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A B S T R A C T   

Schizophrenia (ScZ) is a devastating mental disorder of the human brain that causes a serious impact of 
emotional inclinations, quality of personal and social life and healthcare systems. In recent years, deep learning 
methods with connectivity analysis only very recently focused into fMRI data. To explore this kind of research 
into electroencephalogram (EEG) signal, this paper investigates the identification of ScZ EEG signals using dy-
namic functional connectivity analysis and deep learning methods. A time-frequency domain functional con-
nectivity analysis through cross mutual information algorithm is proposed to extract the features in alpha band 
(8–12 Hz) of each subject. A 3D convolutional neural network technique was applied to classify the ScZ subjects 
and health control (HC) subjects. The LMSU public ScZ EEG dataset is employed to evaluate the proposed 
method, and a 97.74 ± 1.15% accuracy, 96.91 ± 2.76% sensitivity and 98.53 ± 1.97% specificity results were 
achieved in this study. In addition, we also found not only the default mode network region but also the con-
nectivity between temporal lobe and posterior temporal lobe in both right and left side have significant differ-
ence between the ScZ and HC subjects.   

1. Introduction 

Schizophrenia (ScZ) is a major neuropsychiatric disorder which 
causes psychosis and is associated with considerable disability [1,2]. 
Mainly ScZ patients have persistent delusions, persistent hallucinations, 
disorganized thinking and highly disorganized behavior [3–5]. World 
Health Organization (WHO) reported that ScZ disease affects approxi-
mately 24 million people throughout the world in 2022 [6]. Electroen-
cephalogram (EEG) as an auxiliary mean of identification, which can 
provide perfect performance in identification with high accuracy results 
between ScZ subjects and health control (HC) subjects through the scalp 
brain electronically signal [7]. In addition, EEG supports several benefits 
rather than the other medical machine application such as functional 
magnetic resonance imaging (fMRI) and Magnetoencephalography 
(MEG), which includes low-cost prize in medical machine and less 
reliance on trained professionals for practical application [8,9]. 

Complex brain networks analysis is used widely to explore brain 
diseases such as Alzheimer diseases, Parkinso’s diseases, alcoholism, 
epilepsy diseases and ScZ diseases etc, [10–12]. Chen et al. proposed 

function connectivity calculated through the mutual information (MI) 
algorithm and improved Google-net CNN models to identify the 
attention-deficit/hyperactivity disorder (ADHD) subjects based on EEG 
signal and reported a result of 94.67% accuracy [13]. They also 
compared the connectivity features in the support vector machine 
(SVM) and multilayer perceptron and received 90.16% and 92.08% 
accuracy, respectively. Khan et al. applied the PDC connectivity method 
with a 3D-CNN model to detect alcoholism EEG data, and received a 
result of 87.85% accuracy [12]. In our previous work, we proposed the 
functional connectivity through the cross mutual information (CMI) 
algorithm as signal processing work with a 3D-CNN method to classify 
the alcoholic EEG data, and received a result of 96.25 ± 3.11% accuracy 
[14]. Inspired by the good classification results of the method which 
combined the EEG brain connectivity and graph deep learning models in 
research, combining brain connectivity analysis and graph classification 
in EEG ScZ identification is proposed in this paper. 

The default mode network (DMN) is a popular location for resting 
state brain activity analysis through the fMRI and EEG data. There are 
three main well-recognized area of the DMN which contains the mesial 
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prefrontal cortex (MPC), the lateral posterior cortex (LPC) and posterior 
cingulate cortex/precuneus (PCC) [15]. Many ScZ identification work 
based on fMRI data used the DMN region as the nodes through the in-
dependent component analysis [16,17]. However, Phang et al. regarded 
local brain network connectivity cannot fully reflect abnormal brain 
region communication observed in ScZ [18]. In our study, the whole 
brain connectivity is used to identify the ScZ and verify the effect of the 
DMN region through the statistical significance of connectivity. 

1.1. State of art section 

Many researchers have attempted to identify ScZ from EEG data 
through traditional signal processing method with the machine learning 
and deep learning models. Shoeibi et al. proposed a deep learning model 
which combined 1D-CNN and long short-term memories (LSTMs) to 
detect the ScZ EEG signal and received an accuracy percentage of 
99.25% result [19]. Siuly et al. applied a Google-net based deep features 
with an SVM model to classify the ScZ subjects and reported a result of 
98.84% accuracy, 99.02% sensitivity and 98.58% specificity [20]. They 
also highlighted another method through a deep residual network and 
SVM classifier in the same dataset and achieved 99.23% accuracy [21]. 
Discrete wavelet transform (DWT) and relaxed local neighbor difference 
pattern (RLNDip) technique with artificial neural network (ANN) is 
proposed by N.J. Sairamya et al. to identify the EEG ScZ signal, and they 
reported a maximum accuracy of 100% in their study [22]. Principal 
component analysis (PCA) and k-nearest neighbours (k-NN) models 
stated via de Miras et al. to perform ScZ patients from healthy subjects, 
and achieved a result of 0.87 accuracy, 0.82 sensitivity and 0.90 speci-
ficity [23]. 

Comparing with the traditional signal processing method used in 
EEG signal detection, the brain network analysis not only can achieve a 
satisfied detection result, but also can find the abnormal connectivity 
area caused by ScZ diseases. In connectivity analysis, there are mainly 
two methods to identification patients and HC subjects. One is using 
graph theory measures of complex brain network analysis to summarize 
the details of the brain graph and using machine learning methods to 
classifier the data. Kim, J.-Y et al. proposed the global and local clus-
tering coefficient as the brain network features and received their best 
accuracy of 80.66% through linear discriminant analysis classifier in ScZ 
detection [24]. Another method is directly using the machine learning 
and deep learning methods to classifier the brain connectivity matrix. 
Panischev et al. proposed cross correlation function algorithm to 
construct frequency domain functional connectivity for detecting ScZ 
and reported results of 80% in accuracy, 76% in sensitivity and 85% 
specificity [25]. Zhao, Z. et al. used partial directed coherence (PDC) and 
phase lag index (PLI) to calculate the effective and functional connec-
tivity matrix, and they applied the SVM model to classifier the ScZ 
subject and achieved 95.16% accuracy 96.15% sensitivity and 94.44% 
specificity results [26]. Naira, T. and C. Alberto proposed the Pearson 
correlation connectivity with CNN to classifier the EEG ScZ signal and 
reported the results 90% in accuracy, 90% in sensitivity and 90% in 
specificity, respectively [27]. Phang et al. developed a directed func-
tional connectivity through PDC with vector autoregressive model, then 

classified the ScZ EEG signal via a multi-domain connectome CNN model 
and reported a result of 91.69 ± 4.67% in accuracy, 91.11 ± 8.31% in 
sensitivity and 92.50 ± 10.00% in specificity [18]. Chang, Q. et al. 
highlighted the graph neural network (GNN) to classify ScZ connectivity 
features calculated by PLI and partial correlation (PC) algorithms, and 
reported a result of 93.33% accuracy [28]. 

1.2. Objectives of this study 

In this study, dynamic CMI connectivity method with 3D-CNN model 
is proposed to identify the EEG ScZ signal. The CMI connectivity can 
extract the time-frequency domain features and find abnormal connec-
tivity area caused by the ScZ diseases. In addition, the 3D-CNN models 
were applied and designed as a framework to classify the graph data of 
brain connectivity matrix. Furthermore, extension to the dynamic con-
nectivity analysis for improving the accuracy, moving sliding window is 
applied in this experiment. To reduce the computational cost, the graph 
theory measures of complex brain network analysis is used to select the 
corresponding brain rhythm of ScZ identification as well. All the ex-
periments were simulated in MATLAB 2021b software on a Dell com-
puter with an NVIDIA 2080TI GPU. 

In this paper, Section I introduced the background and brief lecture 
review of the study area. Section II described the EEG ScZ Dataset. The 
pre-processing, time-frequency brain connectivity algorithm, machine 
learning and deep learning classification models were summarized as 
well. Section III reported the results and compared the different machine 
learning and deep learning models of this study. In Section IV, the se-
lection of frequency bands, statistical analysis of whole brain connec-
tivity values and dynamic analysis were evaluated. The limitation and 
comparison between the proposed method with previous work were 
proposed in this section as well. Section V is a brief conclusion of this 
paper. 

2. Method 

There are four main steps in EEG ScZ identification, the details are 
described in Fig. 1. In pre-processing progress, the band-pass filter is 
applied to denoise the EEG raw data, and continuous wavelet transform 
(CWT) is stated to extract selected frequency bands data. To extend into 
dynamic functional connectivity, the sliding window size is selected as 
30 s with 1 s overlap in this study. Then, using MI algorithm to convert 
the data into the functional connectivity matrix. Finally, feeding the 
graph matrix into the machine learning and deep learning models for the 
classification work. 

2.1. Dataset 

The publicly ScZ EEG dataset collected from Lomonosov Moscow 
State University (LMSU) is used to evaluate the performance through the 
proposed method in this study [29,30]. The dataset LMUS contains 84 
subjects which includes 45 ScZ subjects and 39 HC subjects. Each sub-
jects’ data is 60-s resting eye-closed state from 16 channels (F7, F3, F4, 
F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1 and O2) with 128 Hz 

Fig. 1. The framework of automatic identification of ScZ though dynamic functional connectivity analysis and deep learning method.  
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sample rate. All patients with ScZ were diagnosed at the Mental Health 
Research Center (MHRC) according to ScZ diagnostic criteria F20, F21, 
F25 of the ICD-10 classification of mental and behavioral disorders 
developed by the International Statistical Classification of Diseases and 
Related Health Problems. During the MHRC examination, the patient 
did not receive any chemotherapy. 

2.2. Pre-processing 

Sliding window technique is used in this study, to explore the dy-
namic changes of the functional connectivity. The sliding size was 
selected as 30 s within 1 s overlap. Band pass filter between 1 and 50 Hz 
denoised the EEG raw data through a six order Butterworth zero-phase 
filter algorithm. 

CWT is proposed in the signal processing progress in this experiment, 
which converted the raw data into the time-frequency domain power 
spectrum in α band (8–12 Hz). The algorithm of CWT is shown in 
equation (1): 

Wxi (t, f )=
∫

xi(λ) × φt,f (t − λ)dλ (1)  

where ‘Wxi ’ is the power density, the ‘f’ is the selected frequency bands, 
‘t’ is the time instant, and ‘i’ means the number of the channel. 

The mother wavelet calculated by the Morlet wavelet formula is 
described as follow in equation (2). 

φt,f (λ)=A × ei2πf (λ− t)×e
− (λ− t)2

2σ2 (2)  

where ‘ơ’ is the time spread which equals to 8
2πf. 

The output of the pro-cessing progress is changed into 4 × 3840 size 
of each channel data. 

2.3. Cross mutual information algorithm 

Based on the CWT power spectrum density, MI is used to construct 
the CMI functional connectivity on the time-frequency data which 
measures the interdependence communication between two EEG chan-
nels. The MI formula is shown in equation (3). 

MI
(
Fi,Fj

)
=H(Fi)+H

(
Fj
)
− H

(
Fi,Fj

)
(3)  

where ‘i’ is the number of the channel, the H(Fi) is the entropy and the 
details described in equation (4). 

H(Fi)= −
∑40

b=1
p
(
Fi,b

)
log2 p

(
Fi,b

)
(4)  

where Fi is the mean value of the band power. The p(Fi,b) is the proba-
bility power density. 

The H(Fi, Fj) is the joint entropy which describes the signal distri-
bution, given by: 

H
(
Fi,Fj

)
= −

∑40

b=1
p
(
Fi,b,Fj,b

)
log2 p

(
Fi,b,Fj,b

)
(5)  

Similarly, p(Fi,b, Fj,b) is the probability power density of the mean value 
of the band power between the channel ‘i’ and ‘j’. To avoid the over 
detrended phenomenon of p(Fi,b,Fj,b), the value of the bin is selected as 

Fig. 2. CMI matrix of ScZ subject ‘022w1’ in alpha band.  
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40 in this study. In addition, the CMI formula is obtained in equation (6) 

MI
(
Fi,Fj

)
=
∑40

b=1
p
(
Fi,b,Fj,b

)
log2

p
(
Fi,b,Fj,b

)

p
(
Fi,b

)
p
(
Fj,b

) (6) 

To obtain more information from the CMI connectivity matrix, 
functional connectivity matrix of each Hz frequency (8–9 Hz, 9–10 Hz, 
10–11 Hz, 11–12 Hz) is computed. Thus, the data of alpha band (8–12 
Hz) are all converted into 16 × 16 × 4 matrix through CMI algorithm. As 
an example, the 4-level CMI matrix of a ScZ subject ‘022w1’ of alpha 
band is shown in Fig. 2. 

2.4. Classification via machine learning and deep learning methods 

84 subjects’ data (45 ScZ subjects and 39 HC subjects) from LMSU 
ScZ EEG dataset was applied to evaluate the proposed method in this 
research. The dataset was divided into 5 groups, each group has 9 ScZ 
subjects and 8 HC subjects, last group have 7 HC subjects and the details 
are listed in Table 1. To make sure the proposed method can overcome 
the robustness problem, 4 groups’ data is used to training the model and 
another group data is used as the test data which have no overlapping of 
subject affiliations in the training and testing sets. In addition, the 20% 
random hold-out validation method is used in the training progress. 

2.4.1. Three machine learning methods 
Three basic machine learning methods were applied to test the ScZ 

EEG signal identification work which include the SVM, k-NN and deci-
sion tree (DT) methods. Because of the value of functional connectivity 
is symmetrical, just half data needs to feed into the machine learning 
models. For example, the value of F3–F4 and value of F4–F3 is same. 
Moreover, the CMI value of same node do not need to consider which all 
equals to 0. Thus, just 480 eigenvalues of 4-layer CMI connectivity 
matrix is used as the input. 

2.4.2. Self-designed 3D-CNN model 
In complex brain network analysis, researchers regarded the brain 

connectivity which includes structural connectivity, functional connec-
tivity and effective connectivity (directed functional connectivity) as a 
graph. In this study, brain connectivity is considered as a whole graph. 
As the CNN has achieved good performance in photograph classification 

Table 1 
The details of five group dataset.   

ScZ dataset HC dataset 

Group 
1 

022w1, 32w1, 33w1, 088w1, 103w, 
113w1, 155w1, 156w1, 192w 

S10W1, s12w1, S18W1, s20w1, 
S26W1, s27w1, S31W, S42W1 

Group 
2 

219w1, 221w, 249w1, 276w1, 
307w1, 312w1, 314w1, 342mw1, 
382w1 

s43w1, S47W1, S50W, s53w1, 
S55W1, S59W1, S60W, S72W1 

Group 
3 

387-02w1, 387-03w1, 401w1, 
423w, 429w1, 454-1W, 485w1, 
508w1, 509w1 

S78W, S85W1, s94w1, s152w1, 
S153W1, S154W1, S155W1, 
s157w1 

Group 
4 

510-1W, 515w1, 517w1, 540w1, 
548w, 573w1, 575w1, 585w1, 
586w1 

s158w1, S163W1, S164W1, 
S165W1, S167W1, S169W, 
s170w1, s173w1 

Group 
5 

642w1, 683w1, 719w1, r229w1, 
r416w1, s083w1, S084–1W, s351w, 
s425w1 

S174W1, s176w1, S177W1, 
s178w1, S179W1, S182W1, 
S196W1  

Fig. 3. Architecture of 11-layer 3D-CNN, ‘CL’ is convolution layer, ‘R’ is ReLU, ‘PL’ is max pooling layer and ‘FL’ is fully connected layer.  
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work, we used 3D-CNN model to classifier the ScZ brain connectivity 
graph and a 10-layer 3D-CNN shown in Fig. 3 was constructed. In 
addition, Table 2 shows the details of the architecture. 

There are four convolution layers, three ReLU layers, one max 
pooling layer and one fully connected layer designed in the 3D-CNN 
architecture. To reduce the over-fitting phenomenon, batch normaliza-
tion work is added in each convolution layers. The hyperparameters of 
the convolution layers are selected as 64 filters, and the kernels size 
selected as 3 × 3 × 3, 3 × 3 × 1, 3 × 3 × 1, and 3 × 3 × 1, respectively. 
To improve the training speed, the max pooling layers is designed to 
reduce the cost of training calculation in this architectural. The hyper-
parameters of this max pooling layer is selected as 2 × 2 × 2 size and 2 ×

2 × 2 stride. ReLU is calculated follow the f(x) = max(0,x) formula. The 
fully connected layer which selected as the two classes classification 
work. Finally, a Softmax classifier for the identification using the 
concatenated outputs of the last layers. The training progress based on 
the MATLAB 2021b for testing Group 1 is shown in Fig. 4. 

The 20% random hold-out validation method with 50 iterations 
validation frequency is used in whole comparison models include three 
machine learning methods and the self-designed 3D-CNN model in this 
study. The validation accuracy is summarized in Table 3 for the training 
models. 

3. Results 

Three parameters were calculated to evaluate the proposed method 
in LMSU ScZ EEG dataset include the accuracy, sensitivity, and speci-
ficity are defined as below. Accuracy is a direct parameter in method 
evaluation, and is defined in equation (7): 

Acc=
TP + TN

TP + TN + FP + FN
(7)  

where ‘TP’, ‘TN’, ‘FP’, ‘FN’ correspond to the true positive, true negative, 
false positive and false negative. 

Sensitivity is the parameter to measure the ability to recognize the 
patient cases correctly. 

Table 2 
The details of 3D-CNN architecture.  

Layer Input Size Output Size hyperparameters 

3D imaged-data 
input 

16 × 16 × 4 ×
1   

Convolution layer 16 × 16 × 4 ×
1 

14 × 14 × 2 ×
64 

Kernel size: 3 × 3 × 3 
Stride: 1 × 1 × 1 
Channel: 64 

ReLU 14 × 14 × 2 ×
64 

14 × 14 × 2 ×
64  

Max Pooling layer 14 × 14 × 2 ×
64 

7 × 7 × 1 × 64 Pooling Size: 2 × 2 ×
2 
Stride: 2 × 2 × 2 

Convolution layer 7 × 7 × 1 × 64 5 × 5 × 1 × 64 Kernel size: 3 × 3 × 1 
Stride: 1 × 1 × 1 
Channel: 64 

ReLU 5 × 5 × 1 × 64 5 × 5 × 1 × 64  
Convolution layer 5 × 5 × 1 × 64 3 × 3 × 1 × 64 Kernel size: 3 × 3 × 1 

Stride: 1 × 1 × 1 
Channel: 64 

ReLU 3 × 3 × 1 × 64 3 × 3 × 1 × 64  
Convolution layer 3 × 3 × 1 × 64 1 × 1 × 1 × 64 Kernel size: 3 × 3 × 1 

Stride: 1 × 1 × 1 
Channel: 64 

Fully Connected 
layer 

1 × 1 × 1 × 64 1 × 1 × 1 × 2  

Softmax 1 × 1 × 1 × 2    

Fig. 4. The training progress for self-designed 3D-CNN model for testing Group 1.  

Table 3 
The Validation accuracy for three machine learning methods and 3D-CNN 
model.   

Test 
group 

SVM KNN DT 3D-CNN 

Validation 
accuracy (%) 

Group 1 100.00 100.00 96.91 98.82 
Group 2 99.76 100.00 99.29 100.00 
Group 3 100.00 100.00 99.06 100.00 
Group 4 98.27 100.00 97.39 99.76 
Group 5 99.52 100.00 98.34 100.00 
Mean ±
Std 

99.51 ±
0.72 

100.00 ±
0.00 

98.20 ±
1.03 

99.72 ±
0.51  
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Sen=
TP

TP + FN
(8) 

Specificity refers to the probability of a negative test, conditioned on 
truly being negative. 

Spe=
TN

TN + FP
(9)  

3.1. Results for machine learning methods and 3D-CNN 

SVM, k-NN, DT and 3D-CNN method are applied to detect EEG ScZ 
signal in this study. Comparing the results of each model, self-designed 
3D-CNN model achieved the best performance which received results of 
97.74 ± 1.15% accuracy, 96.91 ± 2.76% sensitivity and 98.53 ± 1.97% 
specificity of test data. The details are summarized in Table 4. 

According to Table 4, it is obvious that the self-designed deep 
learning model can provide a better performance in ScZ signal identi-
fication than the SVM, k-NN and DT methods. Although these three 
machine learning methods can also achieve high rate in validation ac-
curacy, they failed to provide a better classification result in the testing 
data. Comparing with these three machine learning methods, our self- 
designed 3D-CNN can overcome the robustness problem which shows 
the excellent identification result in the testing data of each subject. The 
standard deviation of our self-designed method is significant smaller 
than three machine learnings, it indicates that the proposed method can 
detect each subject in LMSU publicly ScZ dataset. 

4. Discussion 

4.1. Brain rhythms selection through complex brain network analysis 

To reduce the computational cost, selecting corresponding frequency 
bands is necessary. The brain network is constructed via multi-channel 
EEG data. Complex brain network analysis has its origins in the math-
ematical study of networks and is known as the graph theory [31]. The 
complex brain network analysis describes large-scale organization of 
brain networks into neurobiologically meaningful and easily comput-
able measures [32]. Four graph theory parameters are chosen to select 
the brain rhythms which provide significant differences between ScZ 
subjects and HC subjects which include modularity, efficiency, diffusion 
efficiency and clustering coefficient. The statistical analysis results of the 
graph theory parameters in different frequency bands are listed in 
Table 5. 

According to the statistical analysis results in four graph theory pa-
rameters, we found the alpha band (8–12 Hz) data have the most dif-
ference between the ScZ subjects and HC subjects. Thus, the alpha band 
is selected to analysis ScZ identification work in this study. 

4.2. Statistical analysis in CMI connectivity matrix 

DMN is regarded as the highly active network as compared to others 
which makes DMN as the key contributor in maintaining brain’s func-
tional organization which related to the sensory, motor executive con-
trol, visual components, frontal, parietal, auditory, temporal and 
parietal [33]. In ScZ diseases analysis, DMN brain connectivity of fMRI 
data is used widely [16,17]. The DMN is identifiable in three regions 
which includes PCC, LPC and MPC [15]. In this experiment, the Brod-
mann areas (BA) is used to correspond to the DMN region [34]. Channel 
Pz is the precuneus location in BA07, channel Cz, F3 and F4 are the MPC 
part in BA08/09, BA08/09 left hemisphere and BA08/09 right hemi-
sphere respectively [35]. The LPC region corresponds to the channel P3 
and P4 which in the BA39/40 left hemisphere and BA39/40 right 
hemisphere area [35]. In this study, the top 6 functional connectivity 
with the major difference of CMI values (≥0.03) between ScZ subjects 
and HC subjects was shown in Table 6: 

Based on statistical significance of CMI connectivity of whole brain, 
we found not only the DMN region but also the T4-T6 and T3-T5 con-
nectivity have obviously difference between ScZ and HC subjects which 
corresponding to the area between temporal lobe and posterior temporal 

Table 4 
The test results for three machine learning methods and 3D-CNN model.  

Results Test 
group 

SVM k-NN DT 3D-CNN 

Accuracy 
(%) 

Group 1 85.69 57.66 68.55 97.98 
Group 2 82.86 67.94 63.91 97.38 
Group 3 85.28 53.54 72.98 97.18 
Group 4 90.12 70.16 82.26 99.60 
Group 5 87.50 67.34 83.06 96.57 
Mean ±
Std 

86.29 ±
2.71 

63.33 ±
7.28 

74.15 ±
8.41 

97.74 ± 
1.15 

Sensitivity 
(%) 

Group 1 88.94 55.30 55.76 95.59 
Group 2 100.00 51.15 71.43 100.00 
Group 3 82.95 36.41 41.47 96.77 
Group 4 100.00 77.88 88.94 99.09 
Group 5 99.54 71.43 73.73 93.10 
Mean ±
Std 

94.29 ±
7.91 

58.43 ±
16.55 

66.27 ±
18.18 

96.91 ± 
2.76 

Specificity 
(%) 

Group 1 83.15 59.50 78.49 100.00 
Group 2 69.53 81.00 58.06 95.55 
Group 3 87.10 67.03 97.49 97.49 
Group 4 82.44 64.16 77.06 100.00 
Group 5 78.14 64.16 90.32 99.62 
Mean ±
Std 

80.07 ±
6.70 

67.17 ±
8.19 

80.28 ±
15.04 

98.53 ± 
1.97  

Table 5 
Statistical analysis of graph theory measures in different brain rhythms.   

Measures Brain rhythms 

δ band (1–4 Hz) θ band (4–8 Hz) α band (8–12 Hz) β band (12–30 Hz) γ band (30–60 Hz) 

ScZ subjects Modularity 5.084 ± 1.073 4.956 ± 1.015 4.632 ± 1.082 5.386 ± 1.117 6.052 ± 1.392  
Efficiency 0.205 ± 0.025 0.132 ± 0.020 0.112 ± 0.021 0.074 ± 0.017 0.064 ± 0.019  
Diffusion Efficiency 0.050 ± 0.002 0.044 ± 0.002 0.041 ± 0.003 0.033 ± 0.004 0.031 ± 0.005  
Clustering Coefficient 0.245 ± 0.027 0.162 ± 0.021 0.137 ± 0.023 0.093 ± 0.020 0.083 ± 0.022 

HC subjects Modularity 5.101 ± 0.893 4.825 ± 0.955 4.392 ± 0.766 5.428 ± 1.036 5.871 ± 1.015  
Efficiency 0.205 ± 0.020 0.131 ± 0.018 0.116 ± 0.022 0.076 ± 0.017 0.065 ± 0.017  
Diffusion Efficiency 0.050 ± 0.001 0.044 ± 0.002 0.043 ± 0.003 0.034 ± 0.004 0.031 ± 0.004  
Clustering Coefficient 0.246 ± 0.021 0.161 ± 0.020 0.139 ± 0.025 0.094 ± 0.019 0.083 ± 0.019  

Table 6 
The mean value of CMI values.  

CMI location (Channel to 
Channel) 

CMI values in ScZ 
subjects 

CMI values in HC 
subjects 

T4 - T6 0.117 ± 0.054 0.190 ± 0.090 
T3 - T5 0.130 ± 0.097 0.191 ± 0.099 
Cz - C4 0.193 ± 0.063 0.240 ± 0.082 
Cz - Pz 0.132 ± 0.035 0.171 ± 0.100 
Pz - P4 0.169 ± 0.048 0.203 ± 0.070 
F3 – F4 0.149 ± 0.052 0.182 ± 0.055  
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lobe in both right and left side. It is the evidence that using the whole 
brain connectivity analysis is essential. 

4.3. Dynamic analysis with the sliding window size selection 

Y. Sun et al. reported the ScZ-related aberrations in the dynamic 
properties of resting-state function connectivity in fMRI [36]. Consid-
ering the same issue, we use sliding window technique to extend the 
functional connectivity into time-varying functional connectivity. 
However, if the sliding window is too big, it is hard to cluster the dy-
namic changes in detection, and if the sliding window is too small, it will 
decrease the classifier accuracy. We compared the 2-s, 5-s, 10-s and 30-s 
sliding window sizes, and the results shows the 30-s sliding window size 
can achieve better performance in this study and the details summarized 
in Table 7. 

4.4. Performance comparison with previous work and future work 

Table 8 summarizes the performance of the proposed method and 
other peer works in EEG ScZ signal identification. The proposed method 
achieved a result of 97.74 ± 1.15% in accuracy, 96.91 ± 2.76% sensi-
tivity and 98.53 ± 1.97% specificity through function connectivity 
analysis and 3D-CNN deep learning model. Comparing with the previous 
works, our proposed method can supply an excellent performance in 
LMSU publicly ScZ dataset (45 ScZ subjects and 39 HC subjects). 
Furthermore, our proposed method is capable of fuzzy localization of the 
ScZ disease locations as well. Through the statistical analysis in CMI 
connectivity matrix of whole brain network, we found the temporal lobe 
and posterior temporal lobe in both right and left side and the DMN 
region have significant differences in brain network analysis. 

Comparing with SVM, k-NN and DT models, our self-designed 3D- 
CNN can overcome the robustness problem in classifying the CMI con-
nectivity matrix between ScZ and HC subjects. In addition, the sliding 
window technique applied can capture the dynamics of ScZ signal and 
improve the performance of the results. However, the dynamic model 
depends on the sliding window technique to cluster the dynamic state 
more clearly. Furthermore, the source model reconstruction technique 
can be applied to achieve more precise localization of ScZ disease. 

5. Conclusion 

In this paper, the whole brain connectivity analysis is applied and 
implemented using mutual information algorithm. The time-frequency 
domain functional connectivity calculated by CWT and CMI is firstly 
used in ScZ identification and the frequency resolution is selected in 1 
Hz in this experiment. Sliding window technique is proposed to extend 
the functional connectivity to time-varying functional connectivity for 
exploring dynamic properties of resting-state function connectivity in 
EEG. To reduce the computational cost, graph theory measures of 
complex brain network analysis is used to select brain rhythms and find 
alpha band (8–12 Hz) is the significance frequency band for ScZ iden-
tification work. The 3D-CNN models are applied to classify the ScZ 
subjects and health control subjects and achieved a result of 97.74 ±
1.15% in accuracy, 96.91 ± 2.76% sensitivity and 98.53 ± 1.97% 
specificity. Comparing with the machine learning methods, regarding 
the brain connectivity matrix as a whole graph with 3D-CNN can 
overcome the robustness problem. Furthermore, we analysed the CMI 
values in the whole connectivity and found not only the DMN region but 
also the connectivity between temporal lobe and posterior temporal lobe 
in both right and left side has significant difference between the ScZ and 
HC subjects. 
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