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Abstract
The increasing global concern over the contamination of natural resources, especially freshwater, has intensified the need 
for effective water treatment methods. This article focuses on the utilization of Cellulose nanocrystals (CNCs), sourced from 
lignocellulosic materials, for addressing environmental challenges. CNCs a product of cellulose-rich sources has emerged as 
a versatile and eco-friendly solution. CNCs boast unique chemical and physical properties that render them highly suitable 
for water remediation. Their nanoscale size, excellent biocompatibility, and recyclability make them stand out. Moreover, 
CNCs possess a substantial surface area and can be modified with functional groups to enhance their adsorption capabili-
ties. Consequently, CNCs exhibit remarkable efficiency in removing a wide array of pollutants from wastewater, including 
heavy metals, pesticides, dyes, pharmaceuticals, organic micropollutants, oils, and organic solvents. This review delves into 
the adsorption mechanisms, surface modifications, and factors influencing CNCs’ adsorption capacities. It also highlights 
the impressive adsorption efficiencies of CNC-based adsorbents across diverse pollutant types. Employing CNCs in water 
remediation offers a promising, eco-friendly solution, as they can undergo treatment without producing toxic intermediates. 
As research and development in this field progress, CNC-based adsorbents are expected to become even more effective and 
find expanded applications in combating water pollution.
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Introduction

Water, which covers about 71% of the earth’s surface [1], 
with nearly 97% of the water being too salty for drinking or 
irrigation of crops. The remaining 3% of fresh water on earth 
is suitable for human consumption [1, 2], however, only 
around 0.4% of the Earth’s water is accessible and avail-
able for distribution among the planet’s 7 billion inhabit-
ants [3]. As a result, limited accessibility of water meets the 
needs of billions of individuals, and as the global population 
grows, the situation is anticipated to deteriorate [4]. Fresh 
water, in reality, is a renewable resource, but the available 
fresh water has become highly contaminated [5] as a result 
of industrial, agricultural, and household activities [6]. An 
example of environmental pollution can be seen in the Klang 
Valley region of Malaysia, where the Sungai Gong River 
was recently contaminated. This pollution was attributed 
to various activities, including the discharge of wastewater 

from factories in the vicinity. The discharge point from the 
final tank and the factory’s machinery were observed to 
release blue-colored water. As a result, the pollution posed 
a significant risk, leading to the potential shutdown of four 
water treatment plants in Selangor [7]. This incident had 
far-reaching implications, including water supply interrup-
tions, and affecting communities in the Klang Valley region.

Industrial wastewater treatment is necessary to mitigate 
the health risks associated with contaminated water [8–10]. 
A large portion of highly polluted wastewater, approximately 
80 to 90%, remains untreated and unutilized out of the total 
wastewater generated by human activities [1]. Wastewater 
contains common contaminants such as oil and organic 
solvents, pesticides, dyes, heavy metal ions, and pharma-
ceutical pollutants pose significant risks to human health 
and the environment. These contaminants endanger natural 
aquatic habitats and species, leading to water contamina-
tion and negatively impacting biodiversity [6, 11]. Lack of 
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wastewater treatment leads to a significant global issue, as 
billions of people around the world do not have access to 
safe drinking water and proper sanitation facilities [1]. There 
is a growing global concern that the volume of sewage gen-
erated by industrial, agricultural, and human activities is 
increasing at a pace that surpasses the capabilities of cur-
rent wastewater treatment technologies. This raises concerns 
about our ability to effectively treat and manage the escalat-
ing volume of sewage using existing technological solutions 
[12, 13]. Natural polymers such as cellulose, starch, chi-
tosan, chitin, gelatin, and alginate, which are readily avail-
able, have shown great potential in wastewater treatment 
[14, 15]. Cellulose can be found in bacteria, algae, tunicates, 
woods, rice husks, bamboo, hemp, sisal, kenaf, flax, and oil 
palm biomass, is the most abundant natural material on the 
planet, with an annual production of  1011 to  1012 tonnes [16]. 
Extensive research has been conducted on modifying cel-
lulose polymers through chemical and mechanical means to 
produce cellulose nanocrystals (CNCs), a valuable class of 
nanomaterials, which offer promising solutions for filtering 
impurities and adsorbing pollutants [6].

Given its nanoscale dimensions and fibrous structure, 
CNC has a large surface area per unit mass [17–19]. This 
large specific surface area offers numerous active sites in 
the form of hydroxyl groups, which are highly effective 
in adsorbing and interacting with contaminants present in 
wastewater [20]. The hydroxyl groups on CNCs could form 
hydrogen bonds with various contaminants, while the com-
bination of their nanoscale size and large specific surface 
area allows for enhanced contact and adsorption capacity. 
Nevertheless, the surface charge, surface reactivity, and 
mechanical strength of CNCs can be tailored to suit specific 
wastewater treatment applications by controlling the crystal 
structure [21]. The crystal structure of CNCs can be modi-
fied during synthesis, resulting in different properties and 
functionalities [22], enabling even higher specific surface 
areas to be achieved. The functionalization of CNCs involves 
the attachment of various functional groups, such as car-
boxyl [23–25], amino [22], hydroxyl [26], sulphate [27], or 
phosphate [28] groups, onto the surface of the CNCs. These 
functional groups introduce new active sites that facilitate 
specific interactions with pollutants present in wastewater, 
thereby enhancing the adsorption properties of the CNCs. 
The selection of a particular functional group depends on 
the target pollutants and the desired adsorption mechanisms. 
This process can be achieved through surface modification 
techniques, including chemical reactions, physical adsorp-
tion, or grafting methods. Through grafting, functionalizing, 
and crosslinking, different levels of functional attachments 
can be achieved, leading to the fabrication of CNC-based 
grafts [29, 30], polymer nanocomposites [25, 27], nanofiber 
aerogels [31], membranes [32] and microspheres [33] to 
overcome its limitations to enhance its adsorption ability for 

wastewater treatment. The increased specific surface area of 
CNCs significantly enhances their adsorption capacity, mak-
ing them an effective material for water remediation [34]. 
The specific surface area of CNCs can vary depending on 
the production method and processing conditions, typically 
ranging from 10 to 250  m2/g [35].

By incorporating nanoparticles such as metal nanopar-
ticles or metal-organic frameworks, it becomes feasible to 
enhance the surface properties of the adsorbent to selectively 
remove specific pollutants. This approach enables the devel-
opment of customized active sites with catalytic or adsorp-
tion properties that are specifically relevant to wastewater 
treatment, thereby further improving the adsorption capabili-
ties. Besides, bimetallic supports provide synergistic effects, 
as the combination of different metals not only creates cus-
tomized active sites but also enhances the overall stability 
of the adsorbent. This, in turn, can significantly improve the 
efficiency and selectivity of adsorption in wastewater treat-
ment applications [36]. Overall, the shape and specific sur-
face area, crystal structure, and bimetallic support of CNC 
play vital roles in optimizing their performance for waste-
water treatment. Modifications to well-defined crystal struc-
tures improve CNC adsorption capacity or stability in harsh 
wastewater conditions [37], allowing for stronger interac-
tions with pollutants. The functionalization techniques and 
the inherent properties of CNCs play a vital role in the for-
mation of active sites on their surface. These active sites 
enable CNCs to efficiently adsorb and eliminate pollutants 
from wastewater, making them highly valuable materials for 
wastewater treatment applications. Gaining a comprehensive 
understanding of these factors and effectively manipulat-
ing them can lead to the advancement of more efficient and 
effective adsorbents for a wide range of pollutants found in 
wastewater.

Recently, there has been a significant focus on finding 
innovative and environmentally friendly materials for water 
purification that are cost-effective, require low energy input, 
and do not produce hazardous by-products [38]. Given its 
diverse attributes, natural abundance, biodegradability, and 
non-toxic nature, researchers have extensively studied cel-
lulose polymer for chemical and mechanical modifications 
to produce cellulose nanocrystals (CNCs). The presence of 
numerous functional groups, the ability to tune their surface 
properties, their hydrophilicity, high tensile strength, and 
flexibility make CNCs a promising option for wastewater 
treatment [39]. In this regard, CNCs is a possible nanomate-
rial for wastewater treatment that offers promising options 
for pollutant and impurity elimination. The application of 
nanocellulose-based aerogels [39–41], membranes [42], 
adsorbents [43] for water remediation has been widely 
described in recent years. Thus, a thorough overview of 
the research conducted on materials based on nanocel-
lulose specifically, CNCs is presented in this review. The 
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review encompasses the fundamental properties of CNCs-
based materials and explores their innovative applications 
in wastewater treatment. Additionally, it delves into the 
adsorption capacities of CNCs-based materials and dis-
cusses their potential applications in removing various pol-
lutants, including oil and organic solvents, pesticides, heavy 
metals, dyes, and pharmaceuticals, in wastewater treatment 
processes.

Isolation Approaches and Enchanting 
Properties of CNCs

CNCs Isolation Technique

As interest in sustainability and nanotechnology has grown, 
so is the use of CNCs in wastewater treatment applications. 
In-depth research has been done on the use of CNCs in a 
range of wastewater treatment procedures, such as absorp-
tion, adsorption, membrane filtration, flocculation, disin-
fection, and catalytic degradation [21]. CNCs are produced 
through a series of chemical procedures such as pulping, 
bleaching, and acid hydrolysis [44–48]. Common proce-
dures including pre-treatment with physical, chemical or 
enzymatic hydrolysis methods, followed by acid hydrolysis 
of amorphous region and extraction of nanocellulose under 
regulated conditions for temperature, duration, and the ratio 
of acid to cellulosic fiber [17, 49–51]. CNCs are usually 
extracted using the sulphuric acid  (H2SO4) [52, 53], nitric 
acid  (HNO3) [54], hydrochloric acid (HCl), phosphoric acid 
 (H3PO4) [55], hydrobromic acid (HBr) and phosphotung-
stic acid  (H3O40PW12). Concentrated mineral acids, such 
as  H2SO4, are frequently employed for hydrolysis during 
isolation to eliminate the amorphous area comprising lignin 
and non-cellulosic components [49]. The hydronium ions 
 (H3O+) formed during the acid treatment can cleave apart 
the 1,4-glycosidic linkages within a single cellulose chain, 

weakening the strong hydrogen bonding network between 
the cellulose chains [49]. Acid molecules infiltrate into the 
fibers, followed by the cleavage of glycosidic bonds. In 
addition to disordered or amorphous regions of cellulose, 
domains characterized by high crystallinity have a longer 
resistance to hydrolysis, thus making them easier to separate 
from the acidic solution. As demonstrated in Fig. 1, crystal-
line cellulosic nanoparticles are released from nanocrystal-
line and amorphous regions of cellulose fibers [56].

Each acid treatment adds different functional groups to 
the surface of the CNCs, which affect colloidal stability of 
the CNCs. CNCs derived from HCl have lower colloidal 
stability than CNCs derived from  H2SO4, which have nega-
tively charged sulphate ester groups  (OSO3

–) on their sur-
face and hence exhibit electrostatic repulsion [58].  H2SO4 
undergoes esterification with hydroxyl groups on the CNC 
surface during hydrolysis [26]. This allows anionic sulphate 
ester groups to be randomly grafted onto the surface [59]. 
When negatively charged sulphate ester groups are present 
during the dispersion of nanocrystals in water, a negative 
electrostatic layer that covers the nanocrystals forms. The 
exceptional stability of  H2SO4 hydrolyzed CNCs is due to 
electrostatic repulsion between individual nanoparticles 
[56]. It has been demonstrated that hydrolysis with  H2SO4 
is the most effective method for preparing CNCs.  H2SO4 
hydrolysis with an acid concentration of 64 to 65 wt%, a 
temperature of 40 to 45 °C, and a reaction duration of 40 to 
60 min were the most commonly used conditions [60]. The 
crystallinity of a CNC extracted by  H2SO4 was 95.2% [61] 
and the yield was 83.03% [52]. After acid hydrolysis, post 
alkaline treatment is a typical approach for recovering the 
effect of  H2SO4 by neutralizing the acid with a strong basic 
such as sodium hydroxide (NaOH) [44]. CNC can be neu-
tralized by NaOH to increase thermal stability by increasing 
the degradation and melting temperatures [44, 62].

Figure 2 depicts the rod-like structure of CNCs [63], 
which can be made of a variety of lignocellulosic materials, 

Fig. 1  Cellulose reacts with 
strong acid to obtain a cellulose 
nanocrystal (CNCs) [57]
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including wood, cotton, ramie, wheat straw, and tunicate 
and has been used in many applications [35, 64–68]. CNCs 
produced by chemical treatments are extremely crystalline, 
with average lengths of less than 500 nm [49]. CNCs after 
sulphuric acid hydrolysis are crystalline rod or needle-
shaped materials with lengths ranging from 100 to 200 nm 
and diameters ranging from 1 to 20 nm [69]. However, there 
is a major discrepancy in the size of the CNCs nanoparticle 
depending on the source of cellulose. For example, hard-
wood CNCs have lateral and length dimensions of 3 to 5 nm 
and 100 to 300 nm, respectively, whereas tunicate CNCs 
have 15 to 30 nm and 1000 to 1500 nm [35]. Additionally, 
utilizing ultrasound-assisted acid hydrolysis, cotton can be 
synthesized into rod-shaped CNCs with a crystallite size 
ranging from 10 to 50 nm diameter and 221 nm length, a 
crystallinity of 81.23%, and thermal properties that remain 
stable between 140 and 180 °C [70].

CNCs Remarkable Properties

Plant-based materials, including wood [72–74], sugarcane 
[75], and bamboo [76], have been the subject of research 
for water purification applications. Derived from renewable 
sources, CNCs contribute to sustainability by reducing reli-
ance on non-renewable materials [77]. CNCs have attracted 
a lot of interest for application as a nano-adsorbent due to 
their unique properties [78, 79]. CNCs are particularly desir-
able due to their physical and chemical properties, including 
high mechanical strength, large specific surface area, rod-
like morphology, liquid crystalline nature, biocompatibility, 
and hydrophilicity [80–82]. Furthermore, increased rheo-
logical characteristics, orientation and alignment, low coef-
ficient of thermal expansion, chemical inertness, low density 
and dimensional stability, biodegradability, and renewability, 
are all appealing for wastewater treatment applications [20, 

83, 84]. Their biodegradability and non-toxic nature ensure 
they pose no harm to the environment. CNCs’ exception-
ally large specific surface area, thanks to their tiny size and 
crystalline structure, makes them adept at adsorption a wide 
array of contaminants from wastewater, including heavy 
metals, dyes, and organic compounds, enhancing water qual-
ity [21]. They can be integrated into filtration membranes to 
improve particle removal efficiency and act as flocculants to 
facilitate the settling of impurities [85]. Some CNCs even 
possess antibacterial properties for water disinfection [86]. 
Their pH stability and customizability make CNCs versa-
tile across various water treatment scenarios. Additionally, 
they can be cost-effective, reducing the need for additional 
treatments, and they contribute to lower sludge generation. 
Overall, CNCs are a promising and sustainable solution for 
addressing water quality and purification challenges [87].

Chemical Features

CNCs have several functional moieties, including alde-
hyde and hydroxyl groups, which allow for a wide range of 
changes to regulate their physical or chemical characteris-
tics [88]. CNCs have both intermolecular and intramolecular 
hydrogen bonding due to the presence of hydroxyl groups. 
These hydroxyl groups on the surface give an accessible 
platform for chemical modification, which might be chang-
ing them to carboxylic acid, amine, aldehyde, or thiol groups 
[35]. These might then be utilized to make additional altera-
tions, including grafting bigger macromolecules like poly-
mers or proteins onto smaller molecules like biomarkers or 
metal nanoparticles. The hydroxyl groups can be chemically 
altered to increase the affinity of nanocellulose for anionic 
and non-ionic contaminants. The negatively charged of 
hydroxyl groups exhibit electrostatic attraction to cationic 
water contaminants including heavy metals and cationic 

Fig. 2  Rod-like structure of cellulose nanocrystal (CNCs) using a Transmission electron microscopy (TEM) [71] and b Atomic force micro-
scopes (AFM) [63]
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dyes [21]. Additionally, these hydroxyl groups provide puri-
fied CNCs with hydrophilic properties [89], which could 
increase their capacity to disperse in polymer matrices. Due 
to hydrogen bonding induced by the many hydroxyl groups 
on the CNCs’ surface, they tend to clump together after dry-
ing and are challenging to dissolve due to surface functional-
ization of hydroxyl groups by radical grafting, esterification, 
etherification, oxidation, and silylation that would boost the 
nanocellulose’s ability for adsorption [80]. Furthermore, the 
inclusion of aldehyde groups at the end of a CNCs allows 
for the selective alteration of reactive reducing ends in order 
to produce amphiphilic CNCs with unique properties [88]. 
Table 1 includes a list of examples showcasing the surface 
modification or functionalization of CNCs.

CNC-based adsorbents are less likely to become biofoul-
ing due to CNCs’ exceptional water stability. Due to the high 
concentration of hydroxyl and carboxylate groups, materi-
als utilized in cellulose-based wastewater treatment have 
negatively charged surfaces [21]. A stronger electrostatic 

repulsive force is thus generated between the surface layer 
and the majority of model foulant. Due to their non-toxicity 
and biodegradability, CNCs are excellent adsorbents for 
wastewater treatment [103]. Additionally, the sulphate lipid 
group creates a negative electric layer on the surface of the 
CNCs, which is extremely dispersible in polar solvents like 
water. If the concentration is less than 2 wt%, CNCs have 
the ability to create stable, thixotropic distributed systems 
[104]. The CNCs particles form a three-dimensional network 
with a slightly crosslinked structure after solvent melting 
as a result of hydrogen bonding. After the external force 
is removed, the system’s structure can be recovered [104].

The introduction of cellulose nanomaterials into mem-
brane matrices can bring about significant alterations in 
membrane characteristics [105]. For instance, the incor-
poration of these highly biocompatible and eco-friendly 
nanocomposite materials can lead to enhancements in ten-
sile strength, hydrophilicity, permeability, biofouling resist-
ance, and selectivity. These improved attributes make such 

Table 1  Surface modification or functionalization of cellulose nanocrystals (CNCs)

Surface modification Properties Functional group Agent References

Amination Hydrophilic Amino (–NH2) Ethylenediamine (EDA) [22, 90]
Tris(2-aminoethyl)amine (TRIS)
Poly(ethyleneimine) (PEI)

Etherification Hydrophobic Ether (–O–); methyl, ethyl, or propyl groups etherifying agents:- [91]
alkyl halides
alkyl sulfonates

Esterification Hydrophobic Ester (–COO–); acetate or succinate groups Esterifying agents:- [39, 92]
Carboxylic acids
Succinic anhydride
Acid chlorides

Silylation Hydrophobic organosilane (–SiR3) silylating agents: - [39, 93–95]
N-(2-aminoethyl)-3aminopropylme-

thyldimethoxysilane (AEADMS)
Trimethylchlorosilane (TMCS)
Hexamethyldisilazane (HMDS)

Sulfonation Hydrophilic Sulfonic acid (–SO3H) Sulfonating agents:- [39, 51]
Sulphuric acid  (H2SO4)
Chlorosulfonic acid  (SO2ClOH)

Oxidation Hydrophilic Aldehyde or carboxyl groups Oxidizing agent:- [91, 96]
Sodium periodate

TEMPO oxidation Hydrophilic Aldehyde or carboxyl groups Oxidizing agent:- [97–99]
Sodium hypochlorite

Carboxymethylation Hydrophilic Carboxyl groups (–COOH) Carboxylation agents:- [100–102]
Monochloroacetic acid (MCA)
Sodium chloroacetate (SCA)

Phosphorylation Hydrophilic Phosphate group (–PO3H2) Phosphoric acid  (H3PO4) [39, 94]
Phosphorus oxychloride  (POCl3)
Phosphorus pentoxide  (P2O5)
Phosphorus trichloride  (PCl3)
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membranes particularly well-suited for practical applications 
across such as pharmaceutical, biomedical, and environ-
mental [106]. Moreover, surface modifications of cellulosic 
nanomaterials can be achieved by introducing both organic 
and inorganic groups. For example, the incorporation of 
titanium dioxide in the atomic layer of nanomaterials has 
been demonstrated, resulting in the creation of low-energy 
surfaces on fibers [107]. This modification imparts oleo-
philic and hydrophobic properties to nanocellulose-based 
materials, enabling them to absorb up to 80–90% vol/vol of 
oils and various organic solvents from water surfaces [58].

Physical Properties

Nano-adsorbent, CNCs have extremely small pores and a 
large specific surface area [108, 109]. Nearly minimal elec-
trical conductivity exists in CNCs because of its large spe-
cific surface area, nanocellulose’s ability for adsorption may 
be boosted by going from micro to nanoscale [110]. CNCs 
showed a high aspect ratio, reasonably high crystallinity, 
and hydrophilic surface characteristics. According to sources 
of nanocellulose and the method of treatment, CNCs have 
a high aspect ratio of 10 to 80. High aspect ratio proper-
ties encourage the formation of percolated CNCs networks 
bonded together by strong hydrogen bonds, increasing the 
mechanical strength of the adsorbent [108]. Furthermore, 
the high crystallinity of CNCs increases the adsorbent’s 

chemical resistance and decreases cellulose solubility even 
in highly polar solutions. This anticipated that CNCs’ inher-
ent hydrophilicity may lessen organic and biofouling. With 
a water surface tension of about 60 mJ/m2, nanocellulose-
based adsorbents can aid to enhance wetting properties and 
lessen biofouling during the wastewater treatment process 
[21].

CNCs have lower thermal stability than natural cellulose 
because of the presence of the sulphate group. However, it 
can be improved by converting the acid proton on the sul-
phate group to a cation [35]. In light of this,  H2SO4 will react 
with the hydroxyl groups on the surface of cellulose to create 
sulphate half esters, which result in CNCs nanoparticles that 
are negatively charged and electrostatically stabilized [111]. 
Figure 3 illustrates the synthesis of sulphated CNCs via acid 
hydrolysis of cellulose.

In addition, when the concentration of nanocrystalline 
cellulose reaches a critical level, the suspension forms an 
ordered liquid crystal state [78]. It has been demonstrated 
that altering the surface charge, such as the amount of 
replacement of sulphate groups on their surfaces, may 
change how stable cellulose nanocrystal suspensions in 
water [78]. According to the study’s findings, the surface 
charge had an impact on how viscous nanocellulose sus-
pensions were, with CNCs with lower surface charges 
producing more viscous suspensions that went on to gel 
at lower concentrations [78]. It was found that after the 

Fig. 3  Synthesis of sulphated cellulose nanocrystals (CNCs) from acid hydrolysis of cellulose (a structure of cellulose; b diagrammatic repre-
sentation of rod-like sulphated CNCs) [112]; c Photograph and d scanning electron microscopy (SEM) image of CNCs film [113]
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surface charge density of CNCs reaches a certain level, 
the effective volume of suspension significantly affected 
the spectrum of liquid crystalline phase growth.

CNCs are in the shape of rod-like self-align in water 
to form chiral nematic phases exhibiting liquid crystal-
line properties. Under certain conditions, their stiffness 
and dimension ratio make them ideal for showing liquid 
crystalline behavior. It is known that cellulose crystals 
have a spiral twist down their long axis that is responsi-
ble for creating a chiral nematic structure or a structure 
that can be differed by concentration with its structure 
stacked along the planes and aligned along a perpendicu-
lar axis [114]. Combined with the liquid crystallinity of 
nanocrystals, these crystals exhibited interesting optical 
properties. The type of acid used for hydrolysis can also 
affect the liquid crystalline characteristics. As a result of 
 H2SO4 hydrolysis, negatively charged surface CNCs is 
more likely to disperse uniformly in water due to elec-
trostatic repulsion [115]. Despite the strong interactions 
between nanocrystals, CNCs after sulfuric acid hydrolysis 
exhibits lyotropic behavior as a result of its easy dispers-
ibility [116].  H2SO4 and  H3PO4 derived CNCs usually 
have chiral nematic structures, while CNCs derived from 
HCl usually have birefringent glassy phases.

During the hydrolysis process, reaction time and tem-
perature have a significant impact on CNCs yield and 
quality. Insufficient hydrolysis time may result in amor-
phous fractions remaining, resulting in a reduction in 
crystallinity and morphological changes in the particles. 
A longer duration of acid hydrolysis reduces the ther-
mal stability and, consequently, the degree of crystallin-
ity of nanocellulose [78]. In addition, the temperature of 
the reaction is the crucial part, as higher temperatures 
result in shorter CNCs [117]. Increased temperature and 
reaction time during hydrolysis eliminated amorphous 
components and even parts of the crystalline compo-
nent, reducing CNCs crystallite sizes [118]. Moreover, 
any suspended particle, macromolecule, or material sur-
face exhibits zeta potential, a physical property exhibited 
by all solid-liquid and liquid-liquid colloidal systems 
[119]. The formulation of protein solutions, suspensions, 
and emulsions may be improved as well as the ability 
to predict interactions with surfaces and produce films 
and coatings. Zeta potential measurements examine the 
strength of electrostatic attraction between adjacent, sim-
ilarly charged particles in dispersion and give detailed 
information about how nanoparticles like CNCs disperse, 
aggregate, or flocculate in colloidal systems [50]. For 
pure CNCs, the zeta potential values are typically in the 
range of -20 to -50 mV, indicating that the particles are 
electrically stable, have a high degree of dispersion, and 
form aggregates [50].

Mechanical Behaviour

The range of Young’s modulus for CNCs is from 110 to 220 
GPa, and their tensile strength is 7.5 to 7.7 GPa [104]. The 
stiffness and cohesiveness of the adsorbent material were 
increased by the high mechanical rigidity of CNCs. Due 
to the high crystalline forms of CNCs, it arises in transpar-
ent and gas-impermeable forms with extremely high tensile 
strengths that are up to eight times that of steel [21]. Apart 
from that, it was found that CNCs derived from bacteria, 
tunicates, or Valonia are highly polydisperse in their molecu-
lar weights without any indication of a level-off degree of 
polymerization (LODP) [110, 120, 121]. The absence of a 
regular distribution of amorphous domains is likely to be the 
cause of this phenomenon. In addition, cellulase enzymes 
and mechanical shearing were used to isolate bacterial 
CNCs [122]. The nanocrystals produced using this approach 
have superior mechanical and thermal qualities than those 
produced by sulfuric acid hydrolysis. Highly crystalline 
domains of cellulose are more resistant to hydrolysis for a 
longer time than disordered or amorphous areas, making 
them simpler to separate from the acid media.

CNCs are a material with a lot of potential for high-per-
formance membranes and filters that selectively remove con-
taminants from drinking and industrial waters. This is due to 
the combination of high strength, stiffness, and mechanical 
properties. CNCs with outstanding mechanical rigidity and 
strength are essential in high-pressure wastewater treatment 
applications. Table 2 provides a comprehensive inventory 
of the properties and distinguishing features of cellulose 
nanocrystals (CNCs) utilized in the capacity of adsorbents. 
Directing our focus towards Table 3, a comprehensive com-
pilation of the distinctive attributes and adsorption capac-
ity of adsorbents utilizing cellulose nanocrystals (CNCs) 
is meticulously presented, providing valuable insights into 
their functional capacities. Furthermore, Table 4 exten-
sively elucidates the mechanical features of these CNCs-
based adsorbents, intricately linked with their outstanding 
adsorption ability, providing an in-depth understanding of 
their multidimensional potential in adsorption applications.

CNCs as Adsorbents and Their Mechanisms

The most popular method for treating water with nanocel-
lulose-based products is the adsorption procedure. Adsorp-
tion was thought to be a viable and inexpensive option for 
cleaning up polluted environments [132–134]. Furthermore, 
its universal nature allows for the effective removal of both 
soluble and insoluble pollutants, along with biological con-
taminants, with a high removal efficiency ranging from 90 
to 99% [135]. This is because it can be deployed which 
prevents the production of several hazardous intermediates 
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that are produced while aqueous solution treatment of new 
organic pollutants is conducted. An adsorbent, a solution, 
and an adsorbate are all components of the adsorption sys-
tem. An adsorbate is a substance (pollutant) that attaches to 
or adheres to a solid surface, whereas an adsorbent refers to 
the solid surface itself [135]. A solid material known as an 
adsorbent is used to draw impurities out of liquid or gas that 
might be harmful to the environment. Large surface area, 
readily accessible polar sites, and consistent activation capa-
bilities are the qualities of a good adsorbent that are most 
crucial [136]. The most challenging part in regulating and 
replicating is the repeatability in the degree of activation, 
which is a measure of the adsorbing power and frequently 
relates to the level of removal of surface water [137].

The research community has given much attention to the 
application of nanotechnology in the purification of water. 
Materials having a structural unit size of less than 100 nm 
are referred to as nanomaterials or nanoparticles. These sub-
stances represent fundamental shifts and crossings between 
the characteristics of atoms, molecules, mass, and typical 
macroscopic materials [110, 138]. Matter particles will 
exhibit powerful small-size, quantum, and enormous surface 
effects as they reach the nanoscale scale [110]. Nanomate-
rials have an increased number of unsaturated bonds and a 
larger specific surface area because there are more surface 
atoms and a larger surface area available. Consequently, 
these surface atoms have tremendous adsorption capability 
and are extremely active, very unstable, and quick to interact 

Table 2  The properties and characteristics of CNCs as adsorbent

Properties Performance References

Structure Rod-like particles [49]
Length 100–500 nm [49]
Diameter 2–20 nm [123]
Aspect ratio 10–80 [124]
Density Low [35]
Thermal expansion Low [125]
Mechanical strength Young’s modulus less than 140 

GPa
[104]

Tensile strength High (7500 MPa) [35]
Electrical conductivity None [106]
Optical properties Left-handed cholesteric liquid 

crystal spontaneously assem-
bled

[126]

Zeta potential values − 20 to − 50 mV [50]
Biological toxicity Low toxicity [103]
Water permeability 82.6% [104]
Antifouling ability 77% [104]
Crystallinity index 60–80% [127]
Magnetic response High [49]
Specific surface area Large (∼ 250  m2/g) [35]
Pore size 10–15 nm [128]
Surface chemistry Hydrophilic [89]
Reactivity Chemically inert [21]
Surface tension 60 mJ/m2 [21]

Table 3  The characteristics and adsorption efficiency of CNCs-based adsorbents

CNC as adsor-
bents

Structure Diameter (nm) Length (nm) Specific 
surface area 
(m²/g)

Crystallin-
ity index 
(%)

Pollutants Adsorption 
efficiency

References

CNCs Rod-like shapes 6–10 200 138–226 72.3 Silver  (Ag+) 34.4 mg/g [129]
CNCs – 6–7 130 426 – Methylene blue 

(MB)
101 mg/g [89]

CNCSL – 5–10 – 131 – Ag+ 56 mg/g [28]
Cu2+ 20 mg/g
Fe3+ 6.3 mg/g

Phosphorylated 
nanocellulose 
(Phos-CNCSL)

– 20 – 66 – Ag+ 136 mg/g
Cu2+ 117 mg/g
Fe3+ 115 mg/g

Amino-func-
tionalized 
nanocrystal-
line cellulose 
(ANCC)

Whisker shapes 3.26 – 12.5 59.8 Acid red (GR) 555.6 mg/g [22]

Carboxylated 
CNCs

Rod-like 15.9 ± 3.0 215.8 ± 23.2 165.6 ± 26.3 91.4 Dye 92.3% [24]

Fe-Cu alloy 
coated CNCs 
(Fe-Cu@
CNC)

Rod-like shapes 20 200–300 – – Lead  (Pb2+) 85.8 mg/g [130]
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with other atoms. Additionally, nanoparticles feature active 
groups, such as hydroxyl groups, on their surfaces that have 
the ability to bind with heavy metals and organic molecules 
present in wastewater [35]. For instance, Mohamed et al. 
[102] discovered that CNCs derived from waste cotton cloths 
(WCCs) via sulphuric acid hydrolysis are excellent Cr(IV) 
adsorbents (Fig. 4). The CNCs derived from the WCCs had 
a rod-like structure with a porous surface, showing crys-
talline characteristics. These CNCs had an average length 
of 100.03 ± 1.15 nm and a width of 7.92 ± 0.53 nm. Fur-
thermore, the CNCs obtained from WCCs had a pore width 
of 1.34 nm, an average pore volume of 0.005  cm3/g, and a 
significant specific surface area of 26.12  m2/g. The surface 
of the CNCs had uniform nano-size particles and carried a 
negative charge. In terms of their effectiveness, the highest 

removal efficiency for Cr(VI) was 96.97% under specific 
conditions: adsorbent dosage of 1.5 g/L, temperature of 
60 °C, and treatment time of 30 min with pH 2.

Conventional adsorbents such as activated carbons are 
costly, energy-intensive, and contribute to greenhouse gas 
emissions during their production. Making alternative, 
affordable adsorbents from agricultural and industrial waste, 
therefore, offers up a wide range of new opportunities. Uti-
lizing sustainable nanomaterials, such as CNCs, with their 
effective adsorption properties, can reduce the reliance on 
activated carbons and minimize the carbon footprint [139]. 
Moreover, the functional surface of CNCs allows for the 
attachment of chemical moieties, enhancing the effectiveness 
of pollutant binding. The approach for improving the adsorp-
tive capacity of CNCs that has received the most research is 

Table 4  The mechanical properties and adsorption capacity of CNCs-based adsorbents [131]

Cellulose nanocrys-
tals-based adsorbents

Structure Diameter (nm) Specific surface 
area (m²/g)

Stress at 
break (MPa)

Modulus of elas-
ticity (MPa)

Pollutants Adsorption 
capacity 
(mg/g)

CNCSL membrane Rod-like shapes 5–10 26.3 13 ± 0.3 362 ± 0.3 Ag+ 0.82
Cu2+ 28
Fe3+/Fe2+ 48

CNCBE membrane 32.6 19 ± 0.8 647 ± 0.4 Ag+ 0.87
Cu2+ 67
Fe3+/Fe2+ 102

Phosphorylated 
nanocellulose 
 (PCNCSL) mem-
brane

Whisker shapes 20 18.8 16 ± 0.5 402 ± 0.9 Ag+ 0.81
Cu2+ 358
Fe3+/Fe2+ 512

Fig. 4  CNCs have demonstrated remarkable effectiveness as adsorbents in the process of wastewater treatment [102]
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carboxylation [106]. Due to several advantageous properties 
like a high surface area to volume ratio and porosity, abun-
dant hydroxyl groups, biocompatibility, biodegradable, low 
cost, widespread availability, inherent environmental inert-
ness, excellent chemical resistance, and favorable mechani-
cal qualities, CNCs have garnered significant attention as a 
promising alternative for effective adsorbents in wastewater 
treatment [39]. These features contribute to CNCs’ ability 
to achieve a high level of adsorption, making them highly 
suitable for this application.

The adsorption mechanism of CNCs involves the interac-
tion between the CNCs surface and the adsorbate, which is 
the pollutant present in wastewater. The hydroxyl groups on 
the CNCs surface can form hydrogen bonds or engage in Van 
der Waals interactions with the pollutants, leading to their 
adsorption onto the CNCs [20, 140]. The adsorption mecha-
nism can be described as a four-stage process. Initially, when 
a solution containing the contaminant encounters the CNCs 
adsorbent, the solute is transported to the adsorbent’s bound-
ary layer. The solute molecules are attracted to the surface of 
the adsorbent. In the second stage, diffusion and transfer pro-
cesses occur. Concentration gradients force solute molecules 
from the adsorbent’s boundary layer to its outer surface, 
allowing them to come into closer contact with the active 
sites on the outer surface. In the third stage, transfer takes 
place from the outer surface of the adsorbent to the active 
sites within the pores. Solute molecules move through the 
pore structure, searching for and binding to the active sites. 
Various interactions, such as Van der Waals forces, elec-
trostatic interactions, and hydrogen bonding, facilitate this 
transfer process. Finally, in the fourth stage, the adsorbate is 
adsorbed by the solid phase. Adsorbate molecules establish 
chemical or physical connections with the CNCs adsorbent 
after firmly attaching to the active sites within the pores, 
completing the process of extracting the solute from the 
solution and immobilizing it on the adsorbent surface [141].

The adsorption mechanism for various pollutants were 
illustrated in Figs. 5, 6, 7 and 8. Adsorption of pharmaceu-
tical pollutants, as shown in Fig. 5, involves a variety of 
mechanisms, including hydrogen bonding, π–π stacking 
interaction, electrostatic interaction, and hydrophobic effect 
[142, 143]. An amphiphilic cellulose aerogel (HCNC-TPB/
TMC) was fabricated by grafting 1,3,5-Tris (4-aminophenyl)
benzene (TPB) and trimesoyl chloride (TMC) onto aldehyde 
CNC through Schiff alkali and substitution reactions. The 
resulting HCNC-TPB/TMC possessed favorable morphology 
and comprised both hydrophilic amino and carboxyl groups 
and hydrophobic aromatic groups. The presence of carboxyl 
aromatic groups on TMC strengthened the hydrogen bond-
ing and π–π stacking between HCNC-TPB/TMC and sodium 
diclofenac (DCF) [142]. The presence of polar molecules 
in the solvent often reduces the hydrogen bond between the 
adsorbent and the adsorbate in polar solvent systems such 

as water. The π–π stacking interaction, on the other hand, 
occurs mostly between electron-rich and electron-poor mol-
ecules and is generally unaffected by polar molecules in the 
solvent [144]. Thus, the hydrophobic hexatomic benzene 
rings in the adsorbent can generate significant π–π stacking 
interaction with the benzene ring of DCF, thereby reducing 
steric hindrance and facilitating adsorption. Furthermore, 
the adsorbent comprises –COOH functional groups, whereas 

Fig. 5  Proposed synergetic adsorption mechanisms of amphiphilic 
cellulose aerogel (HCNC-TPB/TMC) for sodium diclofenac (DCF) 
[142]

Fig. 6  Heavy metal removal mechanism from water system using 
nanocelluloses: a  Ion exchange mechanism which involves the 
adsorption of hazardous metal ions  (Mn+) takes the place of other 
ions  (K+,  Na+,  H+) already associated with the nanocellulose surface; 
b chemical complexation mechanism in which the carboxyl (–COO−) 
and hydroxyl (–OH) groups of the nanocelluloses have specific site 
interactions with particular hazardous metal ions [21]
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DCF has many hydrogen donors and receptors. Therefore, 
when steric hindrance is reduced, multiple hydrogen bonds 
can be formed to enhance the adsorption between DCF and 
the adsorbent [142]. The synergetic adsorption mechanisms 
of HCNC-TPB/TMC for DCF are depicted in Fig. 5.

In another study, researchers fabricated graphene-nano-
crystalline cellulose (G-CNC) as an adsorbent for phar-
maceuticals like aspirin (Asp) and acetaminophen (Acet) 
[143]. At lower pH levels, electrostatic ion interaction plays 
a role in the adsorption mechanism. Electrostatic interaction 

refers to the attraction or repulsion between molecules with 
opposite charges [145]. In order to improve pharmaceuti-
cals uptake, the interaction between the adsorbate and the 
adsorbent must be attractive. In this study, the adsorbent 
surface is mainly positively charged, while Asp is nega-
tively charged, leading to increased electrostatic attraction 
and greater adsorption efficiency. The adsorption capacity 
of G-CNC is also attributed to hydrophobic interaction and 
π–π conjugation between the adsorbent and the adsorbate. 
This is due to the presence of aromatic rings on Acet and 

Fig. 7  Basic blue 7 (BB7) elimination adsorption method employing CNC:GO − 70:30 nanocomposite via ion exchange (in grey), hydrogen 
bonds (in green), π-π/p-π (in purple), and electrostatic interactions (in black)

Fig. 8  Scheme to describe the 
MB adsorption behavior of 
HPAM/CNC nanocomposite 
hydrogels
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the hydrophobic nature of G-CNC. For hydrophobic interac-
tion, pharmaceuticals with low solubility tend to be adsorbed 
[146]. In the case of ciprofloxacin (CIP) uptake, the pres-
ence of a benzene ring in the CIP structure allows for π–π 
interactions with adsorbents. The electron-rich nature of the 
benzene ring leads to a stacking effect. CIP typically serves 
as the donor and the adsorbate as the acceptor in the accep-
tor-donor relationship of π–π interactions. These interactions 
are more prominent when the solution pH is close to neutral, 
where the adsorbate exists as a zwitterion [147].

Ion exchange and chemical-complexation are the major 
two mechanisms involved in heavy metal uptake when 
using nanocellulose-based adsorbents. Figure 6 illustrates 
the interaction between negatively-charged CNCs with car-
boxylate, amine, and sulphate groups and positively charged 
ions, polyelectrolytes, and nanoparticles in treated water, 
leading to the adsorption and removal of heavy metal ions 
[21]. In ion exchange mechanism, hazardous metal ions 
 (Mn+) displace other ions  (K+,  Na+,  H+) already present 
on the nanocellulose surface (Fig. 6a). On the other hand, 
chemical complexation mechanism involves specific interac-
tions between the carboxyl (–COO−) and hydroxyl (-OH) 
groups of nanocelluloses and the targeted metal ions (Mn+) 
(Fig. 6b). The adsorption capacity of nanocelluloses is deter-
mined by their functionality, surface area, and stoichiometry 
rules. Consequently, enhancing surface area and function-
alization is crucial to introduce more sites for complexing 
hazardous metal ions.

The adsorption mechanisms of CNC and graphene oxide 
(GO) nanocomposite for the removal of complex dyes basic 
blue 7 (BB7), reactive orange 122 (RO), and rhodamine B 
(RhB) in binary systems with non-complex dyes methyl 
orange (MO) and basic brown 4 (BB4) involve electrostatic 
interactions and ion exchange [148]. Figure 7 illustrates the 
potential adsorption mechanism of BB7 removal using the 
CNC:GO nanocomposite, which includes ion exchange, 
hydrogen bonds, π–π/p–π interactions, and electrostatic 
interactions.

CNC can be combined with zinc oxide (ZnO) nanopar-
ticles to produce a nanocomposite for the removal of meth-
ylene blue (MB) dye [149]. The adsorption kinetics of MB 
onto the CNC/ZnO nanocomposite primarily involve diffu-
sion-based mechanisms. This means that different adsorp-
tion sites on a homogeneous solid substrate collide randomly 
and diffuse through the pore size of the adsorbent during a 
rate-limiting step [150]. In another study, a hydrolyzed pol-
yacrylamide/CNC (HPAM/CNC) nanocomposite hydrogel 
was developed for MB removal. The active sites of HPAM/
CNC, including –CONH2 and –COOH groups in HPAM 
chains, as well as –OH and sulphate groups on the surface 
of CNCs, played a crucial role in determining the adsorption 
mechanism of the dye. According to the intraparticle diffu-
sion model, surface effects may be combined with chemical 

effects during the initial adsorption stage of HPAM/CNC 
nanocomposite hydrogels at low dye concentrations. How-
ever, during the eventual or equilibrium adsorption stage 
of the nanocomposite gels, the sorption sites (amount and 
chemical interaction with the dye) are primarily responsible 
for the adsorption behavior. The incorporation of CNCs into 
HPAM hydrogels (as shown in Fig. 8) not only facilitates 
the formation of a crosslinking network but also enhances 
the dye adsorption capacity, particularly for HPAM/CNC 
nanocomposite hydrogels with low swelling rates [151].

It is important to consider that the efficiency and effec-
tiveness of the adsorption mechanism can be influenced by 
various factors. These factors include the surface area, func-
tionality and pore size of the adsorbent, the solute concen-
tration in the solution, the characteristics of both the solute 
and adsorbent, as well as the temperature and pH conditions. 
By understanding and optimizing these factors, it becomes 
possible to enhance the adsorption capacity and selectivity 
of the adsorbent material for specific applications. Accord-
ing to Samer [132], the equilibrium adsorption capacity 
of CNCs is affected by factors such as pollutant concen-
tration, adsorbent dosage, pH, temperature, contact time, 
and particle size [141, 152–154]. Specifically, adsorption 
is inversely proportional to adsorbent particle size and pH, 
and directly correlated to adsorbate concentration, surface 
area, and temperature, depending on the composition and 
pore structure [132]. The removal capacity of pollutants 
increases with a higher dosage of adsorbent due to the avail-
ability of a larger surface area and more active adsorption 
sites [155]. For instance, the percentage of Cr(VI) removal 
showed an increase as the dosage of CNCs was increased 
from 0.5 g/L to 1.5 g/L. This increase in Cr(VI) removal 
with higher CNCs dosage can be attributed to the increased 
negative surface charge, which facilitates the adsorption of 
Cr(VI). The highest percentage of Cr(VI) removal achieved 
was 88.59% at a dosage of 1.5 g/L. Beyond this dosage, the 
percentage of Cr(VI) removal remained constant due to the 
saturation of the CNCs’ surface with adsorbed Cr(VI) [156]. 
Additionally, the aggregation of particles caused by a higher 
amount of CNCs resulted in a decreased affinity for adsorb-
ing Cr(VI) on the surface of CNCs [102].

The pH of the solution plays a crucial role in the adsorp-
tion process, particularly in the effective removal of pollut-
ants such as metal ions. The pH of the solution impacts the 
interaction between hydrogen ions and functional groups 
such as hydroxyl (OH), carboxyl (COOH), amine  (NH2), and 
metal ions on the surface of the adsorbent [157, 158]. In the 
case of Cr(VI) metal ions, they exist in aqueous solution as 
chromate (CrO4 2−) and dichromate  (Cr2O7

2−) [156, 158]. At 
low pH levels (pH 1 to pH 2), there is a high percentage of 
Cr(VI) removal because of the abundance of proton  H+. As a 
result,  CrO4

2− and  Cr2O7
2− become protonated and adsorbed 

onto the CNCs [156, 159]. However, as the pH increases 
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beyond 2, the percentage of Cr(VI) removal decreases due to 
a decrease in the concentration of proton  H+ in the aqueous 
solution, which is necessary for protonating Cr(VI) metal 
ions. Moreover, at higher pH levels, the percentage of Cr(VI) 
removal is low due to the abundance of  OH−. Consequently, 
electrostatic repulsion occurs during adsorption, leading to 
a decreased percentage of Cr(VI) removal [102]. A similar 
study conducted by Billah et al. [160] reported an increase 
in Cr(VI) adsorption between pH 1 and 3, with maximum 
adsorption occurring at pH 3, attributed to the electrostatic 
interactions between the adsorbent and the adsorbate. How-
ever, further increase in the solution pH from 4 to 7 resulted 
in decreased Cr(VI) adsorption [160].

The pH of the solution plays a crucial role in the removal 
of dyes, as it affects the electrostatic or molecular interac-
tion between the adsorbent and the dye based on the charge 
distribution on the material [161]. In the study conducted 
by Jin et al. [22], the impact of pH on dye removal percent-
age was investigated within a pH range of 4.0 to 9.0. The 
results showed that at an acidic pH of 4.7, the dye removal 
percentage was 67.3% (qt = 134.7 mg/g), which was higher 
than the 52.2% (qt = 104.5 mg/g) observed at a neutral pH of 
6.7. This suggests that under acidic conditions, the interac-
tion between the protonated amine and the anionic site of 
the dye enhanced the adsorption onto the amino-function-
alized nanocrystalline cellulose (ANCC). However, at a pH 
of 9.0, the dye removal percentage significantly dropped to 
only 31.3% (qt = 62.6 mg/g). In the alkaline region, the sur-
face charge of ANCC became negative, resulting in limited 
chemical interaction with the anionic site of the dye due to 
electrostatic repulsion. It was also noted that anionic dye 
adsorption was favored at pH values below the isoelectric 
point of the adsorbent, where the surface became positively 
charged, while cationic dye adsorption was favored at pH 
values above the isoelectric point of the adsorbent.

The adsorption process requires a specific amount of 
time to reach equilibrium, which signifies the comple-
tion of adsorption [162]. The time required to achieve 
equilibrium varies depending on the adsorbent material 
and adsorbate [141]. In the case of Cr(VI) removal, the 
percentage of removal increased as the treatment time 
increased from 5 to 30 min. This can be attributed to the 
attainment of the necessary contact time between the sur-
face of CNCs and Cr(VI) for adsorption to occur [102]. 
Initially, the adsorption process exhibited rapid uptake of 
Cr(VI). This initial rapid uptake can be attributed to exter-
nal surface adsorption, as there were numerous unsatu-
rated adsorption sites available. As the process progressed, 
a slower and more stable uptake of Cr(VI) was observed, 
indicating that adsorption was primarily governed by the 
transportation of Cr(VI) ions into the internal surface of 
the adsorbent (internal surface adsorption). The disparity 
in equilibrium time observed among different adsorbents 

can be attributed to surface modifications, which enhance 
their ability to rapidly remove Cr(VI) ions [160]. However, 
after 30 min of treatment time, the percentage of Cr(VI) 
removal became insignificant due to the saturation of the 
CNCs’ surface with adsorbed Cr(VI) [96].

The temperature of the contact also influences the adsorp-
tion process by affecting physicochemical reactions [163]. In 
a study conducted by Mohamed et al. [102], it was observed 
that the percentage of Cr(VI) removal increased as the tem-
perature rose from 28 ± 1 to 60 °C. This can be attributed 
to the increase in kinetic energy, which facilitated the bind-
ing of Cr(VI) on the surface of the CNCs and consequently 
enhanced Cr(VI) adsorption. The highest percentage of 
Cr(VI) removal achieved was 96% at 60 °C. Additionally, 
an increase in temperature resulted in a decrease in the solu-
tion’s viscosity, leading to a significant increase in the inter-
action between CNCs particles and Cr(VI), thereby enhanc-
ing Cr(VI) adsorption [160, 164]. However, beyond 60 °C, 
there was a decrease in Cr(VI) removal with increasing 
temperature. This was due to the degradation of the CNCs 
particles, which weakened the intermolecular forces between 
them and subsequently reduced the binding of Cr(VI) on the 
surface of the CNCs particles [96, 165]. According to the 
findings of Xu et al. [163], in endothermic reactions, raising 
the temperature would cause an increase in the reaction rate. 
On the other hand, in exothermic reactions, an increase in 
temperature would lead to a decrease in the reaction rate. 
Experiments conducted by Moradeeya et al. [166], Batmaz 
et al. [167], Qiao et al. [168], Pinto et al. [169], Anirudhan 
and Shainy [170], and others have reported various examples 
of exothermic reactions.

Indeed, the adsorption mechanisms of heavy metal ions 
by CNCs differ significantly from those of organic pollut-
ants like organic dyes and oils due to the distinct chemical 
properties and interactions involved. Heavy metal ions are 
inorganic species with charged ions (cations) that can form 
electrostatic interactions with the negatively charged surface 
groups of CNCs, primarily hydroxyl (-OH) groups [171]. 
These interactions involve ion exchange and coordination, 
where heavy metal ions are attracted to and bond with the 
hydroxyl groups on the CNCs surface. In the case of heavy 
metal ions, surface complexation reactions play a significant 
role [21]. CNCs’ surfaces provide numerous active sites for 
the complexation of heavy metal ions [172]. The interaction 
involves the formation of surface complexes, where heavy 
metal ions bond to multiple hydroxyl groups on the CNCs 
surface, effectively immobilizing them. The adsorption of 
heavy metal ions onto CNCs is often sensitive to the ionic 
strength and pH of the solution [173]. Changes in pH can 
influence the surface charge of both CNCs and heavy metal 
ions, affecting the electrostatic interactions. Additionally, 
the presence of competing ions in solution can impact the 
adsorption efficiency.
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CNCs can exhibit selectivity in adsorbing heavy metal 
ions based on their charge and size [101]. For example, 
certain heavy metal ions may have a higher affinity for 
CNCs due to stronger coordination bonds. Unlike organic 
pollutants, heavy metal ions adsorbed onto CNCs may be 
more challenging to desorb, making the process of heavy 
metal removal potentially more irreversible. This property 
can be advantageous in applications where the goal is per-
manent removal and immobilization of heavy metals. In 
contrast, the adsorption of organic pollutants like organic 
dyes and oils onto CNCs typically involves physical inter-
actions, such as van der Waals forces, hydrophobic inter-
actions, and hydrogen bonding [174]. These pollutants do 
not typically form surface complexes or coordinate with 
CNCs in the same way as heavy metal ions. Consequently, 
the mechanisms and conditions for adsorbing heavy metal 
ions by CNCs indeed warrant a thorough and distinct dis-
cussion from those of organic pollutants.

CNCs Based Materials for Wastewater 
Treatment Applications

In comparison to commercial ion exchange sorbents, CNCs 
are inexpensive and abundant, making them an excellent 
adsorbent. Figure 9 presents cellulose nanomaterials adsor-
bent applications. In this section, the most possible appli-
cations of CNCs as an adsorbent in wastewater treatment 
will be discussed, including the removal of oil and organic 
solvents, pesticides, heavy metals, dyes, pharmaceuticals, 
organic micropollutants and other pollutants.

Oil and Organic Solvents Separation

Oil pollution is becoming a critical issue as industrial 
development accelerates. Industrial oil emissions continue 
to have a detrimental effect on the aquatic ecosystem and 
ecology, such as crude oil leaks, industry oil discharges, or 
residential cooking oil discharges. Pollution from oil spills 
in wastewater can persist for many years. Most of the oil 
pollution is caused by tanker oil spills, but there are also 
other additional sources that cumulatively contribute to oil 

Fig. 9  Applications areas of cellulose nanomaterials as adsorbents [175]
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pollution. According to the statistic from the International 
Tanker Owners Pollution Federation Limited (ITOPF), in 
2021, about 10,000 tons of oil were lost to the environment 
as a result of a tanker spill [176]. The major problem with 
oil pollution is that it spreads quickly, especially with lighter 
oils. It also covers the surface of the water, harming the 
aquatic ecosystem and contaminating mankind’s drinking 
water. Regarding this issue, filtration, in situ burning of 
floating oil, gravity separation, and adsorption are typically 
used to treat oily wastewater effluents. Adsorption is said to 
be the most trustworthy, economical, and ecologically ben-
eficial approach since it effectively removes the contaminant 
from water without creating any extra intermediates [177].

CNCs’ adsorption properties may be applied to oil-water 
separation methods, which are crucial for limiting chemi-
cal and oil leaks. The large number of hydroxyl groups on 
the surface and the nanoscale structure of CNCs made it 
possible to take advantage of a new property called “super 
wettability”. This property makes CNCs-based materi-
als repel oil very strongly underwater [178]. However, the 
hydroxyl group (OH) in cellulose’s molecular structure is 
the main cause of their inability to disperse in many solvents 
and polymers, leading to nanofiber aggregation. Therefore, 
the readily available hydroxyl functional groups of CNCs 
enable a vast scope of designing part in order to improve the 
hydrophilicity/hydrophobicity, compatibility, and reactivity 
of the material in practical implementation [78, 179]. Good 
lipophilicity and hydrophobicity, large load capacity, rapid 
oil adsorption rate, inexpensive, and elevated buoyancy are 
all required characteristics for a remarkably effective oil 
adsorbent material [180].

In previous study, researchers have explored the use of 
CNCs in various membrane materials for oil/water separa-
tion. For example, Almeida et al. [181] deposited CNCs 
on cellulose acetate (CA) electrospun non-woven mem-
branes, all-cellulose membranes [178], and filter paper 
[182] to enhance their separation properties. Almeida et al. 
[181] developed a CA electrospun non-woven membrane 
with stamped CNCs patterns, which effectively removed 
microdroplets of oil from water. Li et al. [178] employed 
a large-scale additive printing technique to deposit CNCs 
onto mixed-cellulose esters, resulting in all-cellulose 

membranes with nanoporous architecture. These mem-
branes exhibited superhydrophilicity and underwater 
superoleophobicity, enabling efficient separation of oil/
water nanoemulsions with high water flux and ultrahigh 
efficiency of over 99%. They also demonstrated excellent 
stability and reusability for long-term separation, retain-
ing their performance under various acidic, basic, and 
salty conditions. Huang et al. [182] created a functional 
adsorbent with 97% efficiency by either physically coating 
tunicate CNCs on the surface of filter paper via hydrogen 
bonding formation or chemically fixing CNCs on the fil-
ter paper surface through crosslinking of hydroxyl groups 
with epichlorohydrin (ECH). These approaches enhanced 
the separation properties of the filter paper, making it 
effective for oil/water separation applications.

In recent research, a CNCs/PVA aerogel treated with 
methyltrichlorosilane to become hydrophobic, enabling it 
to absorb oil up to 32.7 times its initial weight. The CNCs 
aerogel possesses key characteristics such as high porosity 
(> 97.7%), a 3D interconnected microstructure, ultralight 
density ranging from 22.5 to 36.1 mg/cm³, and the ability 
to float on water, which greatly facilitates its oil absorp-
tion capabilities [104, 183]. When CNCs are exposed to a 
single chemical, they tend to absorb a significant amount 
of water. To address this, elastic aerogels were developed 
by ice-templating CNCs water suspensions with polyethyle-
neimine (PEI) and epoxy crosslinking agents. These aerogels 
exhibited highly porous structures and enabled rapid solvent 
absorption, including capillary force absorption of water. To 
further enhance their performance, graphene sheets were 
chemically attached to the pore surface of the aerogel using 
a dip coating process. The resulting CNCs/graphene aerogel, 
with weight ratios ranging from 25 to 58 g/g, demonstrated 
selective absorption of organic solvents [184]. These find-
ings highlight the importance of altering the hydrophilicity 
of CNCs when they are utilized as additives in absorbent 
materials to prevent oil chemical leakage. The modification 
of CNCs-based aerogels and the incorporation of graphene 
sheets offer promising solutions for efficient oil absorption 
and selective solvent absorption in various applications. 
Table 5 listed the CNCs-based adsorbents for the removal 
of oil and organic solvents.

Table 5  CNCs-based adsorbents for the removal of oil and organic solvents

CNCs-based adsorbents Pollutants Efficiency (%) References

Non-woven membranes stamped with CNCs Oil microdroplet/ water separation 80 [181]
Filter paper-coated tunicate CNCs Oil/water separation 97 [182]
CNCs/PVA aerogel Oil and organic solvents n/a [183]
CNCs/graphene aerogel n/a [184]
All-cellulose membranes deposited with CNCs Oil/water separation > 99 [178]
Chitosan-CNCs multilayer on stainless steel mesh (SSM) Oil/water separation 99.5 [185]
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The effective pore size, thickness, and hydrophilicity of 
the membranes have additive effects on oil separation. When 
the membrane is submerged, water molecules readily pass 
through the membrane, however, oil droplets are repelled 
underwater, resulting in oil-water separation. Water, being 
denser than oil, forms a barrier-like film on the membrane’s 
surface, preventing direct contact with the film’s surface. 
The improved film’s underwater oil-water separation process 
is considerably enhanced by the CNCs’ abundant hydroxyl 
groups and their nanostructures, which provide it superhy-
drophilicity and superoleophobicity properties. As reported 
in Wang et al. [185], a separation efficiency of more than 
99.5% for an oil-water mixture and other oil-in-water emul-
sions was achieved by depositing chitosan (CS)-cellulose 
nanocrystals (CNCs) multilayer on stainless steel mesh 
(SSM) through simple layer-by-layer (LBL) self-assembly 
method.

Pesticides Decomposition

Pesticide usage in agriculture contributes greatly to increas-
ing crop yields and warding off harmful pests and exotic 
weeds [186]. The world’s use of pesticides has significantly 
expanded because of the world’s population’s rapid growth 
and the resulting rise in food consumption. Currently, the 
most often used pesticides are the organophosphorus (OP) 
class of agrochemicals. The excessive use of pesticides has 
resulted in widespread pollution that is seen in every aspect 
of the environment. Since pesticide formulations frequently 
contain hazardous, comparatively stable, and less soluble 
active compounds, this pollution presents a multitude of 
health risks to the general people and ecological species 
that are not the intended targets. Water sources have become 
contaminated because of the growing use of pesticides and 
the delayed environmental breakdown of residual pesticides.

In a study conducted by Swasy et al. [90], an experiment 
was done to investigate different pesticides that are capa-
ble of being broken down by amine-functionalized CNCs 
and transformed into the relevant by-products with reduced 
molecular weights in both organic and aqueous environ-
ments. The structures of amine-modified CNCs are pre-
sented in Fig. 10a and the proposed degradation pathway of 
malathion and deltamethrin upon treatment with CNC-PEI. 
According to the experiment, CNCs that have undergone 
amine alteration might be used to successfully break down 
a few pesticides in aqueous conditions. It was found that 
poly(ethylenimine) cellulose nanocrystal (CNCs-PEI) with 
a loading of 50 mg exhibited degradation rates of 78% for 
permethrin, 95% for deltamethrin, and 100% for malathion 
at a concentration of 165 ppm. The exceptional performance 
of CNCs-PEI can be attributed to the presence of reactive 
sites on the surface of the CNCs. The use of amine derivat-
izing agents independently resulted in some degradation of 

malathion. By grafting amine compounds into solid CNCs, 
several advantages are achieved, including the ability to uti-
lize smaller amounts of the amine compounds, reusability, 
and the option to use it in solid or solution form. The pH 
level was found to play a crucial role in the degradation of 
malathion by CNCs-PEI. Increasing the pH accelerated the 
degradation rate by reducing the protonation level of the 
CNCs-PEI material. Conversely, lowering the pH increased 
the protonation level of the CNCs-PEI material, thereby 
slowing down the degradation rate. Furthermore, the reus-
ability of CNCs-PEI was investigated. After two wash and 
reuse cycles, the CNCs-PEI material retained its ability to 
degrade malathion, demonstrating its potential for repeated 
use. In summary, the study highlights the effectiveness of 
CNCs-PEI in degrading pesticide compounds, with mala-
thion being completely degraded. The presence of reactive 
sites on the CNCs surface, the influence of pH, and the reus-
ability of CNCs-PEI contribute to its superior performance 
as a degradation agent for pesticides.

In a study conducted by Moradeeya et al. [166], CNCs 
was investigated for its ability to biosorb chlorpyrifos (CP), 
an insecticide. The results showed that 1.5 g/l of CNCs 
required 20 min to biosorb 5 mg/l of CP from an aqueous 
solution, achieving a remarkable removal effectiveness of 
99.3%. It was observed that as the temperature increased 
from 288 to 308 K, the maximum adsorption capacities 
decreased from 12.325 to 7.247 mg/g, indicating that the 
biosorption of CP is an exothermic process. Desorption of 
CP from CNCs could be achieved by using two cycles of 
operation with a solution consisting of 80% methanol and 
20% water. In another study by Yi et al. [187], magnetic par-
tially carbonized cellulose nanocrystals (MPC-CNCs) were 
developed by treating microcrystalline cellulose (MCC) with 
sulfuric acid and loading it with magnetic  Fe3O4 nanopar-
ticles. MPC-CNCs demonstrated suitability as a material 
for magnetic solid phase extraction of triazine and triazole 
pesticides from water. Under optimal conditions, 100 mg 
of MPC-CNCs exhibited approximately 90% adsorption 
efficiency within 16.5 min. Furthermore, it could be reused 
up to nine times without significant loss of its adsorption 
ability.

Heavy Metal Elimination

Heavy metal refers to any naturally occurring element with 
an atomic weight or density five times greater than that of 
water, exhibiting high reactivity and even toxicity at minimal 
concentrations [58]. The presence of heavy metals in water 
has become increasingly widespread due to the expansion 
of industrial and human activities, including battery manu-
facturing, metal smelting, electroplating, textile production, 
mining, petrochemicals, and more. These heavy metals, such 
as arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), 
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mercury (Hg), nickel (Ni), and thallium (Tl), are among the 
most perilous environmental pollutants [188, 189]. They are 
potentially hazardous in mixed or elemental forms [189] and 
are easily absorbed by living organisms because they are 
highly soluble in watery settings [190]. Numerous studies 
have detected heavy metals in the gills, livers, and muscle 
tissues of diverse fish species from polluted marine ecosys-
tems [191]. Consequently, once heavy metals enter the food 
chain, they can accumulate within the human body [192]. 
Given the widespread industrial use of most heavy metals, 
residents and workers residing in proximity to such facili-
ties may face exposure and associated health risks. Elevated 
concentrations of heavy metals beyond safe levels can have 
adverse consequences on human health, the environment, 

and the ecosystem overall [193]. As a result, the minimal 
human health risk is related to permitted safe levels of heavy 
metals in dietary samples.

The most widely used heavy metals removal technol-
ogy among the several provided options is the adsorption 
approach. Bio-adsorbents like CNCs have gained popularity 
as heavy metals adsorbents due to the current emphasis on 
sustainable materials [194]. In order to enhance their capac-
ity for heavy metal adsorption, CNCs typically require treat-
ment with suitable functional groups [195]. Park et al. [29] 
synthesized polyacrylamide hydrazine (PAH) grafted CNCs 
(CNCs-PAH) for the removal of heavy metal ions. The pres-
ence of densely packed amines on the surfaces of CNCs-
PAH enables strong electrostatic, hydrogen bonding, and 

Fig. 10  a Amine-modified cellulose nanocrystal structures, b Proposed degradation pathway of malathion upon treatment with CNC-PEI, and 
c Proposed degradation pathway of deltamethrin upon treatment with CNC-PEI [90]
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chelation processes, allowing for the adsorption of Cr(VI) 
ions [29].

Nanoparticles capture heavy metal ions from water pri-
marily through surface adsorption, driven by electrostatic 
interactions. Among various bionanomaterials, CNCs with 
negative surface charge and negatively charged functional 
groups have excellent adsorption properties for positively 
charged  Ag+ ions. Positive-negative interactions are the 
main mechanism for  Ag+ adsorption in CNCs. The adsorp-
tion behavior is influenced by pH levels, with decreasing 
pH leading to lower adsorption capacities due to competi-
tion between positively charged  Ag+ ions and  H+ ions for 
adsorption onto negatively charged functional groups like 
 SO3- and  COO-. Electrostatic interactions drive this competi-
tion. At a pH above 4.8, CNCs exhibit the highest adsorption 
capacity [129].

The effect of pH on the adsorption of Co(II) was investi-
gated using cobalt (Co(II)) solutions of 100 and 200 mg/L, 
with pH values ranging from 3.0 to 8.0. The adsorption 
capacity increased from 45.5 to 98.8% for 100 mg/L and 
from 43.52 to 95.0% for 200 mg/L as the pH increased from 
2.0 to 6.0. This increase in adsorption capacity can be attrib-
uted to the complexation of Co(II) with carboxyl groups. 
Various amounts of adsorbent ranging from 0.05 to 5.0 g/L 
were conducted to examine the impact of adsorbent dose on 
Co(II) adsorption on P(IA/MAA)-g-NC/NB. The adsorption 
capacity increased with higher adsorbent doses, and a mini-
mum dosage of 2.0 g was sufficient for complete removal 
of Co(II) from a 1.0 L aqueous solution. Increasing the agi-
tation speed from 100 to 200 rpm resulted in an increase 
in Co(II) removal from 79.34 to 99.6%. This improvement 
in adsorption efficiency can be attributed to the exposure 
of adsorption pores generated by the higher agitation rate. 
It is possible that adsorption is controlled by intra-particle 
pore diffusion or pore diffusion, and the adsorption of the 
metal occurs primarily at the surface of the adsorbent. The 
desorption capacity of P(IA/MAA)-g-NC/NB using 0.1 M 
Hydrochloric acid (HCl) was 99.6% even after six regenera-
tion cycles, and only a slight decrease in adsorption capacity 
was observed, from 99.15 to 88.9% [25]. HCl has been iden-
tified as the most suitable reagent for the removal of Hg(II) 
ions from 2-mercaptobenzamide modified itaconic acid-
grafted-magnetite CNCs (P(MB-IA)-g-MNCC), achieving 
a desorption percentage of 98.5%. Adsorption-desorption 
studies were conducted using 0.1 M HCl for five cycles, 
resulting in a decrease in the adsorption capacity of P(MB-
IA)-g-MNCC from 96.0 to 86.0% over the course of the five 
cycles. It is evident that the spent adsorbent retains a high 
adsorption capacity even after multiple cycles, indicating its 
potential for repeated use [170].

The effect of pH on metal ion morphologies may influ-
ence how well adsorption works [104]. Raising the adsor-
bent’s isoelectronic can fix this problem. The isoelectronic 

point of amino-functionalized nanocellulose (ACNC), for 
instance, ranges between 8 and 9. The free amine groups of 
ACNC are protonated in neutral and acidic environments, 
producing a positive zeta potential [104] and adsorbable to 
their highest capacity at pH 2, while  Cu2+ and  Pb2+ were 
adsorbable to their maximum capacities at pH 6 [196]. 
Additionally, the adsorbent’s structure is crucial to the pro-
cess of adsorption. An example of this is the Polydopamine 
(PD) modified CNCs (CNCs@PD) nano sorbent, which has 
a coating of PD on it and displays a high specific surface 
area, assisting in the adsorption of 205 mg/g Cr(VI) [104].

The Fe-Cu alloy coated CNCs (Fe-Cu@CNCs) possess 
carboxyl and hydroxyl functional groups that are electron-
rich and tend to donate electrons to electropositive metals. 
These functional groups can form electrostatic attractions 
with  Pb2+ ions. As the concentration of  Pb2+ ions increase 
from 20 to 50 mg/L, the removal ratio of  Pb2+ metal ions 
decrease from 93.98 to 65.56% for the Fe-Cu@CNCs com-
posite. This decrease in removal ratio is attributed to the sat-
uration of adsorption sites on the surface of Fe-Cu@CNCs 
composites at higher initial concentrations of  Pb2+ ions. Fur-
thermore, the Fe-Cu@CNCs composite demonstrates excel-
lent reusability, as it retains 80.41% of its original adsorption 
capacity after six cycles [130].

In a study conducted by Singh et al. [197], the reinforce-
ment of cellulose nanocrystals (CNCs) through succination 
and amination was investigated for the purpose of decon-
taminating Cr(III) and Cr(VI) from water. CNCs possesses 
unique properties such as an increased surface area-to-vol-
ume ratio, quantum size effects, and the ability to modify 
surface properties through molecular modifications, mak-
ing it an ideal material for metal remediation. The study 
determined the optimal conditions for the removal of Cr(III) 
and Cr(VI) as follows: a biomass dosage of 2.0 g, a metal 
concentration of 25 mg/L, a contact time of 40 min, and a 
test solution volume of 200 mL. The pH values of 6.5 and 
2.5 were found to be optimal for Cr(III) and Cr(VI), respec-
tively. By mobilizing amine groups on the surface of CNCs, 
more than 98% of anionic chromate containing Cr(VI) in the 
concentration range of 12.5 mg/g was successfully removed. 
This study highlights the potential of reinforced CNCs for 
the decontamination of Cr(III) and Cr(VI) from water. The 
ability to modify the surface properties of CNCs through 
succination and amination provides an effective approach 
for metal remediation applications.

According to a study by Nasrollahzadeh et al. [58], add-
ing succinic acid groups to CNCs significantly increased 
the binding effectiveness of  Pb2+ and  Cd2+ in water sub-
stantially. In particular, the conversion of carboxylic acid 
groups to sodiated carboxylates boosted their capacity to 
remove harmful metal ions from liquids. Besides, phosphate 
groups that serve as heavy metal ion binding sites were 
added to the surface of CNCs via the process of enzymatic 
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phosphorylation. Phosphorylated CNCs showed an improved 
ability for adsorption compared to pristine CNCs [35].

Furthermore, functionalized CNCs (electrosterically sta-
bilized nanocrystalline cellulose (ENCC)), has a maximal 
 Cu2+ absorption capacity of 185 mg/g at pH = 4 [198]. The 
absorption of  Cd2+,  Pb2+, and  Ni2+ from aqueous solutions 
utilizing carboxylate CNCs at pH = 6.5 is often much greater 
than using unmodified CNFs generated by mechanical treat-
ment (11 mg/g for  Cd2+, 10 mg/g for  Pb2+, and 11 mg/g for 
 Ni2+) [198]. The importance of surface functionalization is 
further shown through this study. Table 6 listed the examples 
of CNCs-based adsorbents for the removal of heavy metal 
ions from wastewater.

Dye Extraction

Dyes are chemicals that may attach to surfaces or textiles to 
produce brilliant and long-lasting colors [202]. As a result 
of all of these advancements, there are now over 100,000 
commercially accessible dyes, with azo dyes accounting for 
over 70% of the total by weight, and over 1 million tons of 
dyes are produced each year, with textile dyes accounting 
for 50% [203]. Among the primary industries that contrib-
ute to dye pollution are paints, inks, plastics, paper, energy 
transfer cascades, displays, dye-sensitive solar cells, laser 
welding processes, light-emitting diodes, and food and/
or cosmetic dyes generated predominantly from azo dyes 
are the key industries that contribute to dye pollution [58]. 
The effluent from textile dying operations is challenging to 
handle effectively because of the significant composition 
diversity and high color intensity. According to estimates, 
2% of dyes generated are discharged directly into aqueous 
effluent, while the remaining 10% are lost throughout the 
coloring process [203]. Due to the harmful impact that waste 
dyes have on people, animals, and plants, dye effluents are 
the most common industrial colorants and pose a danger 
to aquatic habitats. Toxic dye effluents are dangerous, non-
biodegradable, physiologically and chemically stable, and 
water-soluble organic pollutants that contribute to a wide 
range of human illnesses, including skin rashes, renal failure, 
liver disease, and nervous system damage.

Anionic moiety-modified CNCs can function as adsorbent 
materials or catalysts to remove various cationic dyes. Based 
on studies by He et al. [89], the adsorption properties of 
carboxylated nanocelluloses generated utilizing a single-step 
hydrolysis process were investigated. Ammonium persulfate 
is used to hydrolyze microcrystalline cellulose to produce 
carboxylated or COO-modified CNCs, which have carboxyl 
groups added to their surface during cellulose hydrolysis 
(APS). Adsorption studies for cationic dyes like methylene 
blue (MB) have demonstrated the possibility of carboxy-
late groups attaching to positively charged dyes. Adsorption 
of dye-contaminated wastewater is a common method, but 

achieving high removal capacity with cost-effective adsor-
bents is a challenge. Electrosterically stabilized nanocrys-
talline cellulose (ENCC), a form of hairy nanocellulose, 
shows potential for high adsorption capacity [204], as dis-
played in Fig. 11a. It effectively adsorbs methylene blue 
dye through an ion-exchange mechanism, influenced by 
other ions. Composite hydrogel beads of sodium alginate 
and ENCC (ALG–ENCC beads) maintain a high removal 
capacity (1250 mg/g), making them suitable for large-scale 
wastewater treatment. Figure 11b depicts the structure of 
cationic dyes bonded to the anionic sulphated or carboxy-
lated CNCs. The adsorption capacity of MB onto CNCs, 
therefore, started to balance after 10 min at 22 °C (0.32 
mmol/g) [58]. This discovery is the result of the modifica-
tion of carboxylated CNCs surfaces, where more carboxyl 
groups may effectively function as a dye-binding site.

Moreover, CNCs surfaces include large amounts of 
hydroxyl groups and have high specific surface areas. Due 
to this, hydroxyl groups on the surface of CNC can be oxi-
dized to carboxyl groups by  H2O2 treatment and promoting 
the dye adsorption. The methylene blue (MB) clearance rate, 
for instance, increased from 90.85 ± 2.34% to 98.76 ± 2.21% 
[205]. CNCs that have been treated with polydopamine (PD) 
may completely adsorb MB [104]. This occurred because 
of MB’s ability to be adsorbed by PD-CNC via electrostatic 
attraction, hydrogen bonding, and π-π stacking. The porosi-
ties of CNCs were altered in addition to surface function-
alization to enhance their adsorption capabilities. Sodium 
alginate cross-linked (CNCs-MnO2), for instance, created 
porous microspheres with 98.23% porosity and low densities. 
Methylene blue decolorization achieved 95.4% efficiency in 
approximately ten minutes [104]. Besides that, Song et al. 
[33] observed that cellulose nanocrystal (CNCs)/transition 
metal oxide hybrid porous microspheres have high adsorp-
tion performance and degradability in wastewater treatment. 
A CNCs/manganese dioxide/titanium dioxide microsphere is 
prepared using a bubble template and ionic crosslinking. The 
synergistic effect of the metal oxides achieves 97.0% deg-
radation efficiency for methylene blue, easy recovery, and 
rapid regeneration. The material’s maximum dye removal is 
310.2 mg/g, surpassing other CNCs-based adsorbents, pos-
sibly due to concerted catalysis. Table 7 presents a compre-
hensive compilation of studies exploring the application of 
cellulose nanocrystals (CNCs) as adsorbents for the efficient 
removal of dyes from wastewater. 

Pharmaceutical Waste Removal

Many urban and rural groundwater sources, while safe to 
drink, may include trace amounts of pharmaceutical sub-
stances such as birth control pills, antidepressants, pain 
relievers, shampoos, anti-epileptics, caffeine, and a variety 
of other pharmaceutical ingredients [207]. For the health 
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of humans, pharmaceuticals are crucial. Nonetheless, they 
are becoming more and more recognized as a rising con-
cern pollutant. The amount of pharmaceutical waste in 

the environment, landfills, or disposal sites is periodically 
increased by the release of pharmaceutical waste or by-prod-
ucts into open fields and nearby natural water bodies. As a 

Table 6  CNCs-based adsorbents for heavy metal ions removal from wastewater

CNC Adsorbent Heavy Metal pH Concentration of 
pollutants (mg/L)

Adsorbent 
dosage 
(g/L)

Adsorption 
Capability 
(mg/g)

Removal efficiency (%) References

CNCs Ag+ 6.39 107.8 2.0 34.35 64 [129]
Chitin nanocrystals (ChNC) 6.63 107.8 2.0 19.80 37
Pristine CNCs  (CNCSL) 3.5–4.5 62.5 2.0 56 – [28]
Phosphorylated CNCs  (PCNCSL) 62.5 2.0 136 –
Pristine CNC  (CNCSL) 9.1 1.48 – 0.82 100 [131]
CNCBE 1.48 – 0.87 100
Phosphorylated CNCs  (PCNCSL) 1.48 – 0.81 100
Pristine CNCs Cd2+ 6.0 200 1.0 1.9 – [199]
Carboxylated CNCs (SCNCs) 200 1.0 259.7 –
Sodic nanoadsorbent (NaSC-

NCs)
200 1.0 344.8 –

Rice straw CNCs 6.0 25 0.5 9.7 90.7 [200]
Pristine CNCs Cu2+ 3.5–4.5 62.5 2.0 20 13.8 [28]
Phosphorylated CNCs 62.5 2.0 117 99.4
Pristine CNCs  (CNCSL) 2.3 330.2 – 28 13 [131]
CNCBE 330.2 – 67 36
Phosphorylated CNCs  (PCNCSL) 330.2 – 358 86
Carboxylated cellulose nanow-

hiskers (CNWs)
6.0 10–60 0.2–10.0 14.65 – [23]

Fe-Cu alloy coated CNCs (Fe-
Cu@CNCs)

Pb2+ – – – 85.8 93.98 [130]

Pristine CNCs 5.5 300 1.0 27.9 – [199]
Carboxylated CNCs (SCNCs) 300 1.0 367.6 –
Sodic nanoadsorbent (NaSC-

NCs)
300 1.0 465.1 –

Rice straw CNCs 6.0 25 0.5 9.42 94.2 [200]
2-mercaptobenzamide modified 

itaconic acid-grafted-magnetite 
CNCs

Hg2+ 8.2 100 2.0 240 96 [170]

Poly (itaconic acid/methacrylic 
acid)-grafted-CNCs/nanoben-
tonite composite

Co2+ 6.0 100 2.0 350.8 98.8 [25]

Pristine CNCs Fe3+ 3.5–4.5 62.5 2.0 6.3 39.8 [28]
Phosphorylated CNCs 62.5 2.0 115 100
Pristine CNCs  (CNCSL) 2.3 550.5 – 48 14 [131]
CNCBE 550.5 – 102 33
Phosphorylated CNCs  (PCNCSL) 550.5 – 512 74
CNCs Cr3+ 6.5 25 2.0 – 62.4 ± 0.03 [197]
Succinated CNCs 25 2.0 – 94.84 ± 0.06
CNCs Cr4+ 2.5 25 2.0 – 5.72 ± 0.09 [197]
Aminated CNCs 25 2.0 – 98.88 ± 0.08
Rice straw CNCs Ni2+ 6.0 25 0.5 8.55 85.5 [200]
Diethylene triamine grafted 

dialdehyde CNCs (DETA-g-
DA-NCC)

As3+ 7.5 25 0.5 10.56 92.84 [201]
As5+ 2.5 25 0.5 12.06 97.86 [201]
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result, pharmaceutical waste is the developing contaminant 
that is most frequently found in water [208].

The surface of nanocrystal cellulose (CNC) has been 
modified to effectively absorb medicines. One method is 
to build composites of CNCs modified with polyethylene 

glycol (PEG), which have demonstrated improved adsorp-
tion ability for several medicinal compounds in aqueous 
solutions. Acetaminophen, sulfamethoxazole, and N, N-die-
thyl-meta-toluamide (DEET) are examples [209]. The ability 
of cellulose-based nanocomposites to extract hydrophobic 

Fig. 11  a Dye removal using 
hairy nanocellulose [204]; b 
Cationic dye surface adsorp-
tion on anionic sulphated or 
carboxylated CNCs [169]

Table 7  CNCs-based adsorbents for efficient dyes removal from wastewater

CNCs Adsorbent Dye pH Concentration of 
pollutants (mg/L)

Adsorbent 
dosage (g/L)

Adsorption 
capability 
(mg/g)

Removal 
efficiency 
(%)

References

Nanocrystalline cellulose (NCC) Methylene blue – – – 101.16 – [89]
Carboxylated CNCs 7.0 500 18 – 92.8 [24]

200 20 – 92.3
CNCs/partially hydrolysed polyacryla-

mide (HPAM) nano-hydrogels
6.5 5 – 19 – [206]

CNCs 9.0 500 12.17 118 – [167]
Oxidised CNCs 9.0 500 12.17 769 –
CNCs Crystal violet 6.0 400 500 185.2 – [168]
Maleic anhydride grafted CNCs 400 500 243.9 –
Amino-functionalised CNCs (ANCC) Acid red GR 4.7 100 0.5 134.7 67.3 [22]
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pharmaceuticals from water has been established. The inter-
action between PEG-functionalized CNCs and the medi-
cines is responsible for the increased adsorption capability. 
The composite is made by carboxylation the CNC surface 
with 2,2,6,6-tetramethyl-1-piperidinyloxy, then covalently 
attaching a 600 g/mol hydrophilic polyether diamine using 
the sodium salt of N-(3-dimethylaminopropyl)-N-ethyl-
carbodiimide/N-hydroxysulfosuccinimide [209]. Another 
study synthesized dialdehyde cellulose nanocrystals 
(DCNCs) by oxidizing cellulose nanocrystals (CNCs) with 
sodium periodate to remove creatinine [210]. The adsorp-
tion capacity of DCNCs increased with increasing aldehyde 
content, as more aldehyde groups provided more adsorp-
tion sites. Furthermore, smaller DCNCs resulted in faster 
adsorption rates while having little effect on adsorption 
capacity. Under conditions such as an initial creatinine con-
centration of 100 mg/L, an 8-hour treatment time, and a pH 
of 7, the maximum adsorption of creatinine onto DCNCs 
(with an aldehyde content of 4.41 mmol/g) was determined 
to be 1.50 mg/g. These findings imply that DCNCs have the 
potential to be used as a creatinine adsorbent in the treat-
ment of chronic renal failure [210]. Furthermore, polypyr-
role/cellulose fibers (PPY/CF) for the removal of potassium 
diclofenac (PD) from aqueous solutions have been synthe-
sized. The percentages of PD adsorption were found to be 
considerable over a wide pH range of 2.0–10.0. The PPY/
CF composite, which contains amino functional groups and 
aromatic rings on polypyrrole as well as different CF ester, 
ether, and hydroxyl groups, contributes to the high adsorp-
tion capacity of PD through hydrogen bonds, dipole-dipole 
forces, and π-π interactions [211].

In a study by Chen et al. [212], an inorganic-organic 
adsorbent called β-Cyclodextrin-modified CNCs@Fe3O4@
SiO2 superparamagnetic nanorods was developed for the 
removal of procaine hydrochloride and imipramine hydro-
chloride. The adsorption capacities for procaine hydro-
chloride and imipramine hydrochloride were determined to 
be 13.0 ± 0.09 mg/g and 14.8 ± 0.16 mg/, respectively. In 
another study conducted by T.S. Anirudhan and Rejeena 
[213], a cellulose-based hydrogel known as poly(acrylic 

acid)-modified poly(glycidylmeth-acrylate)-grafted nanocel-
lulose (PAPGNC) was synthesized through graft copolym-
erization. The maximum adsorption capacity of PAPGNC 
was found to be 140.65 mg/g at pH 6.5 and 30 °C, with 
equilibrium reached within 90 min. The adsorbent could be 
effectively regenerated using 0.1 M potassium thiocyanate 
(KSCN), with a retention of 87% in catalytic activity even 
after four cycles.

The adsorption of hemoglobin onto P(MAA-co-VSA)-g-
MNCC was found to be influenced by the initial concentra-
tion and temperature. Higher initial concentrations (ranging 
from 25 to 100 mg/L) and temperatures (ranging from 10 
to 40 °C) resulted in increased adsorption capacity. How-
ever, at temperatures exceeding 40 °C, the unfolding of 
hemoglobin molecules caused agglomeration, leading to a 
decrease in adsorption. This decrease was attributed to the 
interaction between the hydrophobic part of the adsorbent 
and the hydrophilic part of hemoglobin [27]. Other exam-
ples of CNC-based adsorbents for pharmaceutical pollutants 
removal were presented in Table 8.

Organic Micropollutants Degradation

Micropollutants and trace organic compounds, both syn-
thetic and natural substances, pose potential risks to the 
environment and human health [214]. Factors such as uncon-
trolled urbanization, industrial growth, healthcare activities, 
agriculture, and transportation contribute to their presence 
in the environment [215]. Examples of these developing pol-
lutants include pharmaceuticals, pesticides, personal care 
products, hormones, disinfectants, disinfection by-products, 
surfactants, and perfluorinated chemicals [215]. Despite 
their trace concentrations in water systems and wastewater 
treatment processes, there is still a substantial risk of these 
contaminants reaching our drinking water due to ineffec-
tive monitoring. These contaminants often exist as complex 
mixtures with potentially harmful synergistic effects [216]. 
Therefore, more knowledge is needed to understand their 
origins, consequences, and ecological impacts.

Table 8  CNCs-based adsorbents for pharmaceutical pollutants removal from wastewater

CNC Adsorbent Pollutants pH Concentration of 
pollutants (mg/L)

Adsorbent 
dosage 
(g/L)

Adsorption 
Capability 
(mg/g)

References

Dialdehyde cellulose nanocrystals (DCNCs) Creatinine 7.0 100 – 1.50 [210]
Poly(acrylic acid)-modified poly(glycidylmeth-

acrylate)-grafted nanocellulose (PAPGNC)
Trypsin 6.5 500 2 140.65 [213]

Poly(methacrylic acid-co-vinyl sulfonic acid)-
grafted-magnetite CNCs

Haemoglobin 6.5 100 2 248.19 [27]

β-Cyclodextrin-modified CNCs@Fe3O4@SiO2 
superparamagnetic nanorods

Procaine hydrochloride – – – 13 ± 0.09 [212]
Imipramine hydrochloride – – – 14.8 ± 0.16
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Biopolymers, particularly CNCs, have shown significant 
potential in adsorbing heavy metal ions, dyes, and other 
micropollutants at low concentrations [217]. CNCs offer 
several advantages, including biocompatibility, biodeg-
radability, non-toxicity, reactivity, film and fiber-forming 
capabilities, and high hydrophilicity. They exhibit excellent 
sorption and selectivity for trace pollutants. The adsorption 
process of CNCs is based on the dissociation of ions from 
the surface and subsequent electrostatic attraction to charged 
surface functional groups. When water with solutes comes 
into contact with the active layer of an adsorptive mem-
brane, molecular sieving rejects solutes larger than the mem-
brane’s pore size [218]. Smaller solutes, however, can enter 
the active layer and behave as microspheres of adsorption 
material in the support layer. These solutes eventually form 
a compact internal spherical complex, allowing the adsorp-
tive membrane to produce filtered water that meets required 
standards [217]. Adsorbent membranes are modified with 
reactive functional groups such as -NH2 and -COOH to facil-
itate surface complexation, physical adsorption, electrostatic 
interactions, or ion exchange interactions with solutes [219].

Others

Natural organic matter (NOM), a different class of contami-
nants, causes concern when it is found in drinking water. 
A hydrophobic NOM called humic acid is produced when 
environmental biomass decomposes. Due to the composting 
actions of bacteria on deceased species and plant tissues, 
certain natural streams have a brownish-yellowish hue [220]. 
To eliminate humic acid from aqueous solutions, amino 
groups are one sort of functional group that may be added 
to nanocellulose [93]. Electrostatic interactions between the 
carboxyl and hydroxyl groups on humic acid and the amine 
functional group on nanocellulose created the adsorption 
process [194].

Furthermore, non-biodegradable nitrophenols are 
exceedingly dangerous, carcinogenic, and the cause of 
many human diseases. Therefore, it is crucial that they are 
removed throughout the water treatment process. They are 
used in a wide range of industries, including the production 
of synthetic polymers, dyes, explosives, resins, and medi-
cines, which use anilines as key feedstocks and are on the 
list of regulated materials. Shi et al. [221] created CNCs-
supported gold NPs with a fast swelling rate and superior 
catalytic prowess to catalyze the aqueous sodium borohy-
dride  (NaBH4)-mediated reduction of pollutant, 4-nitrophe-
nol (4-NP), with turnover frequency value and maximum 
rate values of 641  h−1 and 0.0147  s−1, respectively [58]. 
This synthesis was carried out by electrospinning and ther-
mally treating polyethylene glycol, CNCs, and H[AuCl4] for 
60 min at 80 °C, where CNCs and polyethylene glycol serve 
as the support and reductant, respectively [58].

Outlook and Challenges

Although CNC-based adsorbents have a bright future in 
the removal of heavy metal ions and organic dyes from 
water, there are still several obstacles that are mostly 
related to their manufacturing processes that limit the use 
of CNC, such as their low adsorption capacity limits their 
potential as effective adsorbents. More study is necessary 
to investigate and enhance the application of CNCs-based 
adsorbents in different fields. Furthermore, the cost of 
producing CNC from raw materials is the biggest obsta-
cle to commercialization. Large-scale CNC isolation can 
be an expensive, energy-, and time-intensive procedure, 
which may limit their utilization in large-scale wastewater 
treatment applications. Some studies advise using feed-
stocks other than woody cellulose, such as agricultural 
waste [222]. Some researchers recommend an enzymatic 
or chemical pre-treatment before the mechanical treatment 
[57]. Current research and developments in isolation tech-
niques may aid in overcoming this limitation in the future. 
Besides, due to its potential to permanently combine when 
dried, another problem is the challenge of maintaining the 
nanoscale structure of CNC throughout handling and stor-
age. For simpler transportation and long-term application, 
nanocellulose’s surface modification, and dispersibility 
may be crucial factors.

Apart from that, for large-scale applications, the 
unknown toxicity of newly developed modified nanocel-
lulose materials may be a barrier. Despite the fact that 
functionalized nanocelluloses and nanocomposites are 
safe to use, toxicological research on them is still insuf-
ficient for widespread adoption [194]. Therefore, before 
commercialization, understanding the potential long-term 
toxicity of nanocomposites on a batch and pilot size is 
essential. Another evident challenge is the homogeneity 
of the chemistry and properties of nanocellulose-based 
products during their manufacture. Variability from one 
batch to the next may be caused by feedstock, processing 
techniques, and other factors, which makes it more chal-
lenging to manage in large-scale usage [194]. Additionally, 
extensive study is needed to develop CNC-based adsor-
bents that aim to simultaneously remove different species 
from a multicomponent contaminated system, mimicking 
the properties of real wastewater.

The challenge of dispersing CNC in hydrophobic pol-
ymer matrices persists due to the inherent difficulty of 
removing individual nanocellulose particles from water 
systems [21]. This problem arises because, following the 
water treatment process, their great dispersion stability 
made it essential to add salt or alter the pH. However, it 
is possible to accomplish the surface grafting of CNCs 
with low molecular weight polymers to disperse them in 
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polymer blends for ecologically friendly wastewater treat-
ment applications [21]. The main difficulties in the prepa-
ration process include high water and energy consump-
tion and yield, as well as by-product toxicity, which is an 
obstacle to the usage of CNCs in wastewater treatment. 
For instance, the washing procedure often produces acid 
wastewater that is used to balance the pH of the nanocel-
lulose solution.

Another area of interest is the post-treatment regeneration 
and reusability processes of CNC-based materials for long-
term uses. Numerous investigations on nanocellulose adsor-
bents are lacking in terms of good biodegradation processes 
or numerous adsorption-desorption cycles. While they can 
be partially regenerated, repeated usage may result in a 
decline in adsorption capability over time. Current research 
is focused on developing effective regeneration methods 
and understanding the long-term stability of CNCs. Finally, 
research on the use of magnetic nanocellulose composites in 
the form of aerogel or hydrogel, which would make it simple 
to separate from sludge and prolong their lifespan, is con-
ceivable. The field of CNC-based adsorbents for the removal 
of toxins from wastewater might encompass newly emerging 
contaminants. The outstanding simultaneous photo adsorp-
tion and photodegradation capabilities of the impregnation 
of photocatalytic nanomaterials with CNC-based materials 
should be further studied for water remediation applications 
[194].

Concluding Remarks

Efforts to synthesize effective and environmentally friendly 
wastewater treatment materials have piqued the interest 
of academia and industry. Clean water is one of the most 
important global concerns of the twenty-first century, and 
numerous solutions have been proposed. Nanocellulose 
stands out as one of the most effective and efficient sustain-
able materials available for wastewater treatment. There are 
various advantages to using nanocellulose materials such 
as cellulose nanocrystals, cellulose fibers, and bacterial cel-
lulose. They are light, chemically inert, and can be custom-
ized with various surface chemistries. Furthermore, they 
have lower production costs than inorganic nanomaterials. 
Researchers have achieved considerable advances in nano-
cellulose synthesis and have effectively used these materials 
for wastewater treatment. For water treatment applications, 
nanocellulose-based membranes, filters, and adsorbents 
have been produced. Heavy metals, pesticides, organic dyes, 
pharmaceutical pollutants, organic micropollutants, oils, 
and organic solvents have been shown to be removed from 
water by these materials. CNCs are interesting due to their 
low cost and widespread availability. Since cellulose can be 
extracted from both land and sea sources, there is always 

a supply to fulfill the rising demand for goods in various 
industrial sectors. The well-being of society exposed to such 
toxins will increase when waste and harmful contaminants 
are removed from wastewater utilizing renewable resources 
from the environment. They are essential for the design and 
development of effective bio-adsorbents that guarantee the 
most efficient elimination of hazardous pollutants because 
of their huge specific surface area.
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