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A B S T R A C T   

Nature’s services to humanity − ecosystem services (ES) − have been at the centre of natural resource man-
agement scholarship for the last few decades. Yet, quantification of ES supply and its economic valuation have 
dominated the academia. Spatial associations of multiple ES and their mutual production possibilities, social 
dimensions of ES demand, and the gaps between supply and demand of ES have not been sufficiently articulated 
in the literature, especially for the Himalayan landscapes. In this context, using satellite images, secondary data, 
and household survey (n = 300), we identified the supply-demand divide of ES by assessing production possi-
bility frontiers and social demand of ES in the central regions of Hindu-Kush Himalayas. Among the six major ES 
that we considered in this research (crop production, timber production, carbon sequestration, water yield, soil 
conservation, and habitat quality), production possibilities of the other five ES get diminished with the increasing 
supply of crop production. Timber production, carbon sequestration, habitat quality, and soil conservation can be 
mutually incremental through the allocation of sufficient forestland areas. Local people’s demand of water yield 
and crop production is very high as compared to those of the others, yet the current state of supply potential of 
those ES is largely inadequate to meet the demands. Instead of generalized management prescriptions, we 
recommend for the people- and place-based interventions in ecosystem management. Nonetheless, improved 
agronomic practices and integration of farming with forestry, carbon, and climate actions might be the safe 
operating space for sustainable landscape management in the Himalayas.   

1. Introduction 

Ecosystem services (ES) are the benefits to human wellbeing pro-
vided by Nature (Costanza et al., 2017; Daily et al., 2009; de Groot et al., 
2012). Depending on biophysical properties, ecological processes, cli-
matic characteristics, and human interferences, a landscape supports 
various ES (i.e., provisioning, regulating, cultural, and supporting) at 
varying scales and intensities (Englund et al., 2017; Sharma et al., 2019). 
ES ranges from direct provisioning services such as food and fibre, and 
cultural and spiritual values, yet these are not standing alone but depend 
on interactions among each other. The interactions among ES can be 
synergistic or trade-offs which can be observed at various spatial and 

temporal scales (Ikematsu and Quintanilha, 2020; Qiao et al., 2019). 
The presence of one ES might impact on the abundance or scarcity of 
others, including its further ecological dynamics or the environmental 
equilibrium (Foster et al., 2022; Mori et al., 2017; Pandey et al., 2023). 
Besides, the social dimension of the landscapes, including the demand of 
ES and their utility functions (Cavender-Bares et al., 2015; King et al., 
2015), plays a crucial role in characterizing the spatio-temporal mosaics 
of ecosystems needed to examine landscape sustainability. 

Sustainability framework of ES must consider both ecological supply 
potentials of the landscapes, as well as the social demand of the local 
communities (Aryal et al., 2022; Torralba et al., 2018). Unlike any in-
dustrial farming where production of goods or services is independent of 
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other, the production potential of one ES is dependent on the concurrent 
production of other ES (Kumar et al., 2013; Le Provost et al., 2022). The 
interface of socio-ecological tradeoffs in ES which is crucial in under-
standing the supply-demand divide of multiple ES is presented in Fig. 1. 
Biophysical constraints or the production potentials of a landscape 
cannot be measured for a single ES but should be understood as its 
productive capacity with respect to the increase or decrease of the other 
ES known as “production possibility frontiers” (PPF) (Martinez-Harms 
et al., 2015; Vallet et al., 2018; Yang et al., 2022). Although the concept 
of PPF is commonly used in economics as “a transcendental function of 
the logarithms of its arguments, the quantities of net outputs” (Chris-
tensen et al., 1973), it can also be used to explain concurrent production 
possibilities of two ES from a given landscape with the existing insti-
tutional arrangements. PPF indicates the maximum pairwise production 
limits of various combinations of ES with either trade-offs or synergistic 
relationships (Joly et al., 2021; Yang et al., 2022). In this regard, anal-
ysis of PPF is important to understand the maximum supply potentials of 
ES and to evaluate various measures to stretch out the curves of PPF. 

In addition to ecological supply potentials, the social demand of ES is 
equally important to understand the extraction of ES, as well as the 
potential human intervention/influences through socio-ecological sys-
tem framework (Manley, 2022; Torralba et al., 2018). People might 
have different preferences and demand values, depending on various 
socio-demographic characteristics, for different pairs of ES (Drake et al., 
2013; Wang et al., 2019; Yin et al., 2023). Although the demand values 
of each ES are difficult to quantify in terms of exact units of those ES, it 
can be measured in terms of relative importance and utility functions −
demand isoclines or indifference curves (Cavender-Bares et al., 2015; 
King et al., 2015). Indifference curves indicate the points of equal utility 
throughout the possible band of mutual ES demand (King et al., 2015; 
Samuelson, 1956). Scale measurement of the utility functions of various 
pairs of ES would ease to understand which ES are on high demand as 
compared to the others, and whether the ecological supply potential is 
matching the social demand of the respective pairs of ES (Wei et al., 
2021; Yin et al., 2023). PPF and demand isoclines however assume that 
some ES can be maximized at the complete loss of other (Sickles and 
Zelenyuk, 2019; Stosch et al., 2019). But this assumption is unrealistic 
because some ES are inevitably present even at the maximum attainment 
of the other ES. For example, even if forestland is converted to farmland, 

the value of carbon sequestration, biodiversity and soil retention cannot 
be reduced to zero. In this case, instead of the curves or isoclines, ellipses 
of the area covering pairwise production possibilities of ES better 
represent various combinations of the supply amount of two ES. 

There has been a plethora of research about ES since the late 20th 
century. Publications about the importance of ES to society by Daily 
(1997) and valuation of global ES by Costanza et al. (1997) have 
onboarded ES in the mainstream environmental studies. Afterwards, 
other aspects have been studied, such as the structured understanding of 
ES (MEA, 2005), general assessment of ES as a decision support tool 
(Costanza et al., 2017; Dang et al., 2021), economic valuation and 
conceptual framework of ES (Valencia Torres et al., 2021), relationship 
among multiple ES (Bennett et al., 2009; Obiang Ndong et al., 2020; 
Vallet et al., 2018), role of ES in sustainable development (Aryal et al., 
2023b; Yuan and Lo, 2020), supply potentials of ES (Fischer and East-
wood, 2016; Le Provost et al., 2022), and social demand of ES (Castro 
et al., 2016; Wei et al., 2021). However, very few studies have done the 
integrated assessment of relationship among ES, along with the 
ecological supply and social demand perspective (Wu et al., 2022). 
There has been some studies about ecological supply and social demand 
of ES (Baró et al., 2015; Wei et al., 2017; Zhang et al., 2017), but many 
are from the theoretical perspective (Cavender-Bares et al., 2015; King 
et al., 2015). A composite overview and holistic understanding of rela-
tionship among ES, and integrated assessment of ecological supply and 
social demand of ES is lacking, especially in the mountain landscapes of 
Hindu-Kush-Himalayas. 

In the context of knowledge gaps of the supply-demand nexus of ES 
in the Himalayas, we aim to (1) depict pairwise production potentials of 
ES from the ecological perspective, (2) understand the social demand of 
ES and their relative importance to the local people, and (3) identify the 
gap between ecological supply and social demand of ES. We have 
employed various quantitative research tools in this study including 
data collection from various secondary sources (i.e., satellite images, 
extraction of high-resolution global land cover maps, global as well as 
regional databases, policy documents, and literature), and primary 
sources (household survey). This research has examined whether the 
current state of ES supply is adequate to meet the social demand, and 
which pair of ES is confronted with the gap between demand and supply. 
Further, we discuss policy implications of the mismatches between 

Fig. 1. Sustainability framework of socio-ecological trade-offs in ES (conceptual framework of the study).  
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demand and supply, which will be helpful for decision-makers in sus-
tainable management of natural resources in the Himalayas. 

Following this introduction, we have described the study area and 
methods in Section 2. Section 3 presents the main results of the research, 
including PPF, utility values, and the comparison ellipses of ES supply 
and demand. Section 4 contains discussion of the findings. Finally, 
Section 5 concludes the study. 

2. Methods 

2.1. Study area 

The study was carried out in a multifunctional landscape in the 
central part of Hindu-Kush Himalayan regions (Fig. 2). The land cover 
map of the study area was extracted from ESRI, Microsoft and Impact 
Observatory (2021). The study area is representative of two domains of 
environment conservation, such as from the biodiversity perspective 
and water regime management perspective (Aryal et al., 2023c). From 
the biodiversity perspective, it is known as Chitwan Annapurna Land-
scape (CHAL), which connects the lowland biodiversity hotspot of Nepal 
(i.e., Chitwan National Park) to the snow-capped mountain ecosystem (i. 
e., Annapurna Conservation Area). The connection is designed from the 
river corridor perspective, which is known as Gandaki River Basin. 
Depending on the core value of organizational objectives, this area is 
called the Gandaki River Basin by water resource management 

institutions and CHAL by biodiversity giants. But the area is the same, 
except few areas of CHAL (i.e., <3% of the total area) which do not come 
under the catchment zone of Gandaki River Basin. In any case, the study 
area is crucial in terms of understanding socio-ecological in-
terdependencies, dynamics of climate and water regime, the nexus of 
biodiversity and livelihoods, and representative of the mountain and 
Himalayan landscapes (Aryal et al., 2023c). Considering the climate 
sensitivity of the landscape, a USD 32.7 million project to support 
climate-resilient communities and ecosystems has been implemented by 
Green Climate Fund (FP131) in the study area (GCF, 2020). Among the 
study area of 31,700 sq.km, Forestland is the major land cover type 
(45.7%) followed by Shrubland (27.5%), Bare ground (12.2%), and 
Snow and ice (6.6%) (ESRI, Microsoft and Impact Observatory, 2021). 
More details of the study area, altitude and geographical position, land 
cover, climatic characteristics, biodiversity, and socio-demographic in-
formation can be found in Aryal et al. (2023a, 2023c). 

2.2. Data collection 

The CHAL area supplies various ES, among which our research was 
focused on the ecological supply and social demand of six ES, namely, 
crop production (CP), timber production (TP), carbon sequestration 
(CS), water yield (WY), soil conservation (SC), and habitat quality (HQ) 
that are important in the study area (Aryal et al., 2023c). To quantify the 
ES, we divided the study area into 186 watersheds based on the flow 

Fig. 2. Map of the study area, showing land cover and physiographic zones.  
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accumulation threshold using ArcGIS 10.8.1. Flow accumulation 
threshold was different for upstream (i.e., small flow accumulation at 
the pour point) and downstream watersheds (i.e., larger flow accumu-
lation at the pour point). Average area of upstream and downstream 
watersheds was 115 sq.km and 578 sq.km, respectively. Specification of 
flow accumulation threshold in mountain landscapes is challenging 
because of the confluence effect of high gradient river networks, yet our 
approach is the representative of mountain watersheds in the 
Hindu-Kush Himalayan region. The quantitative value of each ES was 
assessed at the watershed level, and average production of the ES per 
unit area for each watershed was determined based on various second-
ary and primary sources, including but not limited to the collection of 
satellite images, extraction of high-resolution global land cover maps, 
and use of various global as well as regional databases about precipi-
tation, evapotranspiration, forest resource assessment, digital elevation 
model, soil map, and infrastructure development pattern of the study 
area. 

The quantification of CP was based on ESRI land cover product 
(ESRI, Microsoft and Impact Observatory, 2021), from which the crop-
land was extracted to calculate enhanced vegetation index (i.e., based on 
the ‘Harmonized Sentinel-2 MSI: MultiSpectral Instrument, Level-2A’). 
The vegetation index was then used to predict crop yield based on the 
model developed by (Guan et al., 2018) and adopted by (Kibret et al., 
2021) for tropical agriculture. TP was estimated based on various 
sources, such as ESRI land cover product, the Forest Resource Assess-
ment Report of Nepal (DFRS, 2015), physiographic zones, enhanced 
vegetation index, and annual growth rate and allowable harvesting 
guidelines of Nepal (DOF, 2005). Similarly, CS was based on ESRI land 
cover product, the Forest Resource Assessment Report of Nepal (DFRS, 
2015), and value transfer from various sources (i.e., Amthor et al., 1998; 
DFRS, 2015; Rimal et al., 2019; Shrestha, 2016; Syahrinudin, 2005; Yan 
et al., 2015). Water yield model was used to quantify WY based on the 
CHIRPS Pentad dataset provided by UCSB/CHG (Funk et al., 2015) and 
actual evapotranspiration data accessed from MOD16A3GF 
MODIS/Terra Net Evapotranspiration Gap-Filled Yearly L4 Global 500 
m SIN Grid V006 (Running et al., 2019). We adopted the Revised Soil 
Loss Equation (RUSLE) to quantify soil conservation (Wischmeier and 
Smith, 1965), while HQ was quantified in terms of the quality index 
based on land cover suitability, threats to the habitat, and sensitivity of 
the land use to the threats (Terrado et al., 2016). Further details of the 
data collection and procedures for the quantitative assessment of the ES 
can be found in a paper by Aryal et al. (2023b). 

Moreover, we carried out household survey (HHS, n = 300) to un-
derstand the social demand of ES in the study area. Stratified simple 
random sampling was employed for this research. As an approach to 
stratification, we classified the settlements in the study area into five 
categories based on their proximity to the five major land cover classes 
(i.e., forestlands, shrublands/grasslands, water and wetlands, croplands, 
and urban settlements). Those land cover types were identified in both 
the predetermined upstream and downstream watersheds. In this way, 
we randomly selected ten settlements (five land cover types * two 
watershed categories). HHS was carried out from randomly selected 30 
households each the selected settlements. An information sheet was 
supplied to the respondents before doing the survey to facilitate them 
about the understanding of nature and characteristics of ES. We devel-
oped and tested a semi-structured questionnaire which was reviewed 
and approved by the Human Research Ethics Committee of a university 
(the name of the university has been withheld for the review process). 
Pre-tested questionnaire was then translated into local language and 
administered to the respondents by trained personnel in the relevant 
field. Section of the semi-structured questionnaire for household survey 
is provided in Supplementary file A. Readers are referred to the paper 
(Aryal et al. 2023e) for additional details of the HHS. In addition to 
biophysical quantification of ES and social survey, relevant data were 
collected through literature review and the review of policy and pro-
gram documents related to our study area to discuss the dynamics of 

supply and demand of various ES. 

2.3. Data analysis and visualization 

Data analysis was done based on various statistical and visualization 
tools. After assessing the average production per unit area (i.e., sq.km) of 
ES at the watershed level, for all the identified 186 watersheds, we 
prepared scatter plots for each pair of ES based on their quantitative 
values at the watershed level. The scatter plots were prepared for all 15 
pairs of ES for 186 watersheds in the study area. The highest attainable 
combinations of ES supply were picked up to draw PPF curves for each 
pair of ES. 

Similarly, polar plots were prepared to understand the relative 
importance of ES from the demand perspective. Because the research 
participants were asked to pick the desirable demand (i.e., point coor-
dinate) for all the 15 pairs of ES, the respondents gave the relative value 
for each ES five times (i.e. to specify their demand of 1 ES at the 
desirable level of every other five ES). Six polar plots were prepared, 
using R software, taking 1 ES at a time with its average desirable level 
compared to the relative weightage of the other five counterparts, on a 
scale of 1–10. The parameters were then calculated based on their 
respective arithmetic mean of the point coordinates, focusing on 1 ES at 
a time. 

Further, to superimpose the social demand of ES with the biophysical 
supply potential, we recalibrated the average production of ES on a scale 
of 0–100 based on its percentage to the maximum value (i.e., the relative 
percentage of ES for each watershed as compared to the maximum 
attainable value for the specific ES among the 186 watersheds). Like-
wise, the point coordinate of the desirable demand was also rescaled 
from 0 to 100 from its original value of 0–10 by multiplying it by 10. 
Since the watersheds in our study area were highly varying based on 
their production possibilities, we classified watersheds based on gap 
statistics from K-means clustering, which is basically carried out to 
divide the total number of observations into certain clusters based on 
their dimensionality so that the sum of squares within the cluster is 
minimized (Hartigan and Wong, 1979). Based on the clustering, we 
depicted three optimum levels of watershed clusters. One of the clusters 
characterised the northern uplands of the study area, which is covered 
with bare ground, snow/ice, and shrublands that barely supply ES (no or 
minimum supply of crop, timber, and carbon), and therefore, we 
excluded northern uplands from our analysis, and the remaining two 
clusters (agriculture-dominated lowland watersheds, and multifunc-
tional mountain watersheds) were considered for further analysis to 
visualise supply sphere of ES. Ellipses of the three values: (1) productive 
capacity of lowland watersheds, (2) productive capacity of mountain 
watersheds, and (3) social demand were then prepared using R software, 
showing three different levels of concentration (i.e., central circle =
50%, middle circle = 75% and outer circle = 95% of all the combination 
of ES supply and demand). 

3. Results 

3.1. Pairwise production potentials of the ES in the Himalayan landscape 

The production possibility of ES is varying depending on topo-
graphical and landscape characteristics, ecological processes, climatic 
factors, and external anthropogenic influences. Nevertheless, the pres-
ence and absence of one ES also play a dominant role in determining the 
amount and intensity of the production possibilities of other ES. Fig. 3 
shows the pairwise production possibilities of ES for different possible 
pairs of the six ES. The area under the curve represents the pairwise 
production possibilities in the Himalayan landscape, meaning that 
production of ES cannot exceed the limit set by the PPF. For instance, TP 
of about 250 cum/sq.km is possible at the cost of zero CP, whereas CP of 
about 230 tons/sq.km is possible at the cost of zero TP. If both TP and CP 
are required, the maximum possible production of CP is 100 tons/sq.km 
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Fig. 3. Curves of the production possibility frontier for the 15 pairs of ecosystem services in the study area. Supply of ecosystem services cannot go beyond those 
curves unless any intervention is applied. 
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while TP is 150 cum/sq.km. This kind of inverse relationship of the 
pairwise production possibility is pertinent with CP as compared to the 
other ES, including CS, WY, and SC. However, even if we approach the 
maximum value of CP, the HQ index of the landscape cannot be less than 
0.22. 

For some pairs of ES, the production potential of one ES increases as 
the production potential of the other ES increases. For example, pairwise 
production potential increases for both ES of the pair in the case of TP 
and HQ as well as CS and HQ. The curves of PPF show that some pairs of 
ES are mutually increasing with the increase of one another until some 
point and then decline in 1 ES at the increase of other ES. This trend can 
be observed in the pairs of WY and SC, TP and CS, WY and CS, and SC 
and CS. For example, both WY and SC mutually increase until the con-
current supply of about 15.5 million cum/sq.km WY and 9500 tons/sq. 
km SC, but with the further increase in the supply of WY, SC decreases. 
Likewise, the mutual production of CS and SC was highest when CS is 
about 11 thousand tC/sq.km and SC is about 9400 ton/sq.km, but the 
production of SC decreases as the production capacity of CS increases 
further. 

The PPF curves for some pairs of ES are unique in their shape. The 
production potential of HQ was not affected by the increase in WY, but 
showed an unpredictable change with the increase in SC. Likewise, there 
was a small increase in SC and WY with the increase of TP, but both ES 
(SC and WY) showed a precipitous fall with the further increase in TP. 
For example, the highest production potential of WY (>24 million cum/ 
sq.km) was observed when TP was about 185 cum/sq.km, but WY 
rapidly declined with further increases in TP. Similarly, SC increased 
from about 5500 tons/sq.km to the highest (>9000 tons/sq.km) when 
TP was about 100 cum/sq.km, then it showed a decreasing trend. In 

general, the curves of PPF (Fig. 3) showed that eight pairs of ES showed 
inverse relationships and five pairs showed mutually increasing re-
lationships when considering the combination of maximum pairwise 
production potentials. Alternatively, the remaining two pairs were more 
or less unchanged with the increase of the others. 

3.2. Social demand of ES and their relative importance to local people 

The relative weightage of utility values of ES, which is based on the 
social demand, is presented in Fig. 4. WY had the highest average utility 
value (8.99), followed by CP (8.57), SC (6.86), and TP (6.63). CS had the 
lowest average utility value among the ES with a score of 5.73 on a scale 
of 1–10. Alternatively, the utility value of WY is at its highest (9.01) 
when it was jointly valued with SC and lowest (8.96) when compared 
with that of the CP. Similarly, CP is at its highest value (8.96) when it 
was jointly valued with WY, and lowest (8.53) when it was concurrently 
valued with CS. The order of priority of ES (as expressed by the score of 
utility values) remained unchanged irrespective of its comparison with 
different ES and was found as WY > CP > SC > TP > HQ > CS. 

3.3. Gaps between supply and demand of ES 

Pairwise production possibilities of ES are different with the varying 
landscape characteristics, which can be observed through different el-
lipses representing the productive capacity of lowland watersheds and 
mountain watersheds in Fig. 5. Ellipses of the social demand for 
respective pairs of ES indicate social aspirations for the availability of 
those ES. Fig. 5 also shows that the current state of the productive ca-
pacity of the ES is not adequate to meet the social demand of many ES, 

Fig. 4. Relative weightage of utility values of ES for local people on a scale from 1 to 10. Six different polar plots show the relative weightage of other five ES when 
taking the collective average of one ecosystem services (mentioned at the center of each plot). Abbreviations: CP = crop production, TP = timber production, CS =
carbon sequestration, WY = water yield, SC = soil conservation, and HQ = habitat quality. 
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Fig. 5. Ellipses of the social demand and supply of lowland and mountain watersheds in the study area. The core circle includes 50% of the observation, the middle 
circle includes 75%, and the outer circle of each ellipse includes 95% of the observation in both social demand and the current supply of ecosystem services. Value >
100 and < 0 should not be considered because those are just the effect of the ellipse and no data exist over there (i.e., maintained for the aesthetic purpose of the 
figure). Both the x-axis and y-axis represent the percentage relative to the maximum value for both social demand and ecological supply. 
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especially CP, because none of the ellipse (lowland watersheds and 
mountain watersheds) overlaps with the ellipse of the social demand of 
CP (Fig. 5: a, b, c, d, and e). Furthermore, the productive capacity of 
mountain watersheds seems to be very poor in meeting the social de-
mand as compared to that of the lowland watersheds. Although the 
productive potential of mountain watersheds is near to satisfy the social 
demand, the gap between social demand and the productive capacity of 
WY in the lowland watershed is very high (Fig. 5: c, f, h, l, and m). 
Interestingly, there is not a big gap between the supply potential and 
demand of TP (Fig. 5: a, g, h, i, and j). The same is the case for HQ where 
the social demand and the productive capacity of both lowland water-
sheds and mountain watersheds are not much different. Conversely, the 
production potential of CS is at least well met or more than the social 
demand as we can see in Fig. 5 (b, g, m, n, and o). Biophysical production 
potential and social demand overlap in the case of the pairwise pro-
duction of TP and HQ (Fig. 5: j), indicating an ideal condition for 
landscape management in the Himalayas. 

4. Discussion 

Production potential of one ES is dependent on that of the other 
associated ES. Some pairs of ES have illustrated a positive relationship 
because the increase in the production of one ES support the increase in 
the production of the other, while some pair of ES have shown an inverse 
relationship (Brown et al., 2015; Chen et al., 2019). For example, the 
attainment of maximum production potentials of CP was found to be 
contingent on the reduced production of TP, CS, WY, SC, and HQ. While 
the increase in CS was found to be contingent on the increase in supply 
potentials of HQ, TP, WY, and SC. Those relationships might just be the 
representation of the spatial associations in the Himalayas. Cause-effect 
and functional interaction, however, can be different according to the 
differing intensity of interactions between people and places (Rugani 
et al., 2019; Torralba et al., 2018). The social demand of WY was found 
to be of the highest importance, followed by CP, SC, and TP. The relative 
importance of CS and HQ was found to be low from the local people’s 
perspective. The gap between the ecological supply and social demand is 
pertinent in the case of CP, the demand of which was hardly met by the 
supply potential of agriculture-dominated lowland watersheds. The gap 
between the supply potential of CP from mountain watersheds and its 
social demand is even wider, which was found to be nearly impossible to 
meet even at the expense of all the other ES. Ideally, the ecological 
supply potential was found to meet its social demand, regarding the pair 
of TP and HQ in the Himalayas. 

4.1. Supply and demand dynamics of ES 

In terrestrial ecosystems, ecosystem assets (i.e., land cover types and 
land use practices) play a decisive role in the concurrent supply of 
various ES, at differing scales and intensities (Li et al., 2022; Sannigrahi 
et al., 2020). Abundance of some types of ecosystem assets (i.e., 
forestland) is crucial to supply multiple ES (i.e., including TP, CS, SC, 
and HQ) while others, such as cropland, opted to produce a single ES (i. 
e., CP). Nonetheless, a landscape is a mosaic of different ecosystem as-
sets, allowing a mix of production of various ES in which some of them 
are mutually exclusive while others can be mutually supportive (Aryal 
et al., 2022; Laudari et al., 2022; Wang et al., 2022; Yu et al., 2021). 
Based on the biophysical characteristics and properties of ES, the in-
crease in the production of one ES is only possible at the reduction of 
other ES, as we observed CP can only be maximized at the reduction of 
TP, CS, WY, SC, and HQ. Not only in our case, but the increment in CP 
also has sufficient examples of the reduction in other ES, for example, 
crucial environmental services in West Africa (Vaast and Somarriba, 
2014), wetland health in the U.S. and Mid-Atlantic region (Bostian and 
Herlihy, 2014), forestry services in Swiss mountains (Briner et al., 
2013), and biodiversity in India (Hinz et al., 2020). Likewise, West et al. 
(2010) found that one more ton of crop yield has contributed to the 

emission of three tons of carbon annually in the temperate zone. 
Although Clough et al. (2011) detected little association between crop 
production and biodiversity, we found that the increase in CP incurred a 
decrease in HQ of the landscape. Yet, the HQ index rarely gets to zero 
because farmlands also support various forms of agrobiodiversity. 
Trade-offs relationship is prominent in contested landscapes where 
agriculture expansion is common, especially in the financially chal-
lenged countries in the Global South (Li et al., 2020; Winkler et al., 
2021). Although a study by Aryal et al. (2023b) stated the significant 
trade-off relationship only between CP and SC, the inverse curve of PPF 
(as shown in Fig. 3) for all the five pairs of ES (i.e., CP with other five ES) 
indicate that agriculture development strategy and cropping practices 
must be seriously examined to safeguard the multifunctionality of the 
Himalayan landscapes. While doing so the policy maker may seek for the 
program alternatives that not only focus on the increase in CP but 
concurrently support biodiversity conservation, soil erosion and land 
productivity enhancement, land sharing approach, and cleaner pro-
duction pathways (Li et al., 2021; Ma et al., 2021; Nath et al., 2021; 
Wang et al., 2011). As demonstrated by Aryal et al. (2023a), for 
example, integrated agroforestry practice can be a promising alternative 
to address the trade-offs in ES, especially from the production of crops 
and grains. 

Mutually incremental pairwise production potentials have been 
detected for a few pairs, such as TP and HQ, CS and HQ, and TP and CS. 
It might be attributed to the availability of forestland because a land-
scape with forestland can increasingly supply TP, HQ, and CS, simul-
taneously. To illustrate, Petrasek et al. (2015) valued forestland for its 
combined TP and CS market in the and Benz et al. (2020) stressed the 
multifunctionality of forests not only to supply timber and carbon but to 
deal with climate change, livelihood support, and other societal de-
mands in China and Germany. Likewise, Gustafsson et al. (2020) rec-
ommended ‘retention forestry’ for integrated biodiversity conservation 
in Europe, implying a strong connection between forest and biodiver-
sity. Some pairs of ES were found to be mutually increasing to some 
extent and then the amount of one ES decreases with the increase in 
another, as evident in our case of pairs of WY and SC, WY and TP, SC and 
TP, and CS and SC (Fig. 3). Water availability improves soil quality and 
hence soil retention (Kramer and Boyer, 1995; Mahajan et al., 2021); 
however, the excess amount of WY might trigger erosion (Chalise et al., 
2019; García-Ruiz et al., 2017), and the value of SC might have 
decreased beyond the value of 15 MCM/sq.km of WY. Unlike the general 
assumption that forestland produces a good amount of TP and also im-
proves SC of the landscape (Ding et al., 2022; Shono et al., 2007), we 
found SC has decreased when TP goes beyond 100 cum/sq.km. This 
might indicate two crucial remarks that excessive load of trees in the 
mountains might be counterproductive to soil retention in slopes which 
has also been claimed by other researchers (i.e., Giadrossich et al., 2019; 
Lan et al., 2020; Satchell, 2018). Alternatively, SC might be attainable at 
its maximum not only with the forestland but with the integrated 
management of forestland, grassland, wetlands, and improved agro-
nomic practices, simultaneously in the contested landscapes. 

The social demand for ES is dependent on multiple socioeconomic 
factors (Bidegain et al., 2019; Campbell, 2018; Terrado et al., 2016). 
Human-dominated landscapes in the Himalayas, including the CHAL 
area, are characterised by heterogenous communities with different 
economic classes, origin and ethnicity, caste and language, and 
multi-cultural and social hierarchy (MOFE Nepal, 2015; WWF Nepal, 
2013). Preference and social demand might differ from place to place 
and community to community, but landscape-level planning and man-
agement must consider the holistic view of social demand (Acharya 
et al., 2019 & 2021). Our findings of relatively high demand of WY, 
followed by CP and SC, corroborate with the previous findings of Castro 
et al. (2016) who claimed that water availability is the most essential 
and highly demanded ES among all types of ES beneficiaries. Similarly, 
Chang et al. (2013) emphasized the importance of water demand and 
water quality variables in Columbia River Basin. Alongside, based on the 
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choice experiment approach, Khan and Zhao (2019) found WY as the 
most preferred ES in inland river basins of China. Although Eitelberg 
et al. (2016) urge the demand for carbon storage and biodiversity to 
influence future land use scenarios, our findings affirm that it is very 
unlikely to create this kind of scenario because CS and HQ were among 
the least preferred and low-demanded ES for local people. Because our 
finding is based on the preference of local people who are prompt to put 
values to local ES, policy and management framework however should 
be strategic to incorporate non-local ES for integrated and sustainable 
landscape management. 

The gap between demand and supply of ES must be one of the 
greatest concerns for policymakers and landscape management practi-
tioners (Laca, 2021; Larondelle and Lauf, 2016). We found that the most 
distant gap between the ellipses of demand and supply is for the pair of 
CP and WY (Fig. 5c), followed by the pair of CP and SC (Fig. 5d). In those 
cases, the ellipse of the demand of the ES pair is neither touched by the 
supply ellipse from lowland watersheds nor that of the mountain wa-
tersheds. The demand for CP is much higher than the supply potential 
from the global perspective as well (Ray et al., 2013; Sands et al., 2014). 
For instance, South Asian countries are facing severe challenges in 
meeting food demand (Rasul, 2016; Sodhi et al., 2010), as well as food 
security has become a growing agenda in African countries (Asenso-O-
kyere and Jemaneh, 2012; Sasson, 2012). It might be a different case in 
developed countries, such as Kroll et al. (2012) found that the food 
supply is much higher than its demand in European nations. Further-
more, a site-based assessment might show a different result as Wang 
et al. (2019) found that the supply of WY is higher than its demand in 
China’s Hainan Island. But the gap between social demand and con-
current supply of CP and WY has been a pressing issue in 
human-dominated landscapes in the Himalayas. 

Although the productive capacity of lowland watersheds is close to 
the social demand in the case of CP, the productive capacity of mountain 
watersheds tends to meet the social demand of various other ES such as 
WY, SC, and TP. It might be because the lowland watersheds are char-
acterized by the plainlands which are suitable for farming and poten-
tially irrigation facilities. Nevertheless, the supply of CP is not sufficient 
for sustainable landscape management, and therefore, concurrent sup-
ply of various provisioning and non-provisioning services is indeed 
important to supply local and non-local demand for ES. In this regard, 
multifunctional watersheds in the mountains, which are the common 
features of Himalayan landscapes, should be managed carefully. In line 
with our observation, Accatino et al. (2019) also recommended 
expanding multifunctional areas to allow the concurrent production of 
multiple ES. Having mentioned the supply-demand perspective, it 
should bear in mind that the supply and demand of ES are dynamic and 
changes over time and space (González-García et al., 2020; Kroll et al., 
2012), which need to be carefully scrutinized. Whatsoever, the gener-
alization of supply and demand of ES, as well as the blueprint approach 
to ecosystem management might be counter-productive (Aryal et al., 
2023d), thus people and place-based ecosystem management should be 
considered based on the supply-demand dynamics in the Himalayas. 

4.2. Policy and management alternatives to constrict the supply-demand 
divide 

Civilization and human settlement have been dependent on the easy 
availability of natural resources and ES. People used to live in and 
develop settlements in the Himalayas where they can have easy access to 
ES such as forest resources, land for crop production, and water resource 
availability (Chidi, 2009; Fang et al., 2018). However, the availability of 
the resources must have changed with the rate of consumption and the 
trends of human interventions, changes in socio-demographic charac-
teristics, and changes in climatic and natural processes. In this regard, 
the recovery of multiple ES must not be an impossible task but should be 
cautious to consider non-local ES while minimizing the gap between the 
supply and demand of ES. To illustrate, rotational cropping and 

agroforestry practices have been widely recommended to minimize the 
trade-offs between CP and other services (Aryal et al., 2023b; Clough 
et al., 2011; Maraseni and Cockfield, 2011; Vaast and Somarriba, 2014). 
Similarly, Wang et al. (2019) suggested intercropping to reduce the 
supply-demand gap in Hainan Island of China. Moreover, Castro et al. 
(2016) believed in integrated watershed management as a solution to 
achieve the higher social demand for ES in Kiamichi watershed of 
Oklahoma. Likewise, Yin et al. (2023) recommended zoning, classifi-
cation, and hierarchical governance for integrated management of ES to 
address the mismatches between the demand and supply of ES in the 
Yellow River Basin of China. Further, Wei et al. (2021) proposed a 
driver-based framework of integrated management to address the gap 
between demand and supply of ES in dryland catchments. Alternatively, 
Holt et al. (2016) recommended providing incentives for multiple ES 
management to address the demand-supply divide of ES. Nonetheless, a 
single sectoral intervention might not be adequate for the sustainable 
management of ES, so policy and management alternatives to minimize 
the gap between supply and demand must be based on the structure and 
pattern of the interdependencies of society and nature at large. 

There has been a long-lasting discussion about various measures to 
deal with the trade-offs in ES, and to fulfill the gap between demand and 
supply. Aryal et al. (2022) identified some measures through a system-
atic literature review, such as management interventions, technology 
and innovation, incentives and compensation, and empowerment of the 
community institutions for sustainable resource management. However, 
policy alternatives and management interventions must be guided by 
the principles but not the prescriptions, such as a successful manage-
ment model in one site might not be successful in another site and 
vice-versa (Polasky and Segerson, 2009; Rosenberg and McLeod, 2005; 
Tallis et al., 2008). Further, an approach to landscape management 
should be guided by the broader framework of nature-based solutions to 
solve the problems of a huge gap between demand and supply of the ES 
(Cohen-Shacham et al., 2019; Lafortezza et al., 2018). Improved agro-
nomic practices might lessen the gap between CP and other ES as 
observed in our study; however, the interventions should be guided by 
the principles of integrated watershed management (Aryal et al., 2019; 
Haregeweyn et al., 2012) and the adoption of an integrated approach to 
agroforestry as suggested by Aryal et al. (2023a). Additionally, farming 
practices should be integrated with forestry, carbon, and climate actions 
to safeguard the multifunctionality of the landscapes to supply both 
provisioning and non-provisioning ES, simultaneously. 

Integrated conservation and development programs have succeeded 
in various parts of the Himalayan landscape to conserve nature while 
satisfying the development need of local people (Alpert, 1996; Aryal 
et al., 2020; Godar Chhetri, 2012; Upadhaya et al., 2022). This approach 
can be adopted to minimize the gap between the supply and demand of 
CP because the demand pressure of CP can also be reduced by engaging 
local communities in various livelihood support and off-farm incom-
e-generating activities. Alternatively, policy alternatives should 
consider technological development and innovation in farming practices 
(Coccia, 2019; Duru et al., 2015), which might help in increasing the 
supply of CP and other ES without compromising the productivity of 
non-provisioning ES. Likewise, coordination among multiple in-
stitutions and good governance while implementing landscape man-
agement activities must also be a prime concern (Cadman and Maraseni, 
2012). We acknowledge a few limitations of our study that the under-
standing of social demand in terms of its quantitative value (i.e., amount 
of ES per household per year) would give a clear picture which we 
recommend for future studies. We believe that the findings based on 
relatively small samples (as compared to the area of the landscape) 
might be cautiously taken while generalizing its policy implications at a 
wider scale. In addition to the consideration of six ES, incorporation of 
the other ES would further enlighten supply-demand dynamics of ES in 
the Himalayas. Further, a one-time assessment of supply and demand 
might be inadequate because the supply and demand of ES is changing 
over time and space. In this regard, we suggest periodic monitoring of 
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the socio-demographic characteristics and the dynamics of ES flow to 
ease planning and management of the landscape. Moreover, the rela-
tionship of one ES to other, as shown in Fig. 3, should not be considered 
as just the two-way interactions but based on various other 
socio-ecological factors of the landscapes. Yet, the future course of ac-
tion should be the empowerment of community institutions, acknowl-
edgment of indigenous practices of natural resource management, and 
harmonized policy interventions to minimize trade-offs and maximize 
synergies among ES to constrict the supply-demand divide in 
human-dominated landscapes in the Himalayas. 

5. Conclusions 

Himalayan landscapes, where ecosystem assets are disproportion-
ately distributed along altitudinal gradients, are under pressure due to 
the increasing demand for ES. Understanding the spatial associations of 
ES and their pairwise production possibilities, social demand of ES, and 
examination of the supply and demand gaps are therefore vital for 
landscape planning and management. In this paper, we have depicted 
the PPF of all possible pairs of six different ES. An increase in crop 
production was found to be possible at the expense of timber, carbon, 
soil, water, and habitat quality. There has been a mutual increase of ES 
for all the possible pairs of timber production, carbon sequestration, and 
habitat quality. While some other pairs of ES showed mutual increase 
until some points of threshold and then the further increase in one ES 
triggered the decrease in other ES (i.e., timber production and soil 
conservation, water yield and soil conservation, carbon sequestration 
and soil conservation, and timber production and water yield). 

Local people tend to put more value on water yield and crop pro-
duction, and less on carbon sequestration and habitat quality. The de-
mand for all pairs of ES with crop production has never been met 
according to the current state of the pairwise biophysical supply po-
tential of the ES. The productive capacity of mountain watersheds is 
much lower than the lowland watershed in terms of crop production, 
whereas the productive capacity of mountain watersheds is much higher 
than the lowlands for water yield and soil conservation. The current 
supply potential of timber production, carbon sequestration, and habitat 
quality is adequate to meet its social demand. To minimize the trade-offs 
in production and to meet the demand for ES, we recommend various 
policy and management interventions, including improved agronomic 
practices and integrated agroforestry approach to combine farming 
practices with forestry and climate actions, nature-based solutions, in-
tegrated conservation and development program, as well as livelihood 
support to generate off-farm employment opportunities, technology and 
innovations, and empowerment of the community institutions. From the 
theoretical perspective, assessment of the trade-offs from the sustain-
ability framework (social and ecological perspective) has been found to 
be a promising approach to understand the supply and demand dy-
namics of ES. Nevertheless, we recommend future research on periodic 
monitoring of the landscape variabilities and differing socio- 
demographic characteristics over time and space. We believe that pol-
icy and management alternatives should be guided by the principles of 
ecosystem management but not the experimental prescriptions that 
might have been successful in some parts of the world. Instead of a 
blueprint approach of management prescriptions, interventions should 
be based on society and site-specific ecological environment and must 
ensure that the restoration of one ecosystem service does not compro-
mise the basics of other crucial ecosystem services in the landscape. 
Besides, we argue that people- and place-based ecosystem management 
can be considered as a safe operating space for sustainable and cleaner 
production of ecosystem services in the Himalayas. 
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