularly for MJJ forecasts. We also 
demonstrated a significant inverse relationship between the 
SAM and SWWA rainfall for June and July that was cap
tured in ACCESS-S2 but underestimated. In addition, the 
MSLP and 850-hPa wind anomalies associated with positive 
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and negative SAM are well captured in ACCESS-S2. 
ACCESS-S2 forecast the observed SAM index well for 
0-month lead monthly forecasts, demonstrated by a signifi
cant correlation between the forecast and ERA5 SAM for all 
months of the growing season apart from June. 

Evaluation of a case study of 2010, which was an extremely 
dry growing season in SWWA and had strong positive SAM 
conditions, showed that ACCESS-S2 did not forecast the extent 
of the dry conditions, despite predicting a positive ensemble 
mean SAM index on a monthly basis. In addition, there was 
not a strong indication that SAM was driving the forecast 
across all months. Although ACCESS-S2 appears to capture 
the broad-scale patterns associated with positive and negative 
SAM events and provides reasonable forecasts of the SAM, it is 
important to remember that the SAM only accounts for 
~10–15% of the variability in weekly rainfall for SWWA 
(Hendon et al. 2007). ACCESS-S2 is still limited in forecasting 
seasonal rainfall for SWWA, particularly during very dry years, 
which is similar to what was found in Firth et al. (2023) for 
ACCESS-S1. Previous work has shown that variability in sea 
surface temperature anomalies in the Indian Ocean affects 
SWWA rainfall, particularly during very wet or dry years 
(England et al. 2006; Samuel et al. 2006; Ummenhofer et al. 
2008). While some improvements were shown in ACCESS-S2 
compared to ACCESS-S1 by Wedd et al. (2022), the authors 
note that sea surface temperature biases in the Indian Ocean 
were still persistent in the ACCESS-S2 model, therefore these 
errors could be limiting the model’s forecasting ability for 
SWWA rainfall. In addition, SWWA exhibits less predictability 
on seasonal timescales compared to other regions due to the 
weaker association between SWWA rainfall and climate driv
ers such as ENSO (Smith et al. 2000). 

Accurate and reliable seasonal forecasts are of paramount 
importance to a wide range of stakeholders. As such, several 
international initiatives provide accessible data from multi- 
model seasonal prediction systems, such as the C3S seasonal 
forecast service (https://www.ecmwf.int/en/forecasts/ 
dataset/c3s-seasonal-forecasts). Such initiatives are a val
uable resource for seasonal climate forecasting as they 
allow a comparison between different models and pro
vide a multi-model ensemble prediction system, which 
has shown greater predictive skill than individual models 
(e.g. Gebrechorkos et al. 2022). Our future work will 
focus on how ACCESS-S2 compares to seasonal rainfall 
forecasts produced from climate models that contribute 
to C3S for the SWWA growing season. 
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